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Topologically protected elastic waves in phononic
metamaterials
S. Hossein Mousavi1, Alexander B. Khanikaev2,3 & Zheng Wang1

Surface waves in topological states of quantum matter exhibit unique protection from

backscattering induced by disorders, making them ideal carriers for both classical and

quantum information. Topological matters for electrons and photons are largely limited by the

range of bulk properties, and the associated performance trade-offs. In contrast, phononic

metamaterials provide access to a much wider range of material properties. Here we

demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of

the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two

effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized

by breaking spatial mirror symmetry. By preserving the spin polarization with an external load

or spatial symmetry, phononic edge states are shown to be robust against scattering from

discrete defects as well as disorders in the continuum, demonstrating topological protection

for phonons in both static and time-dependent regimes.
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O
ne of the most intriguing advancements of the condensed
matter physics is the discovery of a novel state of matter
known as topologically ordered states, such as two-

dimensional quantum Hall states, quantum spin Hall states and
three-dimensional topological insulators1,2. These topological
orders were all first observed and realized in electronic
materials, and were initially thought to be intimately linked
with the Fermi-Dirac statistics of electrons. Recently, topological
orders were generalized3–12, and observed13–15 in bosonic
systems,16 for example, in periodic photonic media17,18.
However, backscattering-immune edge states, the quintessential
topological phenomenon, are excited in rather dissimilar ways,
due to the different statistics between fermions and bosons:
electron transport is driven by potential gradients or spin pumps,
while photonic transport requires no such gradients. The
topological protection from disorder-induced backscattering is
of fundamental importance to photonic systems for three reasons:
they offer an unparalleled tolerance towards defects and
fabrication imperfection; the lack of feedback suppresses
amplitude and phase noises in active systems; the absence of
reflection reduces the overall system response from a complex
multi-pass scattering to a simpler algebraic multiplication of the
transfer functions of the constituent stages, thereby opening up
the possibility of large-scale photonic circuits.

Phonons, classically known as elastic waves in solids, are also
bosons that can similarly benefit from topologically protected
transport. Indeed, unique advantages of phononic information
processing, including much smaller wavelength (that is, device
footprint) and stronger phonon–phonon interaction19,20 in
comparison with photonic systems, originate from the speed of
sound being orders of magnitude lower than the speed of light.
The resultant slow group velocity and high density of states
enhance backscattering21, and render phononic systems far more
disorder susceptible than photonic systems. Large contrast in
acoustic impedance between common materials further promotes
backscattering from disorder. Thus, realizing topological
protection against even a subclass of structural imperfections
and disorders has marked implications for practical applications.
Moreover, realizing topological orders of phononic states is of
scientific interest: phonons possess three polarization variants,
that is, three available spin states22, which is fundamentally
different from the two spin states available for electrons and
photons. Since spin plays a pivotal role in forming topological
insulators, such a new spin degree of freedom may facilitate the
exploration of new topological orders.

Nevertheless, to realize topologically protected transport for
phonons in solids, notably chiral edge states in quantum Hall
effect and helical edge states in quantum spin Hall effect (QSHE),
one must overcome several nontrivial challenges associated with
symmetry and degeneracy inherent to elastic materials. First,
unlike electronic and photonic systems where a static magnetic
field can readily break time-reversal (T) symmetry, passive elastic
materials generally conserve T-symmetry23,24, thereby precluding
a phononic analogue of chiral edge states in passive materials. On
the other hand, the existence of helical edge states relies on two
degenerate spin states both having Dirac dispersion in the
absence of spin–orbit coupling, and the lack of any ‘magnetic’
defect that can hybridize the spin states. Most solid interfaces and
surfaces are well known to mix all three polarizations of elastic
waves24, essentially functioning as ‘magnetic’ defects. Thus, to
realize helical edge states, unlike electronic and photonic
materials, solid phononic materials must be deliberately
designed to simultaneously satisfy four conditions: (1) a
complete bandgap for the extra spin state to prevent its
excitation; (2) degenerate Dirac dispersion for the two
remaining spin states; (3) gauge fields emulating spin–orbit

interaction and inducing topological order; (4) protection from
spin mixing between the two spin states, that is, absence
of ‘magnetic’ defects. These demanding conditions are the
principal reason that phononic topological phases have so
far been predicted only in mechanical lattices of coupled
rigid bodies25–30, scalar (p-wave) acoustic resonators31,32 or
static buckling of origami structures33,34. It remains a challenge to
realize phononic topological phases for a general monolithic solid
structure that supports all three elastic wave polarizations and is
scalable to operate at GHz and beyond.

In the following, we demonstrate a solid-state mechanical
system with phononic topological order, with numerical experi-
ments illustrating topologically protected helical edge phonons.
This phononic analogue of QSHE is realized via the following
steps. First, the phonon-specific challenges are resolved with the
careful use of waves in a phononic crystal made from a solid
membrane with properly chosen thickness and meticulously
engineered elastic anisotropy. Mirror symmetry protects sym-
metric and anti-symmetric waves from mixing at membrane
interfaces, allowing any linear combination of the two waves to be
used as candidates for the spin states. The membrane thickness,
elastic anisotropy and the crystal design ensure that not only
exactly two candidate spin states exist in the frequency range of
interest but also the two states are degenerate. The next step
introduces a strong spin–orbit coupling by breaking the mirror
symmetry, which leads to a phase transition into two-dimensional
topological insulators. The final step involves truncating the
phononic crystal with a ‘non-magnetic’ boundary without spin
hybridization, via either spatial symmetry or external loading.

Results
Designing spin-degenerate metacrystal. The first step aims to
create a phononic band structure emulating the electronic band
structure of graphene with two uncoupled and degenerate spin
states with Dirac dispersion. Consider a dual-scale phononic
crystal35 shown in Fig. 1a, formed by a triangular array of air
holes perforated in a slab of elastic metamaterial35–40. Two scales
of patterning are built into this structure for different purposes:
the smaller deep-subwavelength patterning yields extreme elastic
anisotropy, and can be well characterized as an elastic non-
resonant metamaterial (Supplementary Fig. 1); the larger
wavelength patterning creates a graphene-like band structure
for phonons. Specifically, the in-plane triangular symmetry
provides Dirac dispersion41,42 for phonons with a coincidental
degeneracy at K and K0 points (Dirac points) as shown in Fig. 1b.
The out-of-plane mirror-reflection symmetry sz is also
important. With it, all phononic modes are essentially Lamb
waves with modified dispersion, and can be classified by their
displacement fields as either symmetric (S) or anti-symmetric (A)
modes24. Consequently, matching the frequency and the slope
(group velocity) of Dirac cones associated with a symmetric mode
and an anti-symmetric mode in a frequency range with no other
modes is sufficient for emulating the two spin states in graphene,
known to exhibit QSHE when strong spin–orbit coupling is
introduced. However, symmetric modes and anti-symmetric
modes generally follow drastically different dispersion
relations24, and thus such degeneracy does not exist in most
solid plates. To address this challenge, we took advantage of the
exceptionally large contrast in elastic properties between solid and
air inside the subwavelength perforations, and structurally tuned
a highly anisotropic non-resonant metamaterial (Supplementary
Note 1; Supplementary Table 1; Supplementary Figs 2 and 3) to
realize the desired degeneracy as seen in Fig. 1b: a four-fold
degeneracy at each Dirac point with two overlaid Dirac cones
from both families of modes (Fig. 1c). Note that matching the
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group velocity of the Dirac cones is critical, because not only this
condition ensures that the S and A modes are degenerate over a
broad range of frequency around the Dirac point but more
importantly it allows one to use any unitary transform of the
original orthogonal basis (S and A modes) as effective spin states.
Near the K-point (k||¼ kKþ dk||) and using the A and S modes as
the basis, this system is described by a 4� 4 effective
Hamiltonian:

bHA;S kk
� �

¼ vAbrk � dkk 0
0 vSbrk � dkk

� �
; ð1Þ

where brk ¼ bs1; bs2½ � is the Pauli matrices of the Dirac bands
subspace (Supplementary Note 2). vA and vS are the group
velocities of the A and S modes, respectively, and have an
identical value of vD when degeneracy is achieved. Any bulk mode
can be expanded into a linear superposition of four Dirac-band
eigenstates described by a four-component wavefunction
j/4 ¼ fI

A;f
II
A;f

I
S;f

II
S

� �
, where the superscripts I and II

denote the lower and upper Dirac bands, respectively.

Emulating strong spin–orbing coupling. In the second step, we
introduce strong spin–orbit coupling to induce topological phase
transition, accompanied by the opening of a topological bandgap at
the K and K0 points for the bulk crystal (Fig. 2). Note that the

degeneracy between the A and S modes achieved at the previous
step ensures a complete phononic bandgap in the proximity of the
former Dirac points, forming an ‘insulating state’ for the phononic
crystal (Fig. 2b)43. The use of Lamb waves is crucial to the
formation of the complete bandgap44,45. By enlarging the upper rim
of the air holes into a counterbore structure, as shown in Fig. 2a, an
effective gauge field emulating spin–orbit coupling46 is introduced.
This structural change breaks sz mirror symmetry, and is designed
to induce coupling within two mode pairs in the original Dirac
bands: the lower AI mode and the upper SII mode, as well as the
lower SI mode and the upper AII mode. For all frequencies near the
original Dirac points where the frequency and group velocity
degeneracy are maintained, the eigenmodes of the system become
hybridized as Aþ Sð Þ=

ffiffiffi
2

p
and A� Sð Þ=

ffiffiffi
2

p
, which will be used as

the two effective spins. Inspection of the numerically calculated
displacement fields confirms such pairwise hybridizations of the A
and S modes as the new eigenmodes (Fig. 2c).

Treating the structural modification as a perturbation, we
mapped the effective Hamiltonian to the Kane–Mele theory46,
proving this system is a phononic analogue of QSHE. Indeed,
keeping the A and S modes as the basis, the perturbation is
described by a first-order correction to the unperturbed
Hamiltonian bHA;S ¼ bHA;S þ bVA;S with bVA;S ¼ 0;mbs3;mbs3; 0½ �,
where bs3 is a Pauli matrix (Supplementary Note 2). Switching
to the hybridized modes as the basis in the vicinity of K (K0)
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Figure 1 | Dual-scale phononic crystal with degenerate Dirac cones. (a) Perspective view (upper panel) and top view (lower panel) of a phononic crystal

made of a triangular lattice of air holes in a slab of aluminium metamaterial. P¼ 1 cm; L¼ 5.25mm; R¼ 1.95mm. The non-resonant metamaterial slab is

2.54-mm thick, with subwavelength air holes at a filling ratio of 0.65. (b) Phononic band structure with degenerate Dirac points and Dirac velocities,

along the irreducible Brillouin zone boundary (shown as inset). (c) Displacement fields of a unit cell at the Dirac point (K). Colour indicates the

displacement amplitudes from the undeformed configuration (grey contours).
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Figure 2 | Spin–orbit coupling and bandgap opening by breaking mirror symmetry rz. (a) Perspective view of the modified phononic crystal (upper

panel) with broken z-mirror symmetry: the top rim of each air hole is enlarged into a counterbore (lower panel) with 14% increase in size and a 20% depth

of the overall thickness. The overall thickness is increased to 2.94mm to restore the spin degeneracy between the modes at the K-point. (b) Phononic

band structure showing a complete bandgap (5.4% relative bandwidth) induced by the symmetry breaking. Phase and group velocities at the band edge

remain matched near the K-point. Spin Chern number CS, calculated using first-principle finite-element method simulations, is shown for each band.

(c) Displacement fields of a unit cell at the Dirac point (K), illustrating the hybridization between the S and A modes. Colours indicate the absolute value of

the displacement.
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points, we denote the hybridized eigenmodes in the presence
of the effective gauge field as the þ and � modes. The
perturbed Hamiltonian assumes the block-diagonal form:bHþ =� ¼ vDbrk � dkk þmbs3; 0; 0; vDbrk � dkk �mbs3� �

, and is
identical to the low-energy Kane–Mele Hamiltonian for QSHE
in graphene with spin–orbit coupling:46

bHþ =� ¼ vDt̂0 ŝ0brk � dkk þmt̂3 ŝ3bs3; ð2Þ

where t̂i and ŝi are inter-valley and pseudo-spin Pauli matrices. It
is important to notice that because the Hamiltonian in
equation (2) lacks the Rashba term, spin states are conserved,
and spin-dependent Chern number is well defined47. Using first-
principle finite-element method, we have numerically calculated
the Berry curvature of the phononic bands immediately above
and below the topological bandgap in the k-space and found
the corresponding spin Chern numbers to be Cs¼±1
(Supplementary Note 3; Supplementary Fig. 4).

Emergence of topologically protected edge modes. The final
step towards topologically protected transport is the truncation of
the bulk crystal without causing coupling of the two spin states, to
support helical edge states. To this end, we introduce a domain
wall, across which the sign of spin–orbit coupling (the term m in
equation (2)) is reversed. Structurally, this domain wall is a
boundary between two areas of the slab, where the counterbores
are located at the opposite faces of the crystal (Fig. 3a). The bulk
crystals on opposite sides of the domain wall thus possess
opposite signs in their spin Chern number as well. According to
the bulk-boundary correspondence principle48, topologically
protected edge states emerge at this boundary. First-principle
finite-element method simulations of such a structure are shown
in Fig. 3. Two counter-propagating modes reside in the bandgap
in the place of former Dirac cones near the K-point (Fig. 3b). The
displacement fields of the two modes reveal that they are well
localized to the domain wall (Supplementary Movies 1 and 2) and
carry opposite spin as predicted by the perturbation theory
(Supplementary Note 2). Their time-reversed counterparts also
exist near the K0 point and similarly carry opposite spins. The
spin of all four edge states is locked to their respective
propagation direction, ensuring their topological robustness.
Moreover, such band structure is robust in viscous ambient:
immersion in air or water only adds a miniscule attenuation that
is negligible for the length scales considered here (Supplementary
Note 4; Supplementary Figs 7–9).

To verify the most striking feature of QSHE, that is, the
topological protection of helical edge states from backscattering
caused by spin-conserving non-magnetic disorders as defined by
the gauge field, we performed a set of large-scale first-principle
numerical simulations. Structurally, the non-magnetic disorders
defined by the gauge field include size variations on the
counterbores, as well as a broad range of domain wall
imperfections along arbitrary trajectories, including closed
trajectories forming local resonances. The first example presented
in Fig. 3c illustrates a zigzag domain wall functioning as a
phononic waveguide with acute-angled bends. Without any
structural tuning at the waveguide bends a complete transmission
of the forward spin-up |þi edge mode can be observed and no
standing-wave pattern is present. This phenomenon is in sharp
contrast to conventional waveguides exploiting topologically
trivial surface or interface modes, for which structural modifica-
tion at the waveguide bends is needed to accomplish complete
transmission49. A more general variety of disorders, a domain
wall with arbitrary turns and angles representing a one-
dimensional random potential, is shown in Fig. 4 to illustrate
the topological robustness of the helical edge states. Such a strong
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random potential is known to cause localization of wave and its
back-reflection in conventional waveguides without topological
protection, as no discernible amount of power reaches the output
in Fig. 4a. A striking difference is seen in Fig. 4b: the helical edge
mode propagates with no backscattering along the path of the
same random potential. It is worth emphasizing that, in

comparison with photonic systems, such topological protection
is of particular significance to phononic circuits, because typical
acoustic impedance contrast (for example, between aluminium
and air) is many orders of magnitude greater than that in
photonics. Furthermore, the need for topological protection is
motivated by the inherently larger density of states for phonons,
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roughly 105 times greater than that of photons, which causes far
greater backscattering21,50. Also note that the bandwidth of the
topological protection extends over the entire topological
bandgap, and similar robustness for the backward running |�i
mode has been verified as well.

Replacing conventional waveguide with topologically protected
helical edge states can also overcome many circuit- and
system-level performance limits induced by scattering. For
example, without backscattering, multi-path feedback between
resonators is eliminated, and thus large numbers of resonators
can be integrated in high spatial and spectral density
without mutual interference. In a conventional waveguide
(Supplementary Note 5), undesirable reflection occurs near the
resonance of a side-coupled standing-wave resonator (Fig. 5a),
oftentimes as a result of mode splitting between travelling-wave
resonances. With cascaded resonances, the reflection causes the
overall system response to differ drastically from the product of
responses of individual resonators, and also leads to long-range
coupling and frequency pulling between resonators of similar
frequencies, regardless of the physical distance between the
resonators. These complications hinder large-scale integration,
and necessitate the use of much larger travelling-wave resonators
or nonreciprocal elements. However, the lack of nonreciprocal
phononic materials at frequencies beyond MHz represents a
major practical challenge51. In stark contrast, the phononic

helical edge modes, also side-coupled to a resonator, experience
no reflection, with the resonant effect manifesting exclusively in
the phase response (Fig. 5b). Here even though the resonator is
created with a closed-path domain wall with no apparent
symmetry, no standing-wave resonance can be formed as long as
the spin states are conserved. The complete transmission allows the
phase response to be additive for cascaded systems, and a large
number of resonators can be used for filtering or field enhancement
without concerning the inter-resonator coupling, provided that they
are moderately spaced to prevent near-field coupling. Such
integration can enable significant increase in the capacity of
spatially and spectrally multiplexed communication systems.

Nonreciprocal time-dependent topological crystals. A unique
advantage of phononic systems over electronic or photonic sys-
tems is the possibility of applying external loads, for example,
with an array of piezoelectric actuators, to polarize helical edge
states to a single spin. With the extra degree of freedom from
external loads, one can truncate a bulk topological insulator and
host only a single unidirectional helical edge state, reminiscent of
waveguide isolators built from chiral edge states. In comparison,
photonic analogues of QSHE require two domains to maintain
the spin polarization, while for phononic systems outlined here,
one domain can be replaced by a distributed external forcing
function that matches the traction created by the propagation of
the desired helical edge state at the domain wall between the two
crystals. Here the uniqueness of the solution to the elastic wave
equations ensures the equivalence between the replaced solid
domain and the substituted external load distribution providing
the identical boundary stress. Each one of the four edge modes is
associated with a unique load distribution with both nontrivial
normal and tangential components. In other words, a free edge
(that is, zero traction) of a topological phononic crystal does not
support helical edge states, because the spin states are not con-
served (Supplementary Note 6). However, applying the specified
external forcing function preserves the spin state of interest, and
also eliminates the other three propagating edge modes, a direct
result of the orthogonality of the four helical edge states originally
formed between two domains. An example of the externally
loaded truncation of the topological phononic crystal is presented
in Fig. 6, with a single one-way edge mode allowed along its
truncated edges. With its spatio-temporal distribution, this
external load breaks time-reversal symmetry, and the associated
one-way propagation can be exploited as nonreciprocal phononic
devices, such as isolators. Moreover, such single-mode operations
are generally favoured over multimode operations in signal pro-
cessing and communication systems, as intermodal interference
and the subsequent phase decoherence is completely avoided.

Discussion
This work demonstrates that judicious engineering of solid
structures can give rise to unusual topological systems supporting
disorder-immune helical edge states for phonons. This approach
opens up possibilities to realize novel topological phononic
materials in both static and time-dependent regimes. Although
our discussion focuses on frequencies near 100 kHz, the scale
invariance of the elastic wave equation allows the design
procedure to be readily scaled to higher frequencies. For example,
reducing the lattice constant of the phononic crystal to 1mm and
proportionally reducing all other dimensions by 10,000-fold will
raise the operational frequency to B1.3GHz. In addition, unlike
photons, phonons enjoy a 100% reflection at solid/vacuum
interfaces for all frequencies, further allowing this two-dimen-
sional design to be scaled to GHz and even THz regimes. Coupled
with the single-mode operation using external forcing function,
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phononic helical edge modes represent an intriguing solution to
the unfulfilled need of nonreciprocal elastic wave devices, and
open up venues to explore new forms of topological orders.
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16. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8,
821–829 (2014).

17. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and
electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

18. John, S. Strong localization of photons in certain disordered dielectric
superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

19. Gan, W.-S., Yang, J. & Kamakura, T. A review of parametric acoustic array in
air. Appl. Acoust. 73, 1211–1219 (2012).

20. Wolfe, J. P. Imaging Phonons: Acoustic Wave Propagation in Solids (Cambridge
Univ. Press, 2005).

21. Johnson, S. G. et al. Roughness losses and volume-current methods in
photonic-crystal waveguides. Appl. Phys. B 81, 283–293 (2005).

22. Levine, A. T. A note concerning the spin of the phonon. Il Nuovo Cimento Ser.
10 26, 190–193 (1962).

23. Landau, L. D. et al. Electrodynamics of Continuous Media (Elsevier, 1984).
24. Royer, D. & Dieulesaint, E. Elastic Waves in Solids I: Free and Guided

Propagation (Springer Science & Business Media, 2000).
25. Prodan, E. & Prodan, C. Topological phonon modes and their role in dynamic

instability of microtubules. Phys. Rev. Lett. 103, 248101–248101 (2009).
26. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices.

Nat. Phys. 10, 39–45 (2013).
27. Chen, B. G., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a

topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009
(2014).
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