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Returners and explorers dichotomy in human
mobility
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& Albert-László Barabási3,6,7

The availability of massive digital traces of human whereabouts has offered a series of novel

insights on the quantitative patterns characterizing human mobility. In particular, numerous

recent studies have lead to an unexpected consensus: the considerable variability in the

characteristic travelled distance of individuals coexists with a high degree of predictability of

their future locations. Here we shed light on this surprising coexistence by systematically

investigating the impact of recurrent mobility on the characteristic distance travelled by

individuals. Using both mobile phone and GPS data, we discover the existence of two distinct

classes of individuals: returners and explorers. As existing models of human mobility cannot

explain the existence of these two classes, we develop more realistic models able to capture

the empirical findings. Finally, we show that returners and explorers play a distinct

quantifiable role in spreading phenomena and that a correlation exists between their mobility

patterns and social interactions.
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T
he availability of massive digital traces of human where-
abouts has offered a series of novel insights on the
quantitative patterns characterizing human mobility.

Indeed, satellite-enabled global positioning systems (GPS) and
mobile phone networks allow for sensing and collecting society-
wide proxies of human mobility, like the GPS trajectories
from vehicles and call detail records (CDR) from mobile
phones. This broad social microscope has attracted scientists
from diverse disciplines, from physics and network science1–4 to
data mining5–8, and has fuelled advances from public health9–14

to transportation engineering15–17, urban planning18–21, official
statistics22,23 and the design of smart cities24–27. All these studies
document a stunning heterogeneity of human travel patterns that
coexists with a high degree of predictability28,29: individuals
exhibit a broad spectrum of mobility ranges while repeating daily
schedules dictated by routine. Here we show that this seemingly
conflicting coexistence of heterogeneity and predictability can be
understood by quantifying the impact of recurring movements on
mobility. To be specific, we analyse mobile call records and GPS
tracks of private vehicles, allowing us to compare the overall
mobility of an individual with her recurrent, or systematic,
mobility. Two distinct mobility profiles emerge in both data sets:
returners and explorers.

The characteristic distance travelled by returners, estimated by
their radius of gyration2,6, is dominated by their recurrent
movement between a few preferred locations. In contrast,
recurrent mobility has only a vanishing contribution to the
overall mobility of explorers, who have a tendency to wander
between a larger number of different locations. We find that these
two profiles are well-separated: individuals persistently belong to
one or the other of these two classes. We show that current
models of human mobility4 cannot account for these two classes
of individuals and propose an improved model that can
reproduce the mobility patterns of returners and explorers.
Finally, we demonstrate that returners and explorers play
different roles in spreading processes and that a strong
correlation exists between the mobility behaviour of individuals
and their social interactions.

Results
Data sets and measures. Our first data source is an anonymized
3-month-long Global System for Mobile Communications (GSM)
record collected by a European carrier for billing and operational
purposes. It consists of CDR containing the calls of 67,000

individuals, selected from B3 million users provided that they
visit more than 2 locations during the observational period
and that their average call frequency f is Z0.5 h� 1 (see
Supplementary Table 1, Supplementary Note 1). We reconstruct a
user’s movements based on the time-ordered list of cell phone
towers from which a user made her calls2. Our second data source
is a GPS data set that stores information about the trips
ofB46,000 vehicles tracked during 1 month (May 2011), which
passed through a 250� 250 km square in central Italy. The
visualization of the recorded trajectories demonstrates the
complexity of explored mobility patterns (Fig. 1). We assign
each origin and destination point of the obtained sub-trajectories
to the corresponding Italian census cell, using information
provided by the Italian National Institute of Statistics (ISTAT)
(see Supplementary Table 2, Supplementary Note 2). We describe
the movements of a vehicle by the time-ordered list of census cells
where the vehicle stopped.

We use the total radius of gyration rg defined as2,6:

rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i2L

ni ri � rcmð Þ2
s

; ð1Þ

to characterize the typical distance travelled by an individual.
Here L is the set of locations visited by the individual, ri is a
two-dimensional vector describing the geographic coordinates of
location i; ni is the visitation frequency or the total time spent by
the individual in location i; N ¼

P
i2L ni is the total number

of visits or time spent, and rcm is the center of mass of the
individual.

The most frequented location L1 is the place where an
individual is found with the highest probability when stationary,
most likely her home. In general, the importance of each location
Lk to an individual is defined by its rank, where Lk is the k-th
most frequented location (Supplementary Note 3, Supplementary
Fig. 1).

Returners and explorers. To understand how the k-th most
frequented locations of an individual determine the characteristic
distance travelled by her, we define the k-radius of gyration rðkÞg .

rðkÞg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nk

Xk
i¼1

ni ri � r ðkÞcm

� �2

vuut ð2Þ

as the radius of gyration computed over the k-th most frequented

Figure. 1 | A visualization of the complexity of the explored mobility patterns. A fragment of the GPS trajectories used in our study, displaying trips

originating in the metropolitan areas of Pisa (in blue) and Florence (red). This plain geo-referenced visualization of experimental data reveals the

confrontation of two ‘competing’ metropolitan areas. It also demonstrates the ability of Big Data to portray social complexity. This map has been generated

through the QGIS software, available at http://www.qgis.org/en/site/.
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locations L1,y,Lk; r ðkÞ
cm is the centre of mass computed on

the k-th most frequented locations (Supplementary Note 7,
Supplementary Figs 8 and 9); Nk is the sum of the weights
assigned to the k-th most frequented locations (rðkÞg ¼ rg if kZN).
Thus, rðkÞg represents the mobility range restricted to the k-th most
frequented locations. For example, if an individual’s rð2Þg ’ rg,
then her characteristic travelled distance is dominated by the two
most frequented locations. Conversely, if the rð2Þg is much smaller
than the total rg the two most frequented locations do not offer an
accurate characterization of the individual’s travel pattern and we
need to consider more locations.

To investigate the role of the k-th most frequented locations for
an individual’s mobility pattern, we compare the probability
distributions of total rg and rðkÞg for k¼ 2,y,10 for the GSM and
the GPS data (Fig. 2). All curves are long-tailed, indicating that
most individuals cover small distances, but a few travel regularly
over hundreds of kilometers (heterogeneity). We fit the distribu-
tions using the truncated power law2,6 PðrgÞ ¼ ðrg þ r0Þ� a

exp� rg=rcut (Fig. 2), finding two significant differences. First, the
exponent a of the distribution of k-radii is significantly higher
than the exponent of the total rg (see Table 1). Second, the
exponential cutoff parameter rcut is larger for small k (see
Table 1). Obviously, as k increases the rðkÞg curve approaches the
total rg distribution.

The correlation between total radius and k-radius of gyration
allows us to quantify the degree of similarity between overall and
recurrent mobility. Figure 3 compares total rg and rðkÞg of each
individual for k¼ 2, 4, 8, indicating that the population splits into
two distinct classes. The data points concentrated around the
diagonal correspond to individuals whose total rg is comparable
to rðkÞg , indicating that their characteristic travelled distance is
dominated by their k-th most frequented locations. We call them
k-returners, as their mobility range is well-approximated by their
k-th most frequented locations. The points concentrated
around the abscissa correspond to individuals whose rðkÞg is
considerably smaller than total rg, indicating that we cannot
reduce their mobility to k locations; we call them k-explorers. For
example, the characteristic travelled distance of a two-returner is
mainly determined by the two most frequented locations,
typically corresponding to her home and work. In contrast,
a two-explorer travels recurrently between many different
locations.

The separation between the two classes is especially clear for
high radii of gyration, as for high total rg we find very few points
between the diagonal and the abscissa in Fig. 3. Yet, as the insets
show, the split into the two classes is valid for smaller total rg as
well. The number of k-returners increases with k (Supplementary
Fig. 3), and when k equals the total number of visited locations
each individual becomes a returner. Note that while explorers
gradually become returners as k increases, the opposite process is
extremely rare (see Supplementary Note 8, Supplementary
Fig. 10). The partition of individuals into returners or explorers
observed in both the GSM and the GPS data is not due to
confounding variables like the heterogeneity of the number of
calls or the demography of the municipality of residence (see
Supplementary Note 6, Supplementary Fig. 7).

We develop three algorithms to split the population into
k-returners and k-explorers: the bisector method classifies an
individual as a k-returner if rðkÞg 4rg=2 or a k-explorer otherwise;
a support vector machine classifier and the expectation-
maximization clustering algorithm30 extract the two patterns
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Figure 2 | The distributions of k-radii and total radii. The distributions of total rg and r
ðkÞ
g , with k¼ 2, 6, 10 for the GSM data (a–c) and GPS data (d–f).

Black circles indicate the total rg, red and blue triangles indicate the r
ðkÞ
g for the GSM and GPS data, respectively. All distributions are approximated by a

truncated power law PðrgÞ ¼ ðrg þ r0Þ� aexpð� rg=r
cutÞ; the dashed black line represents a truncated power-law fit of the total rg, the red and blue solid lines

represent a truncated power-law fit of r
ðkÞ
g for the GSM and GPS data, respectively. Table 1 shows the fitting parameters of the truncated power laws.

Table 1 | Fitting parameters of truncated power laws.

GSM GPS

r0 a rcut r0 a rcut

r
ð2Þ
g 0.82 1.89 691.03 0.07 1.25 22.92
r
ð6Þ
g 1.44 1.61 308.47 0.13 0.9 16.36
r
ð10Þ
g 2.88 1.6 275.22 0.91 0.76 14.56
rg 5.5 1.6 250.11 0.96 0.75 14.44

The parameters of the fitted truncated power laws for r
ð2Þ
g , r

ð6Þ
g , r

ð10Þ
g and total rg for GSM and GPS

data.
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Figure 3 | The correlation between recurrent and overall mobility. The scatter plots represent the correlation between total rg and r
ðkÞ
g for k¼ 2, 4, 8 in the

GSM data set (a–c) and the GPS data set (d–f). Each point is coloured from blue to red, indicating the density of points in the corresponding region. Most of

the points gather around the x-axis, the diagonal and the origin. The insets magnify the origin of the plot to [0, 100 km] for GSM and [0, 16 km] for GPS,

demonstrating that the split emerges for smaller radii as well. As k increases explorers become returners. This transition is faster in the GPS case,

consistent with the fact that the vehicle mobility represents a subset of trips and visited locations.
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Figure 4 | The ratio between recurrent and overall mobility. The distribution P(sk) of the ratio sk ¼ r
ðkÞ
g =rg measured on the GSM data for k¼ 2, 4, 8 (a–c).

The peak at sk¼0 corresponds to explorers, while the sk¼ 1 peak corresponds to returners. For small k in the GSM data, k-explorers are more

numerous than k-returners. As k increases the number of k-returners increases and overcomes the number of k-explorers. A balance in the population is

reached at k¼4. (d–f) The P(sk) for the GPS data. We again observe two peaks, but the k-returners peak, sk¼ 1, dominates for all kZ2.
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from the population (see Supplementary Note 4, Supplementary
Fig. 2). The three methods produce similar results, indicating
that the two classes are clearly separated and well-defined.

Consequently, in the following we use the simpler bisector
method to split the population into k-returners and k-explorers.

The ratio sk ¼ rðkÞg =rg measures the impact of an individual’s
recurrent mobility on her overall mobility: the higher the ratio the
higher is the weight of the top k locations in the trajectories of an
individual. Figure 4 shows the probability distribution of the sk
ratio for different k. We observe two peaks: the peak located at
sk¼ 0 corresponds to k-explorers, whose k-radius is significantly
smaller than the total rg; the peak at sk¼ 1 corresponds to the
k-returners, individuals whose rðkÞg is very similar to the total rg.
Note that only for a few individuals sk41 (that is rðkÞg 4rg),
suggesting that for the great majority of the individuals the k-th
most frequented locations are on average closer to the centre
of mass than their remaining less frequented locations (see
Supplementary Note 9, Supplementary Fig. 11). By increasing k,
the k-explorers gradually become k-returners, causing the
explorers and returners peaks to decrease and increase,
respectively. The population reaches a balance of k-returners
and k-explorers for k¼ 4 for GSM. In the GPS data, regardless of
k, we always have more k-returners than k-explorers. A possible
reason is that GPS data only contains trips made by private
vehicles, hence missing long distance trip locations less
frequented by a particular individual, reached by train or plane.
These trips increase the total rg without affecting the rðkÞg .
Neglecting these trips results in a lower estimate of an individual’s
total rg, increasing the chance to classify her as a returner.

Returners and explorers are also characterized by a different
spatial distribution of the visited locations. Figure 5 shows some
representative examples of individual mobility networks3,31 of
two-returners and two-explorers with different total rg. For both
profiles, the visited locations tend to group in dense clusters with

2-Returners

2-Explorers

rg ≈ 10 km rg ≈ 50 km rg ≈ 250 km

Figure 5 | The individual mobility networks of returners and explorers.

The mobility networks of returners and explorers for k¼ 2. Nodes (circles)

indicate the geographic locations visited by the individual, and each link

denotes a travel observed between two locations. When the total rg is

small, the two most important locations (red and blue) are close to each

other for both two-explorers and two-returners. As the total radius

increases the behaviour of two-returners and two-explorers starts to differ;

for two-returners, the two most important locations move away from each

other; for two-explorers, they stay close and other clusters of locations

emerge far from the centre of mass (the grey cross).
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Figure 6 | EPR model predictions. (a,b) The prediction of the EPR model for k¼ 2. We find that two-explorers dominate the population of synthetic

individuals and the balance in the population is reached only for k¼60, in contrast with k¼4 in the empirical data. (d,e) The results of the d-EPR model for

k¼ 2. In this case, the two-explorers continue to dominate the population, although the balance is reached at lower values of k¼ 9, coming closer to

empirical data. The insets in a,d magnify the plot at smaller values of the radii of gyration. Plots (c,f) show how the number of k-returners and k-explorers

changes with k for EPR model and d-EPR model, respectively.
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few outliers (see Supplementary Note 10, Supplementary Fig. 12).
For two-returners the distance between the two most frequented
locations is proportional to the total rg; in contrast, for
two-explorers the distance between the two most frequented
locations is much smaller than the total rg, whose magnitude is
mostly determined by less frequented locations far from the
centre of mass. Indeed, the distance between the two most
frequented locations grows with total rg more rapidly for
returners than explorers (see Supplementary Note 5,
Supplementary Fig. 4), and while the locations visited by two-
returners are clustered around their two most frequented
locations those visited by two-explorers are more spread out
(see Supplementary Note 5, Supplementary Figs 5 and 6). The
higher the total radius of gyration, the more obvious is the
difference between the two profiles.

Models. We compare our findings with the results produced by
the exploration and preferential return (EPR) individual mobility
model4, a state-of-the-art model that accurately captures the
visitation frequency of locations, the distribution of the radius
of gyration across the population and its growth with time
(ultraslow diffusion). The model incorporates two competing
mechanisms, the exploration of new locations and the return to
previously visited locations. We use the EPR model to simulate
the mobility of 67,000 synthetic individuals (see Box 1, and

Supplementary Notes 11 and 12) and computed for each
synthetic individual the total rg and rðkÞg . As shown in Fig. 6a
although for k¼ 2 there is a weak tendency for points to gather
around the diagonal, the empirically observed split into returners
and explorers is absent from the model trajectories (see
Supplementary Fig. 13). The difference between the empirical
and synthetic data is especially clear when we explore P(sk)
(Fig. 6b versus Fig. 4). For small k, in the model k-explorers (with
the ratio skE0) dominate the population. For kE60, we have
the perfect balance between k-returners and k-explorers as for the
GSM data set for k¼ 4 (Fig. 4b, Supplementary Fig. 14). Thus, the
EPR model overestimates by more than an order of magnitude
the number of locations needed to accurately estimate the total
radius of gyration. Contrarily to the empirical results, in the EPR
model there is no significant correlation between total rg and the
sum of the distances of the k-th most visited locations (Pearson
correlation coefficient is close to zero), neither for k-returners nor
for k-explorers (see Supplementary Fig. 15a,b).

The observed discrepancies between the empirical data and the
EPR model could arise from the fact that in the model individuals
can travel arbitrarily large distances, increasing their total rg with
each jump. To correct for this limitation, we propose the d-EPR
model, in which an individual selects a new location to visit
depending on both its distance from the current position, as well
as its relevance measured as the overall number of calls placed by
all individuals from that location. We use the gravity model32,33

to assign the probability of a trip between any two locations,
which automatically constrains individuals within the country’s
boundaries (see Supplementary Notes 11, 13 and 14,
Supplementary Fig. 16). This modification is justified by the
accuracy of the gravity model to estimate origin-destination
matrices at the country level34–37. The obtained d-EPR model
generates trajectories that are in much better agreement with the
empirical data: the balance between k-returners and k-explorers
in the population is reached at kE9, in contrast with kE60 in the
original EPR model (Fig. 6f), closer to k¼ 4 in GSM and k¼ 2 in
GPS (Fig. 3). Consequently, the correlation plot of rðkÞg versus total
rg displays the empirically observed split into returners and
explorers (Fig. 3 even at k¼ 2, Fig. 6d). The correlation between
total rg and the distance between the most visited locations is
much higher than in the original EPR model and closer to the
values of GSM and GPS data (see Supplementary Fig. 15e,f).

Hence, the d-EPR model of human mobility reproduces the
key features of the aggregated mobility patterns in a confined
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geographical space, accounting for the two classes of individuals,
returners and explorers. The mechanism underlying the
model can be easily understood: when a traveller returns, she is
attracted to previously visited places with a force that depends on
the relevance of such places at an individual level. In contrast
when a traveller explores, she is attracted to new places with a
force that depends on the relevance of such places at a collective
level.

The relevance of returners and explorers dichotomy. Our
findings are particularly relevant in two contexts: the geographical
spreading of epidemics and social interactions. The geographical
spreading of an epidemic is a direct consequence of individuals’
movements9,12,38,39. From the ‘patient zero’ (that is, the first
infected individual), the virus is passed on to individuals who
come into contact with them, contributing to the rapid growth of
the epidemic. Obviously, the wider the range of mobility, the
faster will the virus diffuse over the population. The question is,
how does the presence of the two mobility profiles uncovered
above affect the spreading pattern? To test this, we split the
mobility history of an individual into time periods, and captured
the trajectory’s reach up to time t using three measures: (i) the
number of locations visited; (ii) the area covered; and (iii) the
total radius of gyration rg(t). We observe that the trajectory of
explorers is distributed over a larger territory, as they visit more
locations, cover a larger geographic area and have a higher rg(t)
with respect to returners. This pattern applies both for GSM and
GPS data (see Supplementary Note 15, Supplementary Fig. 17).
We also assess the different role the returners and explorers play
in diffusion and spreading processes by considering the global
mobility networks generated by individual mobility. The global
mobility network is a graph whose nodes are locations and edges
indicate the existence of at least one trip between two locations.
To be specific, we focus on Tuscany, estimating the mobility of
each individual through the GPS data and the number of
residents in the locations through the official census cells
provided by the ISTAT. We build 10 global mobility networks
considering the trips of 10,000 randomly selected individuals,
choosing different proportions of two-returners and two-
explorers (0%, 10%,y, 100% of two-explorers in the random
population). For each network, we compute the global invasion
threshold R* under the assumption of a diffusion dynamics with
large subpopulations and a low reproductive number (that is,
close to the subpopulation epidemic threshold)40 (Supplementary
Note 16). In a metapopulation network, an epidemic can spread
and invade the system only if R*41, and this global invasion
threshold is affected by the topological fluctuations of the
network’s degree: the larger the degree heterogeneity, the higher
the R* and therefore the higher is the chance that the epidemic
will globally invade the metapopulation. We compute each of the
10 networks 1,000 times, randomly choosing 10,000 individuals
with different proportion of two-returners and two-explorers, and
obtaining 1,000 values for the invasion threshold for each
network (Supplementary Note 16, Supplementary Fig. 18). We
observe that the mean diffusion invasion threshold increases with
the fraction of explorers in the random population. Although
more refined metapopulation infection models are needed to
provide accurate estimates of invasion probabilities, our analysis
reveals a clear distinction between the diffusion properties of the
returners and explorers’ mobility networks.

Recent advances in characterizing the signature41 or
strategies42 of social interactions and the possibility to exploit
the information on an individual’s social ties to predict her future
locations43,44 demonstrate a strong connection between social
interactions and human mobility patterns. Here we bring a
further contribution by showing that individuals of the two

profiles, returners and explorers, tend to engage in social
interactions preferably with individuals of the same profile. In
other words, individuals who communicate with each other are
more likely to belong to the same mobility group than by chance.
In particular, we find that the fraction of two-returners whose
‘best friend’ (that is, the most called contact) is also a two-
returner is RRE0.27. We compare this figure with the highest
fraction of two-returners best friends obtained from 100,000
randomized experiments where we randomly reassign each
individual’s best friend, obtaining RRrandE0.21, resulting in a
highly significant P value (o10� 5), as shown in Fig. 7a,b. The
same applies to two-explorers (EEE0.81, EErandE0.78), as shown
in Fig. 7c,d. As we consider the n-th most called contact and
compare the fraction of individuals with the n-th best friend in
the same mobility group, we find that the observed fractions are
significantly higher than those obtained by chance for all n up to
15, as shown in Fig. 8. Our findings reveal the existence of a
strong correlation between the mobility behaviour of individuals
and their social relationships, although further experiments are
needed to understand whether this can be interpreted as a
homophily or influence effect.

Discussion
Here we report the existence of two distinct profiles characteriz-
ing human mobility: returners and explorers. Returners limit
much of their mobility to a few locations, hence their recurrent
and overall mobility are comparable. In contrast, the mobility of
explorers cannot be reduced to few locations. These patterns
cannot be explained by the EPR model of human mobility, unable
to distinguish returners from explorers. We show that by
incorporating a gravity model into the EPR mechanism, we can
recover the two classes, the obtained extended model coming
closer to the empirical observations characterizing the two
profiles. The returner/explorer dichotomy has a strong impact
on spreading and social interactions. We show that explorers and
returners play different roles in the disease spreading and that
they tend to engage in social interactions with individuals with
similar mobility profiles. The emerging profiles of returners and
explorers offer another step towards deriving accurate models of
human mobility, capable of generating realistic simulations,
predictions and what-if reasoning in context such as energy
consumption, gas emission and urban planning45.

Box 1.

The d-EPR model. We place each of the 67,000 GSM users in their
most frequented location L1 (GSM cell phone towers). For each
individual, we repeat the following steps for 3 months:
Waiting time choice.We extract a waiting time Dt from the distribution
P(Dt)BDt� 1� b exp(�Dt/t) with b¼0.8 and t¼ 17 h, as measured in
ref. 4.
Action selection. With probability Pnew¼rS� g, where S is the number
of distinct locations previously visited, r¼0.6 and g¼0.21
(ref. 4), the individual visits a new location (step 3), otherwise she
returns to a previously visited location (step 4).
Exploration phase. If the individual who is currently in location i
explores a new location, then the new location jai is selected according
to the gravity model32,33 with probability pij ¼ 1

N
ninj
r2ij
, where niðjÞ is the

location’s relevance, that is, the total number of calls placed by all
individuals from location i(j), rij is the geographic distance between i
and j, and N ¼

P
i;j 6¼ i pij is a normalization constant. The number of

distinct locations visited, S, is increased by 1.
Return phase. If the individual returns to a previously visited location, it
is chosen with probability proportional to the number of visits to that
location.
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36. Simini, F., González, M. C., Maritan, A. & Barabási, A. L. A universal model for
mobility and migration patterns. Nature 484, 96–100 (2012).

37. Balcan, D. et al. Multiscale mobility networks and the spatial spreading of
infectious diseases. Proc. Natl Acad. Sci. USA 106, 21484–21489 (2009).

38. Kleinberg, J. Computing: The wireless epidemic. Nature 449, 287–288
(2007).
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