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Transient brain activity disentangles fMRI
resting-state dynamics in terms of spatially
and temporally overlapping networks
Fikret Işik Karahanoğlu1,2,3,4 & Dimitri Van De Ville1,2

Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new

window onto the organizational principles of brain function. Using state-of-the-art signal

processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from

resting-state fMRI. The iCAPs’ maps are spatially overlapping and their sustained-activity

signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the

rich spatiotemporal structure of functional components that dynamically assemble known

resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to

four iCAPs occur simultaneously in combinations that are consistent with their behaviour

profiles. In contrast to conventional connectivity analysis, which suggests a negative

correlation between fluctuations in the default-mode network (DMN) and task-positive

networks, we instead find evidence for two DMN-related iCAPs consisting the posterior

cingulate cortex that differentially interact with the attention network. These findings

demonstrate how the fMRI resting state can be functionally decomposed into spatially and

temporally overlapping building blocks using iCAPs.
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S
pontaneous brain activity measured by functional
magnetic resonance imaging (fMRI) has provided evidence
that the human brain is intrinsically organized into

large-scale functional networks1. Typically, fluctuations of the
blood-oxygenated-level-dependent (BOLD) signals obtained
during 5–10min fMRI resting-state scans have been corro-
borated to aggregate brain regions with temporally coherent
activity. Despite being referred to as resting-state networks
(RSNs), these networks are reminiscent of common task-explicit
activation patterns related to motor, attention, visual networks2–4.
In addition, they are reproducible across healthy human
individuals and non-human primates, and have been studied
not only with fMRI, but also with other imaging modalities
including electroencepholography5,6, electrocorticography7 and
magnetoencephalography8.

Findings based on resting-state fMRI are closely related to
underlying data analysis methodologies such as seed correlation
analysis2, fuzzy clustering9, temporal clustering analysis10,11 or
subspace decomposition methods including independent
component analysis (ICA)12–14, canonical correlation analysis15

and agnostic canonical variates analysis16. Seed correlation
analysis, which builds a connectivity map from correlations
with the time course of a preselected seed region, and spatial ICA,
which identifies components using a proxy of statistical
independence17, have been most widely used, but both assume
stationary temporal behaviour.

Growing evidence points to the importance of dynamical
features of resting-state fMRI data to discover relevant
organization of brain function. Different methodologies have
been adapted to revisit resting state from this new emerging
viewpoint. First, using sliding-window correlation18, dynamic
functional connectivity can be represented by a limited number
of connectivity patterns19–23. Second, using temporal ICA
combined with fast acquisition schemes, temporal functional
modes (TFMs)24 have been identified. TFMs are spatially
overlapping sources optimized to be as independent in time as
possible. Third, functional connectivity networks have been
classified by latent Dirichlet allocation that allows for spatial
overlap25. Finally, seed correlation analysis has been extended to
extract different co-activation patterns (CAPs) for a predefined
seed region26,27. Inspired by point process analysis28, whole-brain
activation maps from time points where the seed region’s signal
exceeds a threshold enter into a temporal clustering step; CAPs
are then recovered as the average brain activity maps for the
different temporal clusters. These studies provide convincing
evidence that conventional RSNs can be decomposed in time by
spatially overlapping components, however, both TFMs and
CAPs are driven by temporal segregation as one of the underlying
assumptions of the analysis. It remains an open question whether
dynamics of ongoing activity measured by fMRI can be
considered to cycle through temporally segregated states, or
whether it is better described by temporally overlapping
components that form the RSNs. Identifying the elementary
building blocks of ongoing activity and obtaining a better
understanding of their temporal organization can then provide
new avenues to study their relationship with more temporally
precise electrophysiological signals such as EEG and MEG29, as
well as shed light on changes in neural dynamics in
neurodegenerative diseases30.

To overcome current limitations in the analysis of resting-state
dynamics, we propose to represent spontaneous brain activity by
‘transients’ and to explicitly account for temporal blurring by the
hemodynamic response function (HRF). Specifically, when the
fMRI signal of a region or a network is ‘high’, several regions
might be co-activated even though their initial onsets are different
and thus they could be considered as belonging to different

components. Such ambiguity renders it difficult to study the
superposed activity of RSNs including their lagging structure31.
Therefore, we build upon a recent framework for sparsity-
pursuing regularization, termed total activation (TA)32, to
temporally deconvolve fMRI time series. TA makes use of the
prior knowledge of the HRF that enables us to use the full-
spectrum fMRI signal (that is, without bandpass filtering). By
applying TA, we obtain three types of information: (1) activity-
related signals that are de-noised fMRI signals, (2) sustained, or
block-type, activity-inducing signals that are deconvolved signals,
(3) innovation signals that are the derivative of the activity-
inducing signals and encode transient brain activity by spikes. We
then perform temporal clustering on the whole-brain innovation
signals extracted from resting-state fMRI data of 14 healthy
volunteers and recover the corresponding spatial patterns, which
we refer to as innovation-driven co-activation patterns (iCAPs).
We demonstrate that, despite representing short transients in
fMRI activity, these iCAPs are robust for both positive and
negative transients, and reflect common resting-state patterns. In
addition, iCAPs overlap not only spatially, but also temporally
when back-projected to their sustained-activity-inducing signals.
The total activity of all the iCAPs exceeds three times the
duration of the resting-state scan, however, overlapping iCAPs do
not co-occur in every possible combination. Clustering
iCAPs according to observed combinations reveals a high-level
organization of brain function during rest that is consistent with
the iCAPs’ behaviour profiles33. We specifically study iCAPs that
relate to well-known resting-state networks such as the default-
mode network (DMN) and the attention network. Temporal
dynamics of these iCAPs show that activity in the DMN is not
always anti-correlated with attention network, as has been
assumed on the basis of results from conventional analysis34.
Instead, segregated subcomponents of the DMN in the posterior
cingulate cortex (PCC) differentially interact with the attention
network.

Results
Transient activity maps are reminiscent of RSNs. We first
illustrate the concept of TA using the data of one representative
subject. Specifically, for a voxel in PCC, Fig. 1a depicts the ori-
ginal BOLD signal (top, green) and the de-noised activity-related
signal (top, black) obtained by applying TA regularization, the
deconvolved activity-inducing signal that is block-type (middle)
and has been undone from the effect of the HRF, and the inno-
vation signal (bottom) that is the derivative of activity-inducing
signal and thus represents transient activations. The activity-
inducing signals (black) and innovation signals (magenta) of
voxels in three key regions of the DMN are plotted in Fig. 1b—
that is, PCC, angular gyrus (AG) and superior frontal medial
cortex.

The innovation signals encode the transients of fMRI BOLD
activations and de-activations by positive and negative spikes,
respectively. Figure 1c displays the whole-brain transient activity
maps at each of the time instances (indicated by orange, green,
cyan, pink and violet bars). The first map corresponds to DMN
(orange, positive), the second one to inferior frontal and parietal
regions (green, positive) and DMN (green, negative), the third
indicates DMN (cyan, negative) and superior precuneus and
thalamus (cyan, negative), the fourth map reveals posterior DMN
(pDMN; pink, positive) and the fifth map highlights mostly
pDMN along with cuneus (violet, positive). From this example, it
is clear that transient activity maps at time instances of large
transients represent meaningful spatial patterns of spontaneous
BOLD fluctuations. The various patterns illustrated here, only for
three key regions of the DMN, are surprisingly strong in terms of
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spatial contrast and at the same time reflect the variability over
time in how subcomponents of the DMN are activated.

Clustering transients show spatially overlapping patterns. To
systematically study consistency of transient activity maps, we
performed clustering of the time instances using the cosine dis-
tance between the corresponding whole-brain transient activity
maps. First, time instances with significant innovations are
determined using a two-step procedure: (1) for every voxel, we
mark time instances where the innovation signal exceeds a
threshold given by a null hypothesis of stationary data separately
driven from each subject (see Supplementary Methods and
Supplementary Figs 1 and 2 for details on phase randomization);
(2) for each subject, we apply a global thresholding corresponding
to at least 500 ‘active’ voxels. Second, clustering is then performed
on the selected, but non-thresholded transient activity maps,
leading to total number of included time instances of 28% (1,521
positive transients, 1,477 negative transients and total 2,998 (56%)
out of 5,280 scans). For each temporal cluster, we can then
compute a representative iCAP across all subjects.

We recovered in total 20 iCAPs that represent consistent maps
of transients during rest. Figure 2a shows the top 13 iCAPs
ordered with respect to their occurrence rate. The iCAP 1
contains the auditory regions, with high activations in superior
and middle temporal gyrus (Heschl gyrus, rolandic operculum) as

well as part of the insula, postcentral and precentral gyrus. The
iCAP 2 includes regions of the fronto-parietal attention network
(ATT) with (superior, middle and inferior) frontal, part of
superior(SPL) and inferior parietal lobe (IPL), together with
precuneus, anterior cingulate cortex (ACC) and PCC. The iCAP 3
and iCAP 4 encompass primary (calcarine gyrus, cuneus and
lingual gyrus) and secondary (middle and inferior occipital,
inferior and middle temporal, fusiform, SPL) visual areas,
respectively. The iCAP 5 mainly reveals precuneus, PCC and
thalamus. The iCAP 6 represents the visuospatial/dorsal attention
network comprising IPL, SPL, angular gyrus as well as frontal eye
field in middle frontal gyrus3,35. The iCAP 7 includes the motor
network (precentral, postcentral, supplementary motor area
(SMA)) and medial frontal gyrus. The iCAP 8 corresponds to
the DMN regions with PCC, angular gyrus, parts of precuneus,
IPL, middle frontal and medial prefrontal cortex, as well as part of
medial temporal lobe. The iCAP 9 covers the anterior executive
network with superior frontal gyrus and ACC. The iCAP 10 is the
posterior DMN (pDMN), including PCC, IPL, angular,
precuneus, as well as visual regions (cuneus). The iCAP 11
shows the anterior salience network with dominant middle and
inferior frontal gyrus activations and part of insula35. The iCAP
12 is made up of rather diverse regions from limbic and
subcortical areas (part of insula, thalamus, hippocampus and
parahippocampus), superior and middle temporal gyrus and
middle occipital gyrus. The iCAP 13 includes frontal gyrus, ACC
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Figure 1 | Total activation results. (a) Results obtained by applying total activation to a voxel’s time course in posterior cingulate cortex (PCC): measured

noisy BOLD signal (green) and activity-related signal obtained after TA regularization (top), block-like activity-inducing signal without the hemodynamic

blurring (middle) and sparse innovations, derivative of activity-inducing signals, (bottom). (b) Activity-inducing signals (black) and innovations (magenta)

for PCC (top), angular gyrus (AG) and superior frontal medial cortex (SFM). (c) Whole-brain transient activity maps at randomly selected time points

indicated by the coloured bars in b.
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and caudate. Spatial maps of all the iCAPs are provided in
Supplementary Figs 3 and 4, and details of the brain regions
(average z-scores and number of voxels in each area) involved in
each cluster are provided in Supplementary Table 1.

To confirm the consistency of each iCAP, we computed the
stability index as the average similarity distance between the
transient activity maps included in each temporal cluster and the
cluster’s representative iCAP. Temporal clustering of transients
does not lead to spatially segregated maps. Spatial similarity
between the iCAPs irrespective of the sign of the transients is
shown in the upper triangular part of the matrix in Fig. 2b. We
also computed the iCAPs separately for positive and negative
transients, and show the similarity matrix between these sign-
sensitive iCAPs in the lower triangular part (including the
diagonal). The high similarity on the diagonal and the strong
symmetry of the similarity matrix indicate that the same iCAPs
can be recovered from both positive and negative transients, that
is, onsets of activations and de-activations carry the same
information for clustering.

We computed the amount of spatial overlap between iCAPs;
the similarity measure is computed by the Jaccard distance, which
is the total amount of intersection between two binary patterns
(see Methods and Supplementary Fig. 5). We thresholded each
iCAP (z-score Z1.5) to obtain the binary maps. The spatial maps
in Fig. 3a illustrate the iCAPs with significant spatial overlap
determined by block permutation test (Pr0.01 corrected for
multiple comparisons, see Supplementary Methods for details).
The intersecting areas (in orange) accumulate in the posterior
regions; mostly PCC and precuneus (iCAPs 8–10, 5–6, 5–8 and
19–5), cuneus (iCAPs 3–4, 3–10) and superior parietal regions
(iCAPs 4–6, 19–6).

To delineate the hub regions of iCAPs, we counted how many
times a voxel is present in each thresholded iCAP (z-score Z1.5).

These hub regions, in Fig. 3b, include part of precuneus, dorsal
PCC, superior parietal lobe, mid cingulate cortex, middle occipital
and angular gyrus.

Default-mode network de-CAP-sulated. We use iCAPs to ana-
lyse the conventional DMN determined by seed connectivity
analysis. The seed was placed in the PCC, MNI coordinates
(0,� 53,26), averaged over a 7� 7� 11mm3 cubic neighbour-
hood. The iCAPs that can be associated with the DMN map were
established using the cosine distance as a measure of similarity
between the DMN map and iCAP maps; contributions to the
positive and negative parts of the DMN were computed sepa-
rately. In particular, in Fig. 4, we show that the iCAPs corre-
sponding to DMN (8), pDMN (10), precuneus (5) and ACC (13)
relate to the positive DMN map, whereas attention (2) and
anterior salience (11, 14) relate to the negative DMN map,
respectively. Spatial correlations of iCAPs with the conventional
DMN for the individual subjects are shown in Supplementary
Fig. 6.

Spontaneous activity seen as temporally overlapping iCAPs.
We further extracted several dynamical features from the iCAPs
representation to characterize their temporal overlap. First, we
computed the time course associated with each iCAP by back-
projection; that is, iCAP maps are fitted to activity-inducing
signals recovered by TA, which is a similar procedure as in ICA.
However, the activity-inducing signals are deconvolved from the
HRF and de-noised. In addition, positively and negatively con-
strained weights are obtained by two separate regressions to avoid
interactions between iCAPs, and then recombined in a single time
course per iCAP as shown in Supplementary Fig. 7. The time
courses were normalized by their s.d. and thresholded according
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to their absolute-valued z-score (|z|Z 1). We then obtained the
duration of all the iCAPs (regardless of their sign) relative to total
scanning time. The total on-time of all iCAPs constitute 3.6 times
of the total scan duration; that is, for 12 subjects, 350min of total
iCAPs activation out of 96min of total scanning time. The total
on-time was also evenly distributed over the subjects; that is, on
average 29±1.8min of total iCAP activation out of 8min of
resting-state scan per subject. We then computed the average
duration of each iCAP individually (Fig. 2a). We found that the
DMN (8) has the longest duration (7.6 s), followed by sensory-
related iCAPs such as motor (7), visual (3), auditory (1) and
attention (2). In terms of occurrence rate of the transients,
auditory (1), attention (2) and primary visual (3) are the most
common iCAPs.

iCAPs co-occur in behaviourally relevant combinations. To
measure the temporal overlap between iCAPs, we counted the
different combinations of iCAPs occurring at each time instance.
The bar plot in Fig. 5a depicts the percentage of total duration for
each number of overlapping iCAPs. On one hand, only 0.7% of
the resting-state scan has no active iCAPs, and 4% has only a

single iCAP, which is expected given the large total on-time of
iCAPs. On the other hand, combinations of iCAPs are most
common; that is, two (16%), three (31%), four (31%) and five
(18%) iCAPs occurring at the same time account for 95% all
together. Despite this significant overlap, not all possible com-
binations can be observed; that is, while 90% of the iCAPs occur
at least once alone, only 58, 29, 15 and 3% of the possible com-
binations between two, three, four, five iCAPs, respectively, have
been registered.

We then applied hierarchical clustering of iCAPs using the
observed combinations as features (in total, 2,098 iCAP
combinations were observed out of 55,250 possible iCAPs). To
show that this clustering is consistent with putative cognitive
processes reflected by iCAPs, we associated each iCAP with its
behavioural profile using the Brainmap database33. The
dendrogram in Fig. 6 reflects the hierarchy of iCAPs together
with their behavioural profiles. At the highest level of the
hierarchy, iCAPs are grouped as sensory, default-mode and
attention networks, respectively. At the same time, the
behavioural profiles are also consistent in the same groupings
as confirmed by their correlations (Fig. 6); that is, sensory
networks show higher scores with their associated role, precuneus
(5) and pDMN (10) have both high scores in reasoning and social
cognition, DMN (10) and ACC (13) share high scores also in
social cognition and explicit memory, whereas ACC (13) alone
involves more in emotional processes, finally, attention network
involve in both execution and cognition.

iCAP combinations bring new insight into brain organization.
We further analysed the most common combinations of iCAPs by
considering the top five for each set of overlapping iCAPs; see
Fig. 5b where combinations with DMN-related iCAPs (according
to Fig. 4) are disconnected from the pie. The iCAPs that appear
most in isolation are DMN (8) in both signs, precuneus (5),
auditory (1) and secondary visual (4). The same iCAPs also appear
in combination with others. In particular, for two overlapping
iCAPs, DMN (8) occurs with anterior salience (11), visual (4),
auditory (1) but with opposite signs, and attention (2) overlaps
with visual (3) with opposite signs (see Supplementary Fig. 8
for the most frequent 20 iCAP combinations for each set of
overlapping iCAPs). With more than two iCAPs, the DMN (8)
and ACC (13) show increased overlap when combined with
motor, and/or visual iCAPs. Attention (2) further combines with
visual (3, 4), and precuneus (5) often occurs in combination with
DMN (8) for a large number of overlapping iCAPs. In terms of
total on-time, DMN (8) is present B38% of the time either alone
or in specific combinations with other iCAPs, followed by sensory
components such as motor (7; 28%) and auditory (1; 26%). In
almost all the combinations, we notice that sensory networks
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typically occurred with signs opposite to those of attention or
DMN-related iCAPs.

We further focused on the specific iCAPs combinations
involving both DMN-related (8, 10, 13) and attention iCAPs
(2), illustrated by the bar plots in Fig. 5c and ordered with respect
to increasing number of overlapping iCAPs from top to bottom.
DMN (8) and ATT (2) appear with the same sign more than 95%
of the time across all iCAP combinations, whereas pDMN (10)
and ATT (2) occur with opposite signs. Another DMN-related
iCAP, ACC (13), occurs with ATT (2) with opposite signs when
they are combined; however, as they combine with even more
iCAPs, there is a reduction in the frequency with which they have
opposite signs. Finally, DMN (8) always combines with ACC (13)
with the same sign.

Discussion
In previous work, the TA framework has been validated to
recover evoked brain activity without prior knowledge of the
stimulation paradigm32. Here, we used this framework to reveal
transients in spontaneous activity through innovation signals,
which encode onsets of activations/de-activations by positive/
negative spikes, respectively. The spatial patterns of transients
showed clear signatures of known functional networks or
subnetworks, even for single transient activity maps without
averaging (Fig. 1b,c). Temporal clustering of transient activity
maps led to iCAPs that were consistent when selecting only
positive, only negative or both types of innovations (Fig. 2b). This
indicates that the same spatial patterns can be determined from
positive or negative transients; that is, the same regions that
jointly activate also de-activate. This suggests that spatial
grouping is still a meaningful representation of resting state,

even if the sustained activity of different regions is temporally
overlapping.

The proposed iCAPs methodology bears similarities with point
process analysis with respect to the threshold time course28, and
with CAPs with respect to the application of temporal
clustering26,27. Direct clustering of (selected) BOLD volumes
leads to CAPs that are mixed versions of underlying temporally
overlapping activation patterns.

In another recent advance, TFMs24 have been applied to
recover temporally independent sources. The optimization
criterion for temporal independence is applied to BOLD time
courses acquired at fast TR, but it is also hindered by temporal
overlap. Finally, sliding-window functional connectivity has been
used to study non-stationary properties of spatial correlation
structure18–20,22. The main contribution of our work is that TA
regularization undoes the effect of hemodynamic blurring and
reveals transients of underlying activations. These innovation
signals effectively disentangle temporally overlapping activity
patterns, and are subsequently clustered in time; that is, transients
occurring at different time points can end up in different clusters
independent of potential temporal overlap of their underlying
sustained activity that was obtained using back-projection of the
iCAPs’ maps. We provide videos of activity-inducing signals of
the TA regularized resting-state data as well as the temporal
evolution of iCAPs with their associated behavioural profile of
one subject to show how iCAPs dynamically add on top of each
other (see Supplementary Videos 1 and 2).

The iCAP maps are spatially well localized and consistent for
all iCAP clusters as reflected by their high stability index (Fig. 2).
The spatial overlap between the iCAP maps is high (Fig. 3 and
Supplementary Fig. 5). Regions that activate consistently in many
iCAPs during the resting state are mostly posterior, including
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1–1

Behavioural correlation

Behavioural scores

Figure 6 | Hierarchical clustering of iCAPs according to their temporal overlap. The dendrogram minimizes the distance at each leaf with respect to the

neighbouring leaf, clustering the most similar iCAPs. The behavioural profile of each iCAP is also shown. The highest level of the hierarchy shows groupings

into components related to sensory, default mode and attention function. These groups further divide into motor, auditory and visual; posterior default

mode and full default mode; executive control and attention networks, respectively. The cross correlation between the iCAPs’ behavioural profiles is also

consistent with the groupings (bottom).
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dorsal PCC, precuneus, superior parietal lobe, mid cingulate
cortex and angular gyrus. Similar findings have previously been
reported; that is, the PCC is one of the highly connected hub
regions identified by functional connectivity density mapping36,
and when using it as a seed region of conventional CAP
analysis26, many different PCC-CAPs are revealed. In general, the
spatial overlap between iCAPs points to the fact that many
regions co-activate as part of different network configurations at
different time points, and thus spatial segregation is not an
optimal criterion to study changes in functional networks during
resting state (see Supplementary Figs 10 and 11 for a detailed
comparison between ICA and iCAP results).

We computed the duration of iCAPs from their sustained-
activity signals and counted the time frames during which
different combinations of iCAPs are (de-)activated. The total
duration of all iCAPs largely exceeds the total scanning time
(3.6 times the actual acquisition time), which indicates the high
amount of temporal overlap and provides evidence that
spontaneous activity is explained by the combinations of three
to four iCAPs (Fig. 5a).

Our results provide new insight into the rich dynamic
organization of resting state in terms of network components
that segregate and integrate over short time intervals. The iCAPs
form a compact set of building blocks that can be flexibly
combined to describe spontaneous activity fluctuations. The
combinations of iCAPs observed are not arbitrary, and we only
observed 4% of all possible combinations. Clustering of iCAPs on
the basis of these combinations shows a hierarchical organization
of large-scale brain networks that is consistent with differences in
behaviour profiles of iCAPs; that is, resting-state activity is
unravelled into periods when components related to sensory,
default-mode and attention, respectively, are dominating (Fig. 6).

The DMN is the hallmark of the brain’s resting state and has
been referred to as the main hub of the internal mode of
cognition, related to higher-level processes such as memory and
learning37,38. Our analysis enables us to study both spatial and
temporal interactions of consistent co-activation patterns,
including the DMN. The DMN iCAP (8) has the strongest
spatial similarity with the conventional DMN as determined by
PCC-seed-based connectivity, followed by precuneus (5), pDMN
(10) and ACC (13), which represent subnetworks of the DMN;
the negative part of the DMN PCC-seed connectivity map
correlates with attention (2) and anterior salience (11, 14). Spatial
subdivisions can also be obtained for other seed-based
connectivity maps, such as primary visual and motor networks
(see Supplementary Fig. 12).

The DMN iCAP (8) has the longest average and total duration;
that is, it is active for B38% of the resting state either alone or in
combination with other iCAPs. This suggests that the DMN (8) is
the primary building block of resting state and specific iCAPs are
consistently co-occurring either with the same or opposite sign
(Supplementary Fig. 8). Using seed-based correlation of the PCC,
it is commonly reported that activity of DMN is anti-correlated
with task-positive networks that include fronto-parietal regions
(attention) and ACC (salience)34,39. In accordance, we found that
DMN (8) and salience (11) form the most frequent combination
when two iCAPs occur, and consistently with opposite signs. More
surprisingly, we also found that DMN (8) and ATT (2) always co-
occur with the same signs within any number of iCAP
combinations, while pDMN (10) and ATT (2) co-occur with
opposite signs (Fig. 5c). These specific iCAP combinations are
stable across the subjects (see Supplementary Fig. 13). A handful
of recent studies corroborated the positive correlation between
DMN and attention networks, for example, during a ‘task-
preparation’ period40 or goal-directed tasks41. Moreover, a similar
functional association of the attention network and subregions in

the cingulate cortex has been suggested in recent literature25,42–44.
In addition, DMN (8) captures more dorsal, and pDMN (10)
more ventral, activations in the PCC (Fig. 2), which is in line with
subregions of PCC having functionally distinct roles within
attention as well as other RSNs45. Our work is the first study that
clearly demonstrates non-stationary interactions between large-
scale brain networks represented by iCAPs; specifically, DMN (8)
and pDMN (10) are involved in functionally and dynamically
distinct processes.

In sum, spontaneous brain activity measured by fMRI reveals a
rich structure of spatially and temporally overlapping functional
networks. Extracting transients enables one to become insensitive
to temporally overlapping activity and determine consistent
spatial patterns at the onset of activation or de-activation. In
addition, these patterns can be back-projected to obtain the
sustained-activity time course and to quantify temporal features
such as occurrence, duration and temporal overlap. The iCAPs
view on fMRI resting state reveals how these patterns of brain
activity are entangled in space and time, and suggests a more
intricate and non-stationary structure than can be revealed using
conventional methods. Since iCAPs provide a spatiotemporal
zoom onto the DMN, which has been linked to cognitive
states46,47 and neurodegenerative disease48–51, future work
should focus on how the organization revealed by iCAPs can
advance our understanding of brain function. Another avenue for
future research is to identify the electrophysiological correlates of
iCAPs. The DMN iCAP played a key role in temporal dynamics,
which might relate to previous findings based on spontaneous
EEG that DMN has the highest network interaction in the
b (14–25Hz) band52. How the different timescales of the fMRI
hemodynamic signals (order of seconds) and EEG/MEG
electrophysiological signals (order of milliseconds) are bridged
remains an open question. One intriguing possibility is that scale-
free dynamics of underlying brain activity maintains useful
information even after temporal smoothing53; notion has been
demonstrated for EEG microstates and fMRI RSNs54,55.

Methods
Subjects and procedure. Fourteen healthy volunteers participated in the study
(38.4±6 years old). Data acquisitions were obtained with a Siemens 3T Trio TIM
scanner, using a 32-channel head coil. The structural images were acquired using a
high-resolution three-dimensional T1-weighted Magnetization-Prepared Rapid
Gradient-Echo (MPRAGE) sequence (160 slices, TR/TE/FA¼ 2.4 s/2.98ms/9�,
matrix¼ 256� 240, voxel size¼ 1� 1� 1.2mm3). For the resting-state fMRI data,
subjects were instructed to lie still and relax in the scanner with their eyes closed.
The total acquisition took B8min. The data were acquired using gradient-echo
echo-planar imaging (TR/TE/FA¼ 1.1 s/27ms/90�, matrix¼ 64� 64, voxel size
¼ 3.75� 3.75� 5.63mm3, 21 slices, 450 volumes). The first 10 volumes are dis-
carded to assure the magnetization stability.

FMRI data processing. The fMRI data are preprocessed using custom MATLAB
code combined with SPM8 (FIL, UCL, UK) and IBASPM toolboxes56. First, fMRI
volumes were realigned to the first scan and spatially smoothed with Gaussian filter
(full width half maximum¼ 5mm). We used motion estimation to mark the time
points with high frame-wise displacement57. Marked frames were not removed as
TA relies on the full fMRI time courses to deconvolve, but performed cubic-spline
interpolation instead. Two subjects with high motion were excluded from further
analysis. The anatomical images are coregistered onto the functional mean image
and segmented (NewSegment, SPM8) for the six different MNI templates. The
anatomical automatic labelling atlas58, composed of 90 regions without the
cerebellum, was mapped onto each subject’s coregistered anatomical image and
further downsampled to match the functional images. The atlasing is only used to
guide TA spatial regularization.

Total activation. The TA framework32,59 incorporates two main features for fMRI
data processing: (1) each voxel’s BOLD time course is deconvolved from the
temporal blur introduced by the hemodynamic response, leading to the activity-
inducing signal that is supposed to show block-type activation patterns (without
any prior knowledge on the timing and duration of these blocks); (2) BOLD signals
should show a spatial smoothness, which is supposed to be stronger within
anatomical atlas regions than across. With that aim, TA solves a convex
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optimization problem that consists of a least-squares data-fitting term combined
with spatial and temporal regularization terms. The temporal regularization uses a
differential operator that inverts the hemodynamic-system formulation as in
ref. 60, based on the first-order Volterra series approximation of nonlinear Balloon
model61,62. The numerical solution is obtained using generalized forward–
backward splitting63, which is for the de-noising case also known as parallel
Dykstra-like proximal algorithm64. TA produces de-noised and well-behaving
reconstructions of the activity-related, activity-inducing, and innovation signals.

Temporal clustering of innovation signals. We thresholded the innovation sig-
nals through a two-step procedure; (1) for each subject, we analysed the surrogate
data; that is, applied TA on the phase randomized data and performed a subject-
wise thresholding (1% confidence interval) and (2) we picked the time points where
there are at least 500 ‘active’ voxels globally (see Supplementary Figs 1 and 2)65.
Then, transient activity maps that survive the thresholding are fed into k-means
clustering using the cosine distance (see Supplementary Fig. 9).

iCAPs activation maps and time courses. The iCAPs’ spatial maps were com-
puted by combining the clusters of positive and negative (sign-flipped) transients.
As the distributions of the maps are not symmetric and one-sided, we subtracted
the mode (the maximum value of the histogram) instead of the mean and divided
by the s.d. to obtain z-scored spatial maps (Fig. 2). The time course of each cluster
was computed by back-projecting the iCAPs onto the sustained-activity-inducing
signals. The back-projection was computed separately for positive and negative
weights to minimize the effect of spatial linear dependency.

Jaccard distance. We used Jaccard distance to evaluate the amount of spatial
overlap between iCAPs activation maps (Supplementary Fig. 5). Jaccard distance is
specifically adjusted for binary measurements; that is, X A {0, 1}. We used a
threshold |z|41.5 to obtain binary data for the spatial maps. Jaccard distance (Jd)
measures the similarity of two iCAPs by computing the normalized amount of
overlap; that is, ratio of intersection to the ratio of union of two iCAPs’ spatial
maps

Jd i; jð Þ ¼ # iCAPi ¼ 1f g\fiCAPj ¼ 1g
# iCAPi ¼ 1f g[fiCAPj ¼ 1g

We performed non-parametric testing to detect the significant spatial overlaps
between two iCAPs (Pr0.01, corrected by maximum statistic). The surrogate data
were obtained by spatial block permutation of the binary maps (blocks of size
22� 37� 28mm3).

Spatial correlation with conventional DMN. The conventional DMN was
obtained using seed–region correlation; that is, seed was positioned in the PCC:
MNI coordinates (0,� 53,26), averaged over a 7� 7� 11mm3 cubic neighbour-
hood. The PCC-seed maps were derived for all the subjects and then averaged. We
computed the spatial similarity between the iCAPs and group-level conventional
DMN using cosine distance as the similarity measure (Fig. 4). The subject-level
similarities are shown in Supplementary Fig. 6.

Temporal overlap. The total and average durations of iCAPs were computed from
the normalized iCAPs’ time courses. Specifically, at each time point, we counted the
number of ‘active’ iCAPs regardless of the sign of the weight, and observed the
distribution over number of iCAPs versus total time. We then specified which
iCAP combinations occur mostly for each number of overlap (see Fig. 5b and
Supplementary Fig. 8). We have further investigated iCAP combinations that relate
to default-mode and attention. For each number of iCAPs combinations, from two
to five iCAP combinations, we explored their functional interactions by comparing
their activation signs. (see Fig. 5c). We investigated whether these combinations are
consistent across subjects by measuring the mean total duration and standard error
of these specific iCAP combinations (see Supplementary Fig. 13).
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How to cite this article: Karahanoğlu, F. I. & Van De Ville, D. Transient brain
activity disentangles fMRI resting-state dynamics in terms of spatially and temporally
overlapping networks. Nat. Commun. 6:7751 doi: 10.1038/ncomms8751 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8751

10 NATURE COMMUNICATIONS | 6:7751 | DOI: 10.1038/ncomms8751 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks
	Introduction
	Results
	Transient activity maps are reminiscent of RSNs
	Clustering transients show spatially overlapping patterns
	Default-mode network de-CAP-sulated
	Spontaneous activity seen as temporally overlapping iCAPs
	iCAPs co-occur in behaviourally relevant combinations
	iCAP combinations bring new insight into brain organization

	Discussion
	Methods
	Subjects and procedure
	FMRI data processing
	Total activation
	Temporal clustering of innovation signals
	iCAPs activation maps and time courses
	Jaccard distance
	Spatial correlation with conventional DMN
	Temporal overlap

	Additional information
	Acknowledgements
	References




