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Large-scale genomics unveil polygenic architecture
of human cortical surface area
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Little is known about how genetic variation contributes to neuroanatomical variability, and

whether particular genomic regions comprising genes or evolutionarily conserved elements

are enriched for effects that influence brain morphology. Here, we examine brain imaging and

single-nucleotide polymorphisms (SNPs) data from B2,700 individuals. We show that a

substantial proportion of variation in cortical surface area is explained by additive effects of

SNPs dispersed throughout the genome, with a larger heritable effect for visual and auditory

sensory and insular cortices (h2B0.45). Genome-wide SNPs collectively account for, on

average, about half of twin heritability across cortical regions (N¼466 twins). We find

enriched genetic effects in or near genes. We also observe that SNPs in evolutionarily more

conserved regions contributed significantly to the heritability of cortical surface area,

particularly, for medial and temporal cortical regions. SNPs in less conserved regions

contributed more to occipital and dorsolateral prefrontal cortices.
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T
o understand the complexity of human higher cognition, it
is essential to study the properties of the cerebral cortex1,2.
Genetics play a critical role, as identifying the genetic

underpinning of phenotypic variability provides a causal foothold.
A striking feature of the human cerebral cortex is that it follows an
ancient mammalian prototype but also displays an enormous
expansion in cortical surface area3–6. This expansion did not occur
homogeneously across the cortex1,3. The alteration of cortical
organization may have significant functional consequences in
human cognition. Genetic variation is thought to be a major factor
in this alteration and to underlie phenotypic variability among
individuals1. However, quantifying the source of genetic
contribution to phenotypic differences in humans and mapping
the genetic and evolutionary architecture of cortical surface area
across different cortical regions are ongoing challenges.

One fundamental question is the extent to which neuro-
anatomical variability among individuals is caused by genetic
differences. Twin and pedigree designs have been used to estimate
the ‘heritability’ of a phenotype by examining the resemblance of
the phenotype between relatives7. Heritability is the proportion of
the phenotypic variance ascribable to genetic differences in a
given population: the proportion of variation due to additive
genetic effects (narrow-sense heritability) or the proportion of
variation due to all genetic effects (broad-sense heritability)7.
Twin/family studies have shown that brain phenotypes are
heritable (for example, heritability up to B0.8)8.

Technological advances now allow assay of individuals for
millions of single-nucleotide polymorphisms (SNPs) spanning the
whole genome9. Genetic similarity or relationship among a group
of individuals can then be estimated through the use of dense
genetic variants. By contrasting genetic similarity with phenotypic
similarity, one can estimate the heritability of a phenotype in the
absence of family members9,10. A recent popular method for
carrying out relevant analyses involves a mixed linear model to fit
a genetic relationship matrix (GRM) to measured phenotypes,
such as the methodology built into the genome-wide complex
trait analysis (GCTA) tool9,11. The resulting estimate is referred
to as ‘SNP’ or ‘chip heritability’ (h2)12,13. Using the GCTA
approach, researchers have estimated that about half of the

heritability of human height can be attributed to B0.3 million
common SNPs11. In comparison, only B16% of variability in
height can be attributed to all individual SNPs discovered by
genome-wide association studies14. This finding suggests that
height has a polygenic architecture in which a large number
of common genetic variants with small effects contribute
predominantly additively to phenotypic variation.

To investigate the polygenic contribution of common SNPs to
cortical structures, we apply the GCTA method to a combined
sample from five cohorts. Raw imaging and genotype data from all
study cohorts are processed with a standardized protocol to
minimize data heterogeneity. The analysis for estimating SNP
heritability is potentially sensitive to population structure (that is,
population stratification and cryptic relatedness). It is therefore
typical to restrict the analysis to unrelated individuals of a
single genetic ancestry12. We exclude non-Europeans based on
principal component analysis of the GRM. We estimate pairwise
GRM using all 2,480,482 directly genotyped and imputed autosomal
SNPs. We also exclude related individuals using two thresholds at an
estimated GRMZ0.025 (more related than third or fourth cousins),
or a less stringent threshold at an estimated GRM Z0.1. This
sampling results in subsets of 2,364 or 2,698 generally unrelated
individuals with European ancestry, respectively.

Phenotype definition is critical for all genetic association studies,
especially in brain imaging genetic studies, due to the high
dimensionality of cortical measures (B0.3 million points per
subject)15. Using a data-driven, fuzzy clustering technique with
magnetic resonance imaging (MRI) scans of twins, we previously
parcelled cortical surface area into 12 genetic subdivisions, creating
an atlas based solely on genetically informative data6,16 (Fig. 1b).
Boundaries of the genetic divisions correspond largely to
meaningful structural and functional regions; however, the
divisions represent novel phenotypes. We use these regions,
conforming to the genetic patterning of cortical surface area, to
increase power for detecting effects and to minimize multiple
comparisons after reducing image dimensionality to these parcels.
The aim of our large-scale whole-genome and whole-cortex
analyses is to examine and dissect the polygenic genetic
architecture of cortical surface area across different cortical regions.
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Figure 1 | SNP heritability. (a) Estimates of variance explained by all autosomal SNPs for each cortical region (SNP heritability) from genetic relationships

o0.025 (GRMo0.025). Error bars represent the s.e. of the estimates. Estimates were tested for significantly different from zero by likelihood ratio test

comparing the full and reduced models. *Po0.05, **Po0.004 (Bonferroni correction threshold). (b) Genetic clustering map shows the anatomical location

of the cortical phenotypes16. (c) SNP heritability estimates (blue bars) are overlaid on twin heritability estimates (grey bars). Shared environmental

variances are small and not significant for all phenotypes. A: additive genetic variance; C: shared environmental variance; E: unique environmental variance.
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Results
SNP heritability. In our five-cohort sample, we found that a
substantial proportion of variation in surface area in almost all of
the 12 regions is captured by all autosomal SNPs after accounting
for global cortical size. A few cortical regions, such as the insula,
visual and auditory sensory regions, including superior temporal
and occipital cortices, have a high SNP heritability of up to B0.45
(s.e. 0.12) (Fig. 1a; Supplementary Table 1). We reported two sets
of results based on the inclusion of individuals with pairwise GRM
entry scores o0.025 or o0.1 to determine the consistency of our
findings. The GRMo0.1-sample offers the advantage of a larger
sample size, whereas the GRMo0.025-sample is less susceptible to
potential confounding from cryptic relatedness. The results from
the two sets of samples are consistent (Supplementary Fig. 1a;
Supplementary Table 1), supporting the reliability of our findings.
To ensure the validity of the method applied to our sample, we
performed a simulation study and power calculation. We also
verified that our main findings were not sensitive to patient sam-
ples, nor sensitive to linkage disequilibrium (LD), that is, the
correlation among SNPs, in the genome (see Supplementary
Methods and Supplementary Table 2).

Twin heritability. We next sought to compare the SNP heritability
with twin heritability estimated from 466 twins. Heritabilities of the
same cortical imaging phenotypes were estimated in a classical twin
model implemented in the OpenMx software suite. The results of
twin heritability estimates (additive genetic variances) across
different cortical regions are shown in Fig. 1c (Supplementary
Table 3)8. The average monozygotic and dizygotic correlations
across all cortical regions were 0.62 and 0.32, respectively, suggesting
almost a perfect additive genetic proportion in these phenotypes.

Partitioning of genomic variation by genic annotation. We
partitioned the variance explained by all the SNPs into genic and
intergenic regions across all autosomal chromosomes. We defined
genic boundaries as 20 kb upstream and downstream from the
30 and 50 untranslated regions (UTRs) of each gene17 (Fig. 2a;
Supplementary Tables 4 and 7). Furthermore, we used an
LD-weighted genic annotation scheme that takes into account
the LD structure to categorize SNPs that have high LD with SNPs
within genic elements (Fig. 2b; Supplementary Tables 5 and 8)18.
The results from the two methods were consistent, with evidence
of enriched genetic effects in the genic regions for many cortical
regions.

Partitioning of genomic variation by conservation annotation.
Conservation scores were derived from multiple alignments of
placental mammal genomes to the human genomes19. We observed
that more conserved SNPs collectively have genetic influences on
several cortical regions especially around the insula, superior,
anterior and medial temporal lobes, including parahippocampus
gyrus and entorhinal cortex (Fig. 3a; Supplementary Table 6). Less
conserved SNPs collectively exhibit greater polygenic effects on
occipital and dorsolateral prefrontal cortices.

Correlation explained by genic and conserved SNPs. We also
found a highly significant correlation between the variance
explained by genic SNPs and variance explained by more con-
served SNPs (Fig. 3b), and between intergenic SNPs and
less conserved SNPs (Supplementary Fig. 3). To rule out the
possibility that genic and conservation annotation are surrogates
for one another, we computed the correlation between the
LD-weighted genic and conservation scores. The correlation of
r¼ 0.58 indicates that substantial variation can be attributed
uniquely to each (shared variance, R2¼ 0.34).

Discussion
Although identifying genetic determinants of the human brain is
an active area of research20,21, studies on the polygenic
architecture of brain imaging phenotypes are limited, partially
because of a lack of availability of appropriate data sets22,23.
We show that a substantial proportion of the heritable
component of the cortex resides among common variants that
can be interrogated via current genome-wide genotyping arrays.
This suggests that with larger sample sizes, SNPs associated with
cortical surface area could be discovered24. A few cortical regions,
such as the insula, visual and auditory sensory regions, including
superior temporal and occipital cortices, have a high SNP
heritability of up to B0.45 (s.e. 0.12). Recent evidence suggests
that non-heritable genetic variation might be widespread in the
brain and has potential contribution to complex functional
diversification25,26. Our results show that heritable genetic
variation has substantial impact on cortical area variation.
Thus, these findings imply that genetic underpinnings of brain
phenotypes likely involve the combined effects of many common
variants of small effects, as well as non-heritable genetic variation.

SNP heritability estimates quantify the overall contribution of
the additive effects of all SNPs, which provides a lower bound of
the narrow-sense heritability of the trait estimated in pedigree
studies, since pedigree information captures the effects of all
genetic variants on phenotypic similarity13. We observe broad
agreement between SNP and twin heritability across cortical
regions. Similar to the height study11, we captured about half of
twin heritability on average with the SNP heritability across
cortical regions. However, some regions, such as the motor–
premotor cortex and precuneus, have high twin heritability but low
SNP heritability. This finding suggests that non-additive genetic
effects could play a role in these phenotypes, because the additive
genetic effects estimated from the twin model potentially include
non-additive effects such as epistatic interactions and inherited
epigenetic variation27,28. Alternatively, ungenotyped causal
variants affecting these regions might have lower allele
frequencies than do common SNPs, and/or are not tagged by
the genotyped SNPs. Furthermore, the difference could also be due
purely to sampling variation—including differences in age, gender
and ancestry—or random errors (for example, both twin and SNP
heritability estimates have average s.e. of B0.11). Taken together,
the observed information provides clues, and lower and upper
bounds of genetic effects, in the search for trait-associated variants.

Obtaining evidence for the polygenic architecture of complex
traits provides a rationale for further dissecting the contribution
of particular genomic regions to phenotypic expression10,17,29.
Specifically, we focus on the genetic effects of genic and
regulatory element regions of the genome. SNPs in these
functional genomic regions have been shown to be enriched for
associations across diverse phenotypes18. We therefore
partitioned the variance explained by all the SNPs into genic
and intergenic regions across all autosomal chromosomes. We
defined genic boundaries as 20 kb upstream and downstream
from the 30 and 50 UTRs of each gene17 (Fig. 2a; Supplementary
Table 4). Furthermore, we used an LD-weighted genic annotation
scheme that takes into account the LD structure to categorize
SNPs that have high LD with SNPs within genic elements
(Fig. 2b; Supplementary Table 5)18. The results from the two
methods were consistent, with evidence of enriched genetic effects
in the genic regions for many cortical regions. However, some
cortical regions also had substantial variation explained by SNPs
partitioned into an intergenic category, such as the occipital,
orbitofrontal and inferior parietal cortices. Note that the
intergenic category in this definition may still include some
regulatory elements farther away from genes (for example,
enhancers); these have been implicated in brain development30.
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The 1000-fold difference in cortical surface area between
humans and mice may contribute to our complex behaviours1,3.
The cerebral cortex subserves an array of higher-order brain
functions that are uniquely specialized in humans, and changes in
these functions and their networks may make us prone to
neurobiological disorders such as schizophrenia, autism or
Alzheimer’s disease1,2,4,31. Therefore, it is of particular interest
to explore the contribution of genetic variants that are
presumably more human specific in their evolutionary lineage
than other variants31. Conservation scores were derived from
multiple alignments of placental mammal genomes to the human
genomes19. We observed that more conserved SNPs collectively
have genetic influences on several cortical regions especially
around the insula, superior, anterior and medial temporal lobes,
including parahippocampus gyrus and entorhinal cortex (Fig. 3a;
Supplementary Table 6). Several of these regions belong to the
allocortex, which has fewer cortical laminae than the neocortex
and is regarded as evolutionarily more primitive32. On the other
hand, less conserved SNPs collectively exhibit greater polygenic
effects on occipital and dorsolateral prefrontal cortices, the
regions that subserve visual perception and executive function
respectively. Visual specialization is one hallmark of primate
brain evolution. Primates have relatively enlarged visual areas and
are visually orientated mammals33. The dorsolateral prefrontal
cortex is located in the expanded prefrontal cortex of primates,
and is a vital region of distributed brain networks linked to many
complex cognitive functions in humans5.

We also found a highly significant correlation between the
variance explained by genic SNPs and variance explained by more
conserved SNPs (Fig. 3b), and between intergenic SNPs and less
conserved SNPs (Supplementary Fig. 3). These findings suggest the
existence of a possible pattern in which phenotypic variation in
more conserved cortical regions is influenced to a greater degree by
more conserved and genic SNPs, and more human-specific cortical
regions are influenced to a greater degree by less conserved and
intergenic SNPs. Our result is preliminary, but this trend may be
biologically plausible and is noteworthy for further investigation.

We show that a substantial proportion of the heritable
component of the cortex resides among common variants that
can be interrogated via current genome-wide genotyping arrays.
By leveraging genic and conservation annotations we were able to
reveal that particular genomic regions are enriched for variants

that influence variation in cortical surface area. Each cortical
region appears to have elements of region-specific genetic
architecture, which might relate to functional specialization of
the cortical regions. Elucidating the sources of these genetic
effects will allow investigators to prioritize resources for future
investigations. Cortical surface area is similar to other complex
traits in terms of polygenicity distributed among common
variants and genetic effects enriched in genic regions. Yet, the
human brain is a uniquely complex phenotype, in that its
genomic properties appear as complex as its functional capacity.
In this light, it should be acknowledged that beyond poly-
morphisms and structural variants in the genome, epigenomics34,
alternative splicing35 and somatic mosaicism25 may contribute to
phenotypic diversity in normal brain development. A variety of
data types together will help to advance our understanding of the
human cortex as an adaptive and plastic entity that is shaped both
by genetics and by its interaction with the environment.

Methods
Participants. A total of 3,696 subjects with available and sufficient quality MRI
scans from 5 cohorts were analysed. We removed non-European descents
and related individuals. The combined sample of five cohorts is made of 605
subjects from the Thematically Organized Psychosis study (mean age: 35 years,
range¼ 17–70 years)36, 842 Health Study of Nord-Trøndelag (HUNT) subjects
(mean age: 58 years, range¼ 50–66 years)37, 325 Norwegian Cognitive
NeuroGenetics subjects (mean age: 52 years, range¼ 19–79 years)38, 726 Alzheimer’s
Disease Neuroimaging Initiative subjects (mean age: 75 years, range¼ 55–92 years)
and 1,198 Pediatric Imaging Neurocognition and Genetics subjects (mean age:
12 years, range¼ 3–21 years)39,40 (see Supplementary Methods for more details).

The samples for the twin analysis was part of the Vietnam Era Twin Study of
Aging (VETSA) study41. There were 466 participants at age 51–60 years, of which
99 pairs were dizygotic twins and 134 pairs monozygotic twins. The sample is
representative of US middle-aged men in their lifestyle and health characteristics.

Each study was approved by the local Institutional Review Board: South
East Norway (Thematically Organized Psychosis and Norwegian Cognitive
NeuroGenetics) and Mid Norway (HUNT) Regional Ethical Committee (HUNT),
and UC San Diego (Paediatric Imaging Neurocognition and Genetics and VETSA).

Genotype quality control and imputation. All studies were genotyped using
different commercial arrays. Standard genome-wide association quality control
measures were applied to each study individually using the Plink toolset42,43.
Samples missing 45% of SNPs, with a minor allele frequency of o1%, or failing a
test of Hardy–Weinberg equilibrium (Po1� 10� 6), were excluded. Individual
samples showing an over- or underabundance of heterozygosity (45 s.d. from the
mean) were labelled as poor quality and also excluded from subsequent analyses44.
Furthermore, to ensure that all individuals were unrelated, functions available in
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Figure 2 | Partitioning of genomic variation by genic annotation. (a) Estimates of variance explained by genic and intergenic regions (GRMo0.025).

The genic region is defined as ±20 kb from the 30 and 50 UTRs. (b) Estimates of variance explained by genic and intergenic regions. The genic region is

defined by the LD-weighted genic annotation scheme. *Po0.05, **Po0.004. Error bars represent the s.e. of the estimates. Estimates were tested for

significantly different from zero by likelihood ratio test.
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the software package GCTA45 were used to estimate kinship values from SNP
genotypes for all pairs of individuals in the combined cohort. Population
stratification and ancestry were assessed against a reference sample consisting of
individuals from the HapMap III46 and 1000 Genomes47 via principal component
analysis implemented in the software package EIGENSOFT48. One half of each pair
of individuals with an estimated relatedness 40.025 or 0.1 was excluded11. Using
the more stringent threshold of 0.025, 575 individuals were removed, leaving a total
of 2,364 individuals for the subsequent analyses. In this combined cohort of
European ancestry with minimal relatedness between subjects (GRMo0.025),
52% of the individuals were female; the subjects were aged 47±24 years
(range¼ 3–90 years); and 273, 128, 131, 147 and 66 subjects were diagnosed with
mild cognitive impairment, Alzheimer’s disease, schizophrenia, bipolar disorder
and other psychotic, respectively. For the less stringent threshold of the estimated
relatedness of 0.1, 241 individuals were removed, leaving a total of 2,698
individuals for the subsequent analyses (GRMo0.1). To maximize information
present in the data and allow for comparison across multiple samples genotyped on
different platforms, genotype imputation was performed using the software
packages MaCH49 and Minimac50. A quality control metric (r2) was provided by
Minimac and a threshold of r240.5 was used to declare successful imputation.

MRI processing. MRI scans were analysed with software developed at the
University of California, San Diego, Multi-Modal Imaging Laboratory based on the

freely available FreeSurfer software package (http://freesurfer-software.org/). The
cortical surface was reconstructed to measure surface areas at each surface location (a
total of over 160,000 locations for each hemisphere) using a semi-automated
approach15,51. Variation in image intensity due to magnetic field inhomogeneities
was corrected, a normalized intensity image was created and the skull (non-brain)
was removed from this image. The resulting surface was covered with a polygonal
tessellation and smoothed to reduce metric distortions. A refinement procedure was
then applied to obtain a representation of the grey/white boundary, and the resulting
surface was subsequently deformed outwards to obtain an explicit representation of
the pial surface. Once generated, the cortical surface model was individually
reviewed, and B90 subjects were removed for failed surface reconstruction, often
related to excessive head motion artefact. Quality control includes assessing the
accuracy of surface reconstruction and subcortical segmentation, and detecting large-
scale brain atrophy. In addition, manual editing was performed for technical
accuracy in Alzheimer’s Disease Neuroimaging Initiative and VETSA. The edits
typically involve the addition or removal of voxels from white matter or brain masks
to correct white matter over- or underestimation or to remove non-brain tissues
labelled as grey matter. For example, white matter abnormalities commonly seen in
aging populations could cause white matter incorrectly labelled as cortical surface.
However, we generally find that analysis outcomes are quite similar with or without
manually editing, especially in a large set of data. Maps were spatially smoothed and
placed into a common coordinate system using a non-rigid high-dimensional
spherical averaging method to align cortical folding patterns51. Due to the
standardized procedure for image acquisition and analysis, the MRI data consistency
was maximized for pooling the data across studies.

Genetically based cortical phenotypes. We previously used a data-driven fuzzy
clustering technique to identify parcels of the human cortex that are maximally
genetically correlated (that is, under the control of similar genetic factors) based on
the MRI scans of over 400 twins6,16. We used this twin-based cluster map to assign
a parcellation label to each location on a cortical surface based on partial
membership information estimated from the clustering analysis, and calculated the
weighted average surface area within each region for each subject. We used these
regions, defined a priori on the basis of genetic information, to increase power for
detecting effects and minimize multiple comparisons after reducing image
dimensionality to these parcels.

To account for global effects, we divided the area measure of each location by
the total surface area, so that the observed effects were specific to region of interest
rather than having global associations with total surface area6,16. In the present
study, in all analyses we further adjusted each phenotype for the covariates of age,
gender, age� gender, scanner, diagnosis and study cohort. The sample age ranges
from 3 to 90 years. We used polynomial basis functions and a generalized additive
modelling framework to model age effects as nonparametric smooth functions to
control for considerable age disparities52, so the effects that we characterized can be
generalized across the lifespan.

SNP heritability. We used a mixed linear model to fit a covariance structure of
GRM to a vector of measured phenotypes via the GCTA tool9,11 to estimate the
proportion of phenotypic variance captured by all autosomal SNPs. The analyses
included common SNPs (for example, minor allele frequency 40.01). We included
the top 10 eigenvectors of the principal component analysis of an allele-sharing
distance matrix or GRM as covariates to capture any remaining population
structure in our European data set.

As described further in the Supplementary Methods, the mixed linear model
analysis in quantitative genetics partitions the phenotypic variance–covariance
matrix between two (or more) specified matrices. One typical form is:

Var Yð Þ ¼ s2gGþs2e I ð1Þ

where G is a matrix of kinship or genetic correlation coefficients and I is the n� n
identity matrix, which assumes independence of environmental effects (that is, no
shared environment) and measurement error across individuals. Estimates ŝ2g and
ŝ2e are typically obtained via restricted maximum likelihood. Narrow-sense
heritability, h2, the proportion of phenotypic variance explained by additive genetic
effects, is estimated by

ĥ2 ¼
ŝ2g

ŝ2g þ ŝ2e
ð2Þ

The resulting estimate is referred to as ‘SNP’ or ‘chip heritability’ (h2), since it is
based on the SNPs used to construct the GRM12,13.

Partitioning of genomic variation by genic annotation. We partitioned the
variance explained by all of the SNPs into genic and intergenic regions of the whole
genome. We obtained 24,526 gene boundaries from the UCSC Genome Browser hg19
assembly. We defined genic boundaries as ±20 kb upstream and downstream from
the 30 and 50 UTRs of each gene, where genic and intergenic coverages are roughly
equal (B50%). This definition was used previously17. We estimated the proportion of
variance explained by genic and intergenic regions. The results are shown in Fig. 2a
and Supplementary Table 4 for the GRMo0.025-sample and Supplementary Fig. 2a
and Supplementary Table 7 for the GRMo0.1-sample. We further used an LD-
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weighted genic annotation scheme that takes into account the LD structure to select
SNPs that are related to exon, intron, 30 UTR, 50 UTR and 1 kb upstream and
downstream of genes (six genic categories) (see Supplementary Methods).

Partitioning of genomic variation by conservation annotation. We partitioned
the variance explained by all of the SNPs into low- and high-conserved regions of
the whole genome based on conservation annotation. We obtained a conservation
annotation database from the UCSC Genome Browser hg19 assembly. The
conservation scores were derived from alignments of placental mammals to human
genome. PhastCons is a hidden Markov model-based method that estimates the
probability that each nucleotide belongs to a conserved element, based on the
multiple alignments19.

We assigned weights to conservation scores based on the LD information. We
applied the pairwise LD matrix to the vector of phastCons scores. We expect that
SNPs with the LD-weighted conservation annotation show more consistent and
less noisy association signals. After the LD weighting, 48,523 of the B2.4 million
SNPs had no scores and were eliminated from the subsequent analysis. We selected
the median as a threshold to partition the genome evenly into low- and high-
conserved SNPs (B50%). We estimated the proportion of variance explained by
low- and high-conserved genomic regions. The results are shown in Fig. 3a and
Supplementary Table 6 for the GRMo0.025-sample, and Supplementary Fig. 3 and
Supplementary Table 9 for the GRMo0.1-sample.
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