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SUMO and ubiquitin-dependent XPC exchange
drives nucleotide excision repair
Loes van Cuijk1,*, Gijsbert J. van Belle2,*, Yasemin Turkyilmaz1, Sara L. Poulsen3, Roel C. Janssens1,

Arjan F. Theil1, Mariangela Sabatella1, Hannes Lans1, Niels Mailand3, Adriaan B. Houtsmuller2,

Wim Vermeulen1 & Jurgen A. Marteijn1

XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision

repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO

modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111

promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage. However, the

exact regulatory function of these modifications in vivo remains elusive. Here we show that

RNF111 is required for efficient repair of ultraviolet-induced DNA lesions. RNF111-mediated

ubiquitylation promotes the release of XPC from damaged DNA after NER initiation, and is

needed for stable incorporation of the NER endonucleases XPG and ERCC1/XPF. Our data

suggest that RNF111, together with the CRL4DDB2 ubiquitin ligase complex, is responsible for

sequential XPC ubiquitylation, which regulates the recruitment and release of XPC and is

crucial for efficient progression of the NER reaction, thereby providing an extra layer of quality

control of NER.
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D
NA integrity is constantly challenged by internal and
external DNA-damaging agents that induce DNA lesions.
When not properly repaired, DNA lesions may result in

malignant transformation or accelerated ageing. Different DNA
repair mechanisms exist that collectively remove most lesions and
safeguard genome stability. Nucleotide excision repair (NER) is
one of these mechanisms, which removes—in a multistep
process—a wide variety of helix-distorting lesions, including
ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs)
and 6-4 pyrimidine–pyrimidone photoproducts (6-4PPs)1.
Lesions located in the transcribed strand of active genes block
elongating RNA polymerase II and are specifically processed by a
dedicated transcription-coupled NER (TC-NER) sub-pathway.
However, the vast majority of helix-distorting DNA lesions
located anywere in the genome are targeted by the global genome
NER sub-pathway (GG-NER)1. After damage recognition by one
of these sub-pathways, the 10-subunit TFIIH complex is
recruited2,3 to unwind the DNA around the lesion. TFIIH and
XPA, which also bind the damaged strand4, verify the presence of
lesions5. Next, RPA binds the undamaged strand and plays a role
in correct positioning of the structure-specific endonucleases
XPG and ERCC1/XPF to excise a B25-nucleotide stretch of
single-stranded DNA containing the lesion6. The activity of these
endonucleases and thereby the excision of the DNA lesion is
tightly orchestrated. First, XPG is recruited either independently7

or through its interaction with TFIIH8. Next, ERCC1/XPF is
recruited that can only incise the DNA in the presence of XPG.
Only after the 50 incision has been completed by ERCC1/XPF, the
30 incision by XPG is triggered9. After incision, the DNA is
restored to its original state by DNA synthesis and ligation steps.

Within GG-NER, DNA damage recognition occurs through
binding of the XPC complex to lesion-induced helix distortions10

and is essential for assembly of the core NER factors and
progression of the NER reaction3. XPC is part of a heterotrimeric
complex together with one of the two mammalian orthologs
(RAD23A or RAD23B) of the Saccharomyces cerevisiae Rad23p11

and centrin2 (ref. 12). Although XPC is the main DNA damage
sensor of GG-NER, it does not efficiently recognize UV-induced
CPDs, which are the most abundant UV-induced DNA lesions.
For efficient repair of these lesions initial binding of the UV–DDB
complex, a heterodimer consisting of DDB1 and DDB2 (XPE), is
required13,14. UV–DDB is not only involved in damage detection,
but together with Cullin-4A (CUL4A) and Rbx1/Roc1 (ref. 15)
this complex possesses E3 ubiquitin ligase activity that—amongst
others—mediates polyubiquitylation of the DNA damage sensors
DDB2 and XPC. As ubiquitin can use all seven internal lysine
residues (K6, K11, K27, K29, K33, K48 and K63) and its N
terminus for chain formation, different chain linkages can be
formed. These various polyubiquitin chain types have distinct
structures and different consequences for the target protein16.
While ubiquitylated DDB2 is targeted for degradation14,
ubiquitylated XPC is not, but acquires increased affinity for
damaged DNA in vitro17. Following UV irradiation XPC is
not only modified by ubiquitin, but also by the small ubiquitin-
like modifier (SUMO)18–20 in a DDB2- and XPA-dependent
manner19,20, which was shown to protect XPC from proteasomal
degradation.

Recently, an additional ubiquitin E3-ligase; RNF111, that
promotes XPC ubiquitylation was identified21. RNF111, also
known as Arkadia, was originally named after the Arkadia
mutation in mice. Homozygous Arkadia mutants are non-viable
since they fail to form the regulatory primitive node, which
is crucial during early gastrulation. This problem in the
development of the mouse embryo is most likely caused by the
loss of the ubiquitin ligase activity of RNF111 that promotes
transforming growth factor-b signalling22,23. RNF111 belongs to

the class of SUMO-targeted ubiquitin ligases (STUbLs), which
facilitate crosstalk between SUMOylation and ubiquitylation.
Accordingly, RNF111 specifically targets SUMOylated XPC and
modifies it with K63-linked ubiquitin chains dependent on the
E2 conjugating enzyme UBC13 (ref. 21). Altogether, these
observations illustrate the importance of ubiquitin and
ubiquitin-like modifications in regulating the DNA damage
recognition factors that initiate NER24. In this study, we
investigated the molecular function of the RNF111-dependent
ubiquitylation of XPC and its role in NER. We show that
although RNF111 is not essential for GG-NER, it strongly
enhances the repair reaction by stimulating the release of XPC
from damaged DNA, thereby enabling the progress of the NER
reaction by recruitment of the endonucleases XPG and XPF/
ERCC1.

Results
RNF111 is required for efficient GG-NER. To study the role of
RNF111 during NER we first determined the repair capacity in
the absence of RNF111 by measuring the UV-induced unsched-
uled DNA synthesis (UDS) in the first 3 h after UV-induced
damage23, which is a measure of GG-NER activity. In line with a
previous study21, NER-deficient Xpc� /� MEFs and Rnf111� /
�MEFs (clone A and B) displayed a strongly reduced repair
capacity as compared with NER-proficient wild-type (WT) MEFs
(Fig. 1a,b). To test whether this reduced repair capacity in
Rnf111� /� MEFs is caused by a blocked or delayed NER reaction,
6-4PP repair kinetics were determined in WT, Xpc� /� and
Rnf111� /�MEFs. Cells were fixed at different time points after
UV irradiation (10 Jm� 2) and immunostained for 6-4PPs. In WT
MEFs the vast majority (E75%) of 6-4PPs was removed within 6 h
after UV irradiation (Fig. 1c, Supplementary Fig. 1a). As expected,
6-4PP repair was not observed in GG-NER-deficient Xpc� /�

MEFs, not even after 24 h. Rnf111� /� MEFs displayed an
intermediate phenotype; 6 h after UV irradiation 6-4PP removal
was severely inhibited, with B70% of these lesions remaining
(Fig. 1c, Supplementary Fig. 1a). Strikingly, 24h after UV exposure
6-4PP repair was almost completed, suggesting that the NER
reaction is not fully blocked, but rather seems to be retarded. This
was further corroborated by measuring UDS levels over an
increased time window of 9 h instead of 3 h. UDS levels of
Xpc� /� MEFs remained low, indicative of their full repair
deficiency. However, residual UDS levels in Rnf111� /�MEFs
increased from 40% over 3 h, up to 60–80% after 9 h as compared
with WT MEFs (Fig. 1b, Supplementary Fig. 1b). Altogether, these
results indicate that although RNF111 is not essential for GG-NER,
but it strongly enhances the repair reaction.

RNF111 is required for XPC release from sites of UV damage.
RNF111 ubiquitylates XPC in response to UV exposure21.
Therefore, the reduced GG-NER capacity in the absence of
RNF111 suggests that RNF111-dependent ubiquitylation
facilitates GG-NER by regulating XPC function. To further
investigate this, we measured XPC–GFP accumulation kinetics at
sites of local UV-C laser (266 nm) induced DNA damage (LUD)
using quantitative live-cell confocal imaging. Surprisingly,
knockdown of RNF111, using two independent siRNAs
(Supplementary Fig. 1c) resulted in a twofold increase in XPC–
GFP accumulation at LUD (Fig. 2a, Supplementary Fig. 1d).
These data argue for an increase in XPC binding to lesions in the
absence of RNF111 and suggest an improved DNA damage
detection, which is seemingly at odds with the observed reduction
in repair capacity in the absence of RNF111. The RNF111-
dependent XPC binding properties were further investigated by
determining long-term binding of XPC to DNA damage by
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scoring XPC co-localization with a damage marker (anti-CPD)
using immunofluorescence (Fig. 2b). At 30min after local UV
irradiation, no difference in co-localization of XPC with LUD was
observed. However, at later time points (4, 6 and 8 h) after UV a
strikingly higher co-localization with LUD was observed in
Rnf111� /� MEFs as compared with WT MEFs (Fig. 2b). Similar
results were observed in U2OS cells treated with two different
siRNAs targeting RNF111 (Supplementary Fig. 2). In contrast,
knockdown of RNF4, another STUbL involved in the mammalian
DNA damage response25,26, had no effect on the UV-induced
co-localization of XPC with DNA damage (Supplementary
Fig. 2), showing the specificity of RNF111 for XPC regulation.
This increased XPC accumulation could either be explained by a
more stable binding of XPC to DNA damage or by a higher
concentration of substrates, as RNF111 loss resulted in slower
repair kinetics, or both. To distinguish between these possibilities
and to resolve the apparent contradiction between more XPC
binding and slower repair, we determined XPC mobility using
fluorescence recovery after photobleaching (FRAP) on XPC–GFP
in RNF111-depleted cells. The mobility of XPC–GFP was
unaffected by RNF111 depletion under unperturbed conditions
(Fig. 2c, 0 Jm� 2), indicating that the probing of DNA by XPC in
the absence of UV-lesions is not affected27. On UV exposure
(10 Jm� 2) XPC is engaged in damage recognition, resulting in an

increased XPC–GFP immobilization27. Knockdown of RNF111
resulted in a further increase in XPC–GFP immobili-
zation after UV, as shown by the FRAP curves (Fig. 2c, upper
panel) and by plotting of the calculated immobile fractions
(Fig. 2c, lower panel). These data suggest that XPC is more
strongly associated with damaged DNA in the absence of
RNF111, which might be a consequence of increased
association (Kon) and/or decreased dissociation kinetics (Koff).
To study whether the Koff is affected, we applied inverse FRAP to
measure the dissociation of XPC from sites of DNA damage.
To this end, LUD was first introduced to locally accumulate
XPC–GFP until steady state was reached. Subsequently, the entire
nucleus, with exception of the damaged area, was continuously
bleached and the loss of fluorescence at the site of damage was
measured at regular time intervals (Fig. 2d). Depletion of RNF111
resulted in reduced dissociation kinetics (Koff) of XPC–GFP at
LUD (t1/2¼ 33–43 s) as compared with control transfected cells
(t1/2¼ 24 s), indicative of an increased residence time. Altogether
our results suggest that RNF111 plays an important role in
promoting the release of XPC from damaged DNA. The reduced
clearance of XPC from damaged sites may thus explain the
increased accumulation of XPC–GFP at LUD and may cause the
delayed repair.

RNF111 is essential for efficient XPG and XPF/ERCC1 loading.
Our finding that knockdown of RNF111 results in prolonged
binding of XPC to DNA damage provides a good model system to
study NER factor handover during the repair reaction and to
determine which NER factors depend on XPC release to be
incorporated into the NER complex. To this end, we tested
whether a panel of NER factors (DDB2, XPB, XPG, XPF and
ERCC1) co-localized to LUD 30min after UV irradiation
(60 Jm� 2), as marked by CPD-photolyase-mCherry28, in
RNF111 siRNA-depleted U2OS cells. Co-localization of early
factors, like DDB2 (upstream of XPC) and XPB (subunit of
TFIIH, directly downstream of XPC) with the DNA damage
marker, was not affected by RNF111 knockdown. Interestingly,
co-localization of the endonucleases XPG and XPF/ERCC1 with
DNA damage was significantly lower (20–50%) in RNF111-
depleted cells than in control siRNA-transfected cells (Fig. 3a). In
contrast, depletion of RNF4 had no effect on UV-induced co-
localization of NER factors with DNA damage (Fig. 3a). To study
the in vivo binding characteristics of these factors to active NER
complexes in the absence of RNF111 in a quantitative manner, we
determined the mobility of these proteins by FRAP analysis in
RNF111-depleted cells expressing GFP-tagged versions of XPB,
XPA, XPG and ERCC1 after UV irradiation. Previous studies
have shown that for each of these NER factors a clear UV-
induced immobilization could be measured by FRAP7,29–31.
Under unperturbed conditions (0 Jm� 2), no difference in
mobility was observed for the indicated NER factors between
control and RNF111-depleted cells (Fig. 3b). In contrast, after UV
irradiation (10 Jm� 2) both the XPB and XPA proteins showed a
further increased immobilization on RNF111 depletion, similar to
what was observed for XPC (Fig. 2c). These results suggest that,
like XPC, also XPB and XPA are more associated with DNA
damage in the absence of RNF111. This increased association
most likely represents longer dwell times of these factors into
transiently trapped NER reaction intermediates that cannot
finalize the repair reaction due to loss of RNF111. FRAP
analysis of XPG–GFP and ERCC1–GFP in cells with reduced
RNF111 levels revealed a striking opposite effect shown by a
marked decrease in UV-induced immobilization, in line with the
immunofluorescence experiments. This strong reduction of UV-
induced immobilization likely reflects the inability of these
endonucleases to stably integrate into active NER complexes in
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Figure 1 | RNF111 is necessary for efficient GG-NER. (a) Representative

pictures of unscheduled DNA synthesis (UDS) of the indicated MEFs,

determined by 5-ethynyl-20-deoxyuridine (EdU) incorporation over 3 h after

UV irradiation (16 Jm� 2). Scale bar, 25mm. (b) Quantification of UDS

levels in MEFs, as determined by EdU incorporation over a time period of 3

or 9 h after UV irradiation (16 Jm� 2). UDS levels in WT MEFs were set at

100% (n4100 cells per sample, in at least two independent experiment;

error bars are the mean±s.d.). (c) 6-4PP removal assayed by

immunofluorescence, using a 6-4PP specific antibody. The indicated MEFs

were UV-irradiated (10 Jm� 2) and allowed to repair 6-4PPs for the

indicated time points. Relative fluorescence directly after UV exposure was

set at 100%. (n470 cells, three independent experiments; error bars are

the mean±s.d.).
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the absence of RNF111 (Fig. 3b). This was further confirmed by
the strongly reduced UV-induced accumulation of XPG–GFP and
ERCC1–GFP to LUD in living cells on RNF111 depletion, almost
to the same extent as observed on siRNA mediated XPA
depletion (Fig. 3c). As ERCC1/XPF binding to DNA damage is
dependent on the presence of XPG9, these data suggest that when
XPC remains bound to the initiating NER complex, both XPG
and XPF/ERCC1 cannot be efficiently recruited to or stably
incorporated in the NER complex.

XPC release and ongoing NER is SUMO and K63-chain
dependent. As RNF111 is a STUbL that mediates UV-induced
K63-linked ubiquitylation of XPC21, we investigated whether
K63-linked ubiquitylation is required for XPC release from DNA
damage and subsequent recruitment of the NER endonucleases.
Towards this goal, siRNA targeting UBC13, the cognate E2-
enzyme promoting K63-linked ubiquitylation32,33, was used and
XPC co-localization at LUD with CPD as damage marker was
scored in U2OS cells at several time points after UV irradiation.
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Figure 2 | RNF111 is required for XPC release. (a) Relative XPC–GFP accumulation at sites of LUD in control and RNF111-depleted cells. GFP fluorescence

intensity at UV-C laser induced LUD was measured over time using live-cell confocal imaging and quantified to predamage intensity set at 1 at t¼0 (n415

cells per sample, measured in two independent experiments; error bars are the mean±2� s.e.m.). (b) Top panel: representative immunofluorescence

pictures of co-localization of XPC with CPD at LUD in WT and Rnf111� /�MEFs at the indicated time points after UV irradiation (60 Jm� 2) are shown.

Scale bars, 5 mm. Lower panel: quantification of the XPC co-localization with CPD (n450 cells with LUD were analysed per sample in three independent

experiments; error bars are the mean±s.d.). (c) Top panel: FRAP analysis of XPC–GFP in mock treated or global UV-irradiated (10 Jm� 2) XP4PA (XPC

deficient) cells, on transfection with the indicated siRNA’s. XPC–GFP was bleached in a small strip within the nucleus and fluorescence recovery was

measured over 45 s and normalized to prebleach intensity (n¼40; from two independent experiments error bars are the mean±2� s.e.m.). The

immobilized fraction (%)¼ 1� ((average fluorescence intensity UV-irradiated cells� the first data point after bleaching)/(average fluorescence intensity

unchallenged cells� the first data point after bleaching)), is plotted in the lower panel. The immobilized fraction was calculated over the last 10 s.

(d) Inverse FRAP (iFRAP) analysis of XPC–GFP at LUD. XP4PA cells stably expressing XPC–GFP were transfected with the indicated siRNA’s. Seventy-two

hours after transfection, cells were locally exposed to a 266-nm UV-C laser. After the accumulation plateau was reached (5min after exposure) the

undamaged part of the nucleus was continuously bleached and fluorescence in the damaged area was monitored. Fluorescence was normalized to

prebleach intensity (n415 cells per sample, measured in two independent experiments; error bars are the mean±s.e.m.).
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UBC13 depletion, as confirmed by western blot (Supplementary
Fig. 3a), resulted in prolonged XPC co-localization with sites of
DNA damage (Fig. 4a, red bars), similar to the observations in
Rnf111� /� cells. In contrast, depletion of another E2
conjugating enzyme, UBE2Q2, which is not involved in K63-
mediated ubiquitylation33 had no effect on UV-induced co-
localization of XPC with DNA damage (Fig. 4a, light blue bars).
RNF111-mediated XPC ubiquitylation is dependent on XPC
SUMOylation21. Therefore, we depleted UBC9, the E2
conjugating enzyme crucial for SUMOylation34, which indeed
also resulted in more XPC co-localization with LUD at later time
points (Fig. 4a, orange bars). Moreover, FRAP analysis of XPC–
GFP showed that depletion of either UBC9 or UBC13 resulted in
an increased UV-induced immobilization (Fig. 4b), to a similar

extent as seen for RNF111 depletion. In addition, FRAP studies
on ERCC1–GFP showed a decrease in UV-induced
immobilization on depletion of UBC9 or UBC13 (Fig. 4c),
indicating that XPC release from damaged DNA and the
subsequent stable incorporation of the NER endonucleases into
the repair complex is not only dependent on RNF111, but also on
SUMOylation and K63-linked ubiquitylation. To address whether
the SUMO-dependent ubiquitylation of XPC itself is sufficient to
explain the observed effects on the release of XPC and
recruitment of the downstream NER endonucleases, we set out
to generate an XPC mutant that was refractory to
SUMOylation20,21. With this approach, RNF111-mediated XPC
ubiquitylation would be inhibited without affecting RNF111
activity towards other putative substrates. Using the GPS–SUMO
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algorithm35 we identified eight putative SUMOylation sites in
XPC (Supplementary Fig. 3b). By mutating each of the eight
lysine residues present in these SUMO consensus sites to
arginines, we obtained an XPC mutant (K8R XPC–GFP) that
could no longer be SUMOylated (Fig. 4d). The K8R XPC–GFP
mutant was stably expressed in XPC cells and its mobility and
DNA damage kinetics were analysed using live-cell imaging. No

difference in mobility was detected under unperturbed conditions
(0 Jm� 2) as determined by FRAP. However, on UV-induced
DNA damage (10 Jm� 2) the K8R XPC–GFP was more
immobilized than WT XPC–GFP, to a similar magnitude as
was observed after depletion of RNF111 or UBC9 (Fig. 4e). In line
with this, the K8R XPC mutant showed an approximately twofold
increase in accumulation at LUD compared to WT XPC. Finally,
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similar to RNF111 depletion, we observed a clear reduction in
ERCC1 and XPF accumulation at LUD in K8R XPC–GFP
compared with WT XPC–GFP expressing cells (Fig. 4g), while no
difference in the localization of XPB was found. Altogether these
experiments demonstrate that the XPC release and subsequent
binding of the NER endonucleases is dependent on the
SUMOylation of XPC.

Discussion
The recent identification of RNF111 as a STUbL involved in UV-
induced ubiquitylation of XPC21 has added another level of
complexity to the ubiquitin-dependent regulation of this DNA
damage sensor, as previously also CRL4DDB2 was identified as an
E3-ligase complex acting on XPC17. Interestingly, while both
ubiquitin ligase activities are required for efficient GG-NER, they
may have opposing effects on XPC. Whereas CRL4DDB2-induced
ubiquitylation has been suggested to increase XPC
DNA-binding affinity in vitro17, we provide evidence that
RNF111 and its cognate E2—UBC13—are required for efficient
release of XPC from UV-lesions, which permits the progress of
the NER reaction. How can XPC ubiquitylation by two different
E3 ligases have such a diverse functional outcome? One obvious
explanation is that these E3 ligases modify XPC with different
types of ubiquitin chains. While RNF111 in cooperation with
UBC13 generates K63-linked ubiquitin chains on XPC, the exact
type of ubiquitin chains formed by CRL4DDB2 is currently
unknown. However, in line with the finding that CRL4DDB2

autoubiquitylates DDB2 resulting in its subsequent
degradation36–39, most CRL4-type ubiquitin ligases promote
proteasomal degradation of their substrates40,41, which suggests
that CRL4DDB2 might form K48-linked ubiquitin chains on XPC.
If indeed XPC is ubiquitylated by K48 chains in response to UV

to increase its DNA-binding affinity, other factors may shield or
protect it from proteolytic attack. One such candidate is the XPC
complex partner RAD23B, which is known to protect XPC from
proteasomal degradation, already in non-UV-challenged cells42.
Other proteins involved in the stabilization of XPC might be the
deubiquitylating enzymes OTUD4 and USP7, which were shown
to deubiquitylate XPC upon UV-induced DNA damage43,44. It
will be interesting to study whether these deubiquitylating
enzymes are only involved in the protection of XPC from
proteolytic degradation or if they are also important for ubiquitin
chain editing on XPC. In this latter scenario, XPC would first be
ubiquitylated by CRL4DDB2 after which the K48-linked ubiquitin
chains might be trimmed down to permit K63-linked
ubiquitylation by RNF111 on the same lysines modified by
CRL4DDB2, resulting in the subsequent release of XPC from sites
of DNA damage.

Intriguingly, the RNF111-mediated ubiquitylation occurs on
one of the NER-initiating enzymes, but it affects one of the
last NER steps; the loading of the endonucleases XPG and
ERCC1/XPF. While we cannot exclude that RNF111 might also
target other NER factors downstream of XPC that may contribute
to the reduced NER-incision complex assembly, the reduced
accumulation of ERCC1 and XPF at sites of UV damage in cells
expressing an XPC mutant that cannot be SUMOylated (Fig. 4d–
g) strongly suggests that this is caused by the action of RNF111
on XPC. In addition, no UV damage-induced SUMO modifica-
tion of other NER factors have been described thus far. We
therefore propose a model in which chromatin bound, SUMOy-
lated XPC is ubiquitylated by RNF111 on DNA damage21,
thereby stimulating its release from the NER preincision complex
that contains TFIIH and XPA (Fig. 3b). This key step most likely
generates better access of XPG or increased stable binding of XPG
to the NER preincision complex. In addition, more efficient
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binding of XPG will promote the 50 incision by ERCC1/XPF and
progression of the NER reaction (Fig. 5, left panel). In contrast, in
the absence of RNF111, damage-bound SUMOylated XPC is not
ubiquitylated and remains stably bound to the NER complex,
interfering with XPG loading and the subsequent recruitment of
ERCC1/XPF, which are required for the excision of the damaged
DNA strand by these endonucleases (Fig. 1b; Fig. 5, right panel).
The need for XPC release for proper XPG incorporation into the
NER complex is in line with in vitro experiments showing that on
the arrival of RPA and XPG, XPC is released from the NER
complex45. It should also be noted that the position where XPC is
bound, the junction between double-stranded DNA and single-
stranded DNA at the strand opposite of the lesion, 30 with respect
to the lesion-containing strand10, is also the site where the XPG
endonuclease acts. For this reason of potential steric hindrance, it
is logical to assume that XPC must be released before XPG
loading.

Further research should uncover whether the ubiquitin-
binding UBM domain present in XPG46 might play a role in
this process. UBM domains have been shown to interact with
monoubiquitin and K63-linked, but not K48-linked, chains47.
This suggests that XPG might be able to interact with the
K63-linked ubiquitylated form of XPC, generated by RNF111. In
addition to the presence of TFIIH, this interaction could be
required for efficient recruitment of XPG and for the subsequent
or simultaneous extraction of XPC from the NER preincision
complex7. Furthermore, it has been shown that XPG
constitutively interacts with TFIIH8, which may suggest that
TFIIH brings XPG into the NER complex. Interestingly however,
and in line with earlier observations7, our data suggest that XPG
is recruited to sites of DNA damage independent of TFIIH as it
shows different RNF111-dependent binding kinetics than TFIIH:
on RNF111 knockdown XPB is more stably immobilized on sites
of DNA damage, whereas XPG immobilization could hardly be
detected. However, another possibility is that XPG arrives as part
of the TFIIH complex at sites of DNA damage, but will dissociate
as long as XPC remains bound to the preincision NER complex.

The dynamic DNA association of XPC27 could give XPG the
possibility to compete with XPC for binding to the NER
preincision complexes even if XPC release is slowed down in
the absence of RNF111-mediated ubiquitylation. This will
eventually result in a functional NER reaction, however, at a
much slower rate, which could explain the proficient, but strongly
delayed, NER phenotype upon RNF111 knockdown (Fig. 1b,c).

On the basis of current knowledge it is expected that the
different ubiquitylation events on XPC are regulated in a tightly
coordinated manner to ensure that XPC binds and dissociates at
the right time and place. Within NER, different—partially
overlapping—stages can be recognized, for example, damage
recognition and verification, establishment of the preincision
complex and final dual incision. All steps before the actual
incision are considered to be reversible, but once the incision by
ERCC1/XPF is made the process reaches a ‘point of no return’1.
We speculate that in response to UV, XPC is first modified by
CRL4DDB2, resulting in more stable binding to sites of DNA
damage. Subsequently, XPC is SUMOylated and recognized by
RNF111, which mediates K63-linked ubiquitylation of XPC to
promote its release from the NER complex. This XPC
SUMOylation is dependent on the presence of DDB2 and
XPA20. As XPA plays an important role during the damage
verification step, it is expected that this XPC SUMOylation and its
subsequent release occurs only after damage verification by the
NER preincision complex (Fig. 5). We propose that RNF111-
mediated ubiquitylation of XPC, required for stable integration of
XPG, marks a decisive stage in the progression of NER reaction to
reach the ‘point of no return’.

In summary, we have uncovered a new layer of ubiquitin
regulation of the DNA damage recognition step of NER. We
propose a first-in/first-out model: the ubiquitylation-driven
release of the NER-initiating factor XPC is required to make
room for the incorporation of the downstream NER endonu-
cleases. This UBC13 and RNF111-dependent process is required
to pass the NER reaction through the successive steps thereby
facilitating efficient damage removal. In addition to the regulation
by RNF111 and UBC13 as XPC ubiquitylation factors, this
process is dependent on SUMOylation mediated by UBC9. This
indicates the importance of crosstalk between SUMOylation and
ubiquitylation in the regulation of damage recognition. Our
findings not only show the importance of precise regulation of
damage recognition, but also the regulation of the progress of the
NER reaction. Taken together, we conclude that RNF111-
mediated ubiquitylation of XPC is a key regulator of NER
efficiency. The sequential SUMOylation and differential ubiqui-
tylation of XPC to control the NER reaction might serve as a
paradigm for the spatiotemporal regulation of other processes
involving different types of sequential post-translational protein
modifications.

Methods
Cell culture and treatments. U2OS cells were obtained from the ATTC cell
collection, CPD–photolyase–mCherry28 was stably expressed by lentiviral
transduction followed by Blasticidin selection. XPC–GFP was stably expressed in
sv40 transformed XPC (XP4PA) cells by transfection of XPC–GFP27, XPB–GFP
was stably transfected in sv40 transformed XPB (XPCS2BA) cells29, GFP–XPA was
expressed in sv40 XPA (XP2OS) cells30 and XPG–GFP was stably transfected in
sv40 transformed XPG (XPCS1RO)7 cells followed by FACS sorting and G418
selection. All cells above were cultured under standard conditions in
DMEM/F10 supplemented with 10% FCS and 1% penicillin–streptomycin at 37 �C
and 5% CO2. WT (clone A littermate of Xpc� /� and clone B littermate of
Rnf111� /� ), Xpc� /� (ref. 48) and two independent clones of Rnf111� /�

knockout MEFs, indicated as A and B23 were grown in DMEM/F10 containing
10% FCS, 1% PS and 1% non-essential amino acids. HeLa cells stable
expressing FLAG-SUMO2 in a doxycycline-inducible manner were generated
by cotransfection of HeLa/FRT/TRex cells (Invitrogen) with pcDNA5/FRT/
TO-3� FLAG-SUMO2 and pOG44 followed by selection with 200mgml� 1

Hygromycin B21,49.
For global and local UV irradiation cells were treated with a UV-C germicidal

lamp (254 nm, Philips) at the indicated dose50. Local UV irradiation was applied
through an isopore membrane filter (Millipore), containing 5-mm pores.

siRNA transfections were performed using hiperfect (Qiagen) or RNAiMax
(Invitrogen)2–3 days before the described experiments according to manufacturer’s
protocol. siRNA target sequence used were: CTRL (Thermo Scientific Dharmacon,
D10-001210-05), RNF111(A) (50-GGAUAUUAAUGCAGAGGAA-30),
RNF111(B) (Invitrogen, HSS182646), RNF4 (50-GAAUGGACGUCUCAUC
GUU-30), UBC9 (50-GGGAUUGGUUUGGCAAGAA-30), UBC13 (50-GAGCAUG
GACUAGGCUAUA-30), UBE2Q2 (Thermo Scientific Dharmacon, L-008326-01)
and XPA (50-CUGAUGAUAAACACAAGCUUAUU-30).

Construction and expression of ERCC1–GFP and K8R XPC–GFP. ERCC1–GFP
was PCR amplified from pBluescript containing ERCC1–GFP-6xHIS-HA using the
following primers: fw 50-CCACATGGACCCTGGGAAGGACAAAG–30 rv
50- CTACTTGTACAGCTCGTCCATGCCGA—30 ,cloned into pENTR-D-TOPO
(Invitrogen) and recombined into the pLenti PGK Blast Destination vector
(Addgene, plasmid 19065) using the Gateway LR Clonase II Enzyme Mix
(Invitrogen). Third-generation lentivirus was produced in HEK293T cells and used
to generate U2OS stably expressing ERCC1–GFP by Blasticidin selection. K8R
XPC–GFP construct was generated by fusion PCR performed by Baseclear (Leiden,
The Netherlands) and was sequence verified.

Unscheduled DNA synthesis. Fluorescent-based UDS was performed as as fol-
lows: in short, MEFs were seeded on 24-mm coverslips 3 days before the UDS assay
and cultured in serum-free medium to reduce the number of S-phase cells. Cells
were UV irradiated with 16 Jm� 2 and incubated for 3 or 9 h in medium con-
taining 5-ethynyl-20-deoxyuridine (EdU; Invitrogen). Subsequently, cells were
washed with PBS and fixed with 3.7% formaldehyde. Cells were permeabilized with
0.5% triton in PBS and 5-ethynyl-20-deoxyuridine incorporation was visualized
using Click-it Alexa Fluor 594 according to manufacturer’s instructions
(Invitrogen). Images were obtained using a LSM700 microscope equipped with a
63� oil Plan-apochromat 1.4 numerical aperture (NA) oil immersion lens
(Carl Zeiss Micro imaging Inc.). Repair capacity, quantified in at least 100 cells
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by determining the overall nuclear fluorescence using ImageJ software, was
normalized to fluorescence in WT cells, which was set at 100% (ref. 51).

Live-cell confocal laser-scanning microscopy. For local UV-C irradiation in
living cells, a 2mW pulsed (7.8 kHz) diode pumped solid-state laser emitting at
266 nm (Rapp Opto Electronic, Hamburg GmbH) was connected to a Leica SP5
laser-scanning confocal microscope as described52,53. Cells were grown on quartz
coverslips and imaged and irradiated at the indicated dose using an Ultrafluar
quartz 100� , 1.35 NA glycerol immersion lens (Carl Zeiss) at 37 �C and 5% CO2.
Imaging medium was the same as culture medium. Images were acquired using the
LAS AF software (Leica). Accumulation kinetics were quantified using FIJI image
analysis software. Resulting curves were normalized to the relative fluorescence
before irradiation and corrected for background values. To determine the
dissociation kinetics of XPC from damaged DNA, the undamaged part of the
nucleus was continuously bleached and the fluorescence decrease in the local
damage was measured.

For FRAP analysis54, a narrow strip spanning the nucleus (512� 16 pixels at
zoom 8 was bleached for 100ms using 100% of the power of a 488-nm laser.
Recovery of fluorescence in the strip was monitored every 22ms at 2% power of a
488-nm laser until fluorescence reached a steady-state level. All Frap data were
acquired on a Leica SP5 laser-scanning confocal microscope equipped with a
63� /1.4NA HCX PL APO CS oil immersion objective and normalized to the
average prebleach fluorescence after subtraction of the background signal At least
two independent experiments of 412 cells were performed for each condition. To
determine the immobile fraction (Fimm) from the FRAP measurements, we
renormalized the data, using the fluorescence intensity recorded immediately after
bleaching (I0) and the average fluorescence between 35 and 45 s after the start of
the FRAP experiment (once recovery is complete) from the unchallenged cells
(Ifinal, unc) and UV-irradiated cells (Ifinal, UV) and using the formula: Fimm¼ 1—
(Ifinal, UV—I0, UV)/(Ifinal, unc—I0, UV).

Western blot. Cells were collected by scraping in 200 ml 2� sample buffer and
boiled at 98 �C for 3min. Lysates were separated by SDS–PAGE and transferred to
a PVDF membrane (0.45 mm). Membranes were blocked with 5% milk in PBS for
1 h at room temperature and incubated with primary antibodies against RNF111
(H00054778-M05, Abnova), UBC9 (sc-5231,Santa Cruz Biotechnology), UBC13
(ab38795, Abcam) and Tubulin (T5286, Sigma Aldrich). Membranes were washed
five times for 5min with PBS containing 0.05% Tween and incubated with
secondary antibodies from LI-COR to visualize antibody complexes with the
Odyssey CLx Infrared Imaging System (LI-COR Biosciences). Uncropped scan
of the western blots depicted in Fig. 4d can be found in Supplementary Fig. 3c.

Immunofluorescence. Cells were grown on 24-mm coverslips and fixed using 2%
paraformaldehyde supplemented with triton X-100. For XPG stainings, cells were
fixed with 2% paraformaldehyde. Subsequently cells were permeabilized with PBS
containing 0.1% triton X-100 and washed with PBS containing 0.15% glycine and
0.5% BSA. To visualize CPD or 6-4PP, nuclear DNA was denatured by incubation
with 0.07M NaOH for 5min at room temperature. Coverslips were washed with
PBS containing 0.15% glycine and 0.5% BSA and incubated with primary anti-
bodies for 1–2 h at room temperature. Cells were washed three times and two times
for 10min with 0.1% triton X-100 and once with PBS containing 0.15% glycine and
0.5% BSA. To visualize primary antibodies coverslips were incubated for 1 h with
secondary antibodies labelled with ALEXA fluorochromes 488 or 555 (Invitrogen).
Again cells were washed with 0.1% Triton X-100 and PBSþ . Subsequently
coverslips were embedded in Dapi Vectashield mounting medium (Vector
Laboratories). Images were obtained using a LSM700 microscope equipped with a
63� oil Plan-apochromat 1.4 NA oil immersion lens (Carl Zeiss Microimaging
Inc.). The following primary antibodies were used: anti-CPD(1:1,000; TDM-2;MBL
International), anti-DDB2 (1:400; MBS120183 MybioSource), anti-XPC (1:200;
fraction 5), anti-TFIIH p89 (1:1,000; S19; Santa Cruz), anti-XPG (1:400; 8H7;
Thermo Scientific), anti-XPF (1:100; 3F2, Santa Cruz) and anti-ERCC1 (1:200;
D10; Santa Cruz).

Quantification of 6-4PP removal by immunofluorescence. MEFs were cultured
to 80% confluence on 24-mm coverslips and exposed to global UV
irradiation (10 Jm� 2). Cells were fixed after various time points and immuno-
stained with anti-6-4pp (1:1,000; 64M-2; Cosmo Bio), as described above. Images
were obtained using a Zeiss LSM 510 META confocal microscope equipped with a
63� oil Plan-apochromat 1.4 NA oil immersion lens. 6-4PP levels were quantified
in at least 70 cells per sample by measuring the overall nuclear fluorescence using
ImageJ software, which was set at 100% for 0 h after UV irradiation.

References
1. Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding

nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell
Biol. 15, 465–481 (2014).

2. Yokoi, M. et al. The xeroderma pigmentosum group C protein complex
XPC-HR23B plays an important role in the recruitment of transcription factor
IIH to damaged DNA. J. Biol. Chem. 275, 9870–9875 (2000).

3. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors
in vivo. Mol. Cell 8, 213–224 (2001).

4. Camenisch, U., Dip, R., Schumacher, S. B., Schuler, B. & Naegeli, H.
Recognition of helical kinks by xeroderma pigmentosum group A protein
triggers DNA excision repair. Nat. Struct. Mol. Biol. 13, 278–284 (2006).

5. Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition
of DNA damage for mammalian nucleotide excision repair: directional binding
of the XPC complex and DNA strand scanning. Mol. Cell 36, 642–653 (2009).

6. de Laat, W. L. et al. DNA-binding polarity of human replication protein A
positions nucleases in nucleotide excision repair. Genes Dev. 12, 2598–2609
(1998).

7. Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease
XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol.
Cell Biol. 26, 8868–8879 (2006).

8. Ito, S. et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors:
implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 26,
231–243 (2007).

9. Staresincic, L. et al. Coordination of dual incision and repair synthesis in
human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).

10. Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4
nucleotide excision repair protein. Nature 449, 570–575 (2007).

11. Masutani, C. et al. Purification and cloning of a nucleotide excision repair
complex involving the xeroderma pigmentosum group C protein and a human
homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

12. Araki, M. et al. Centrosome protein centrin 2/caltractin 1 is part of the
xeroderma pigmentosum group C complex that initiates global genome
nucleotide excision repair. J. Biol. Chem. 276, 18665–18672 (2001).

13. Wakasugi, M. et al. DDB accumulates at DNA damage sites immediately after
UV irradiation and directly stimulates nucleotide excision repair. J. Biol. Chem.
277, 1637–1640 (2002).

14. Scrima, A. et al. Detecting UV-lesions in the genome: The modular CRL4
ubiquitin ligase does it best! FEBS Lett. 585, 2818–2825 (2011).

15. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA
complexes is differentially regulated by the COP9 signalosome in response to
DNA damage. Cell 113, 357–367 (2003).

16. Kulathu, Y. & Komander, D. Atypical ubiquitylation—the unexplored world of
polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13,
508–523 (2012).

17. Sugasawa, K. et al. UV-induced ubiquitylation of XPC protein mediated by
UV-DDB-ubiquitin ligase complex. Cell 121, 387–400 (2005).

18. Silver, H. R., Nissley, J. A., Reed, S. H., Hou, Y. M. & Johnson, E. S. A role for
SUMO in nucleotide excision repair. DNA Repair (Amst) 10, 1243–1251 (2011).

19. Wang, Q. E. et al. Ubiquitylation-independent degradation of Xeroderma
pigmentosum group C protein is required for efficient nucleotide excision
repair. Nucleic Acids Res. 35, 5338–5350 (2007).

20. Wang, Q. E. et al. DNA repair factor XPC is modified by SUMO-1 and
ubiquitin following UV irradiation. Nucleic Acids Res. 33, 4023–4034 (2005).

21. Poulsen, S. L. et al. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that
facilitates the DNA damage response. J. Cell Biol. 201, 797–807 (2013).

22. Episkopou, V. et al. Induction of the mammalian node requires Arkadia
function in the extraembryonic lineages. Nature 410, 825–830 (2001).

23. Mavrakis, K. J. et al. Arkadia enhances Nodal/TGF-beta signaling by coupling
phospho-Smad2/3 activity and turnover. PLoS Biol. 5, e67 (2007).

24. van Cuijk, L., Vermeulen, W. & Marteijn, J. A. Ubiquitin at work: the
ubiquitous regulation of the damage recognition step of NER. Exp. Cell Res.
329, 101–109 (2014).

25. Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S. P. RNF4,
a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break
repair. Genes Dev. 26, 1179–1195 (2012).

26. Yin, Y. et al. SUMO-targeted ubiquitin E3 ligase RNF4 is required for
the response of human cells to DNA damage. Genes Dev. 26, 1196–1208 (2012).

27. Hoogstraten, D. et al. Versatile DNA damage detection by the global
genome nucleotide excision repair protein XPC. J. Cell Sci. 121, 2850–2859
(2008).

28. Aydin, O. Z. et al. Human ISWI complexes are targeted by SMARCA5 ATPase
and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids
Res. 42, 8473–8485 (2014).

29. Hoogstraten, D. et al. Rapid switching of TFIIH between RNA polymerase I
and II transcription and DNA repair in vivo. Mol. Cell 10, 1163–1174 (2002).

30. Rademakers, S. et al. Xeroderma pigmentosum group A protein loads as a
separate factor onto DNA lesions. Mol. Cell Biol. 23, 5755–5767 (2003).

31. Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in
living cells. Science 284, 958–961 (1999).

32. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81,
203–229 (2012).

33. David, Y., Ziv, T., Admon, A. & Navon, A. The E2 ubiquitin-conjugating
enzymes direct polyubiquitination to preferred lysines. J. Biol. Chem. 285,
8595–8604 (2010).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8499 ARTICLE

NATURE COMMUNICATIONS | 6:7499 | DOI: 10.1038/ncomms8499 |www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


34. Vertegaal, A. C. Small ubiquitin-related modifiers in chains. Biochem. Soc.
Trans. 35, 1422–1423 (2007).

35. Zhao, Q. et al. GPS-SUMO: a tool for the prediction of sumoylation sites and
SUMO-interaction motifs. Nucleic Acids Res. 42, W325–W330 (2014).

36. Chen, X., Zhang, Y., Douglas, L. & Zhou, P. UV-damaged DNA-binding
proteins are targets of CUL-4A-mediated ubiquitination and degradation.
J. Biol. Chem. 276, 48175–48182 (2001).

37. Nag, A., Bondar, T., Shiv, S. & Raychaudhuri, P. The xeroderma pigmentosum
group E gene product DDB2 is a specific target of cullin 4A in mammalian cells.
Mol. Cell Biol. 21, 6738–6747 (2001).

38. Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M. & Levine, A. S.
Sequential binding of UV DNA damage binding factor and degradation of
the p48 subunit as early events after UV irradiation. Nucleic Acids Res. 30,
2588–2598 (2002).

39. Puumalainen, M. R. et al. Chromatin retention of DNA damage sensors DDB2
and XPC through loss of p97 segregase causes genotoxicity. Nat. Commun. 5,
3695 (2014).

40. Hannah, J. & Zhou, P. Regulation of DNA damage response pathways by the
cullin-RING ubiquitin ligases. DNA Repair (Amst) 8, 536–543 (2009).

41. Higa, L. A. & Zhang, H. Stealing the spotlight: CUL4-DDB1 ubiquitin ligase
docks WD40-repeat proteins to destroy. Cell Div. 2, 5 (2007).

42. Ng, J. M. et al. A novel regulation mechanism of DNA repair by damage-
induced and RAD23-dependent stabilization of xeroderma pigmentosum group
C protein. Genes Dev. 17, 1630–1645 (2003).

43. He, J. et al. Ubiquitin-specific protease 7 regulates nucleotide excision repair
through deubiquitinating XPC protein and preventing XPC protein from
undergoing UV light-induced and VCP/p97 protein-regulated proteolysis.
J. Biol. Chem. 289, 27278–27289 (2014).

44. Lubin, A., Zhang, L., Chen, H., White, V. M. & Gong, F. A human XPC protein
interactome--a resource. Int. J. Mol. Sci. 15, 141–158 (2014).

45. Riedl, T., Hanaoka, F. & Egly, J. M. The comings and goings of nucleotide
excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003).

46. Fagbemi, A. F., Orelli, B. & Scharer, O. D. Regulation of endonuclease
activity in human nucleotide excision repair. DNA Repair (Amst) 10, 722–729
(2011).

47. Burschowsky, D. et al. Structural analysis of the conserved ubiquitin-binding
motifs (UBMs) of the translesion polymerase iota in complex with ubiquitin.
J. Biol. Chem. 286, 1364–1373 (2011).

48. Sands, A. T., Abuin, A., Sanchez, A., Conti, C. J. & Bradley, A. High
susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature
377, 162–165 (1995).

49. Danielsen, J. R. et al. DNA damage-inducible SUMOylation of HERC2
promotes RNF8 binding via a novel SUMO-binding Zinc finger. J. Cell Biol.
197, 179–187 (2012).

50. Marteijn, J. A. et al. Nucleotide excision repair-induced H2A ubiquitination is
dependent on MDC1 and RNF8 and reveals a universal DNA damage response.
J. Cell Biol. 186, 835–847 (2009).

51. Nakazawa, Y., Yamashita, S., Lehmann, A. R. & Ogi, T. A semi-automated non-
radioactive system for measuring recovery of RNA synthesis and unscheduled
DNA synthesis using ethynyluracil derivatives. DNA Repair (Amst) 9, 506–516
(2010).

52. Schwertman, P. et al. UV-sensitive syndrome protein UVSSA recruits USP7 to
regulate transcription-coupled repair. Nat. Genet. 44, 598–602 (2012).

53. Dinant, C. et al. Activation of multiple DNA repair pathways by sub-nuclear
damage induction methods. J. Cell Sci. 120, 2731–2740 (2007).

54. Houtsmuller, A. B. & Vermeulen, W. Macromolecular dynamics in living cell
nuclei revealed by fluorescence redistribution after photobleaching. Histochem.
Cell Biol. 115, 13–21 (2001).

Acknowledgements
We thank Dr V. Episkopou for providing RNF111� /� primary mouse fibroblasts. This
work was supported by the Dutch Organization for Scientific Research ZonMW TOP
Grants (912.08.031and 912.12.132), Dutch Organization for Scientific Research ALW
VIDI grant (846.13.004), Horizon Zenith (935.11.042), Dutch Science Organization
(NWO), Chemical Sciences (CW), ECHO.12.B1.043, European Research Council
Advanced Grant (340988-ERC-ID), FP7 Marie Curie International Training Network
aDDRess and Erasmus MC fellowship.

Author contributions
L.v.C. and G.J.v.B performed the majority of the experiments, Y.T. and R.C.J. performed
the experiments on the K8R XPC mutant. S.P. performed SUMOylation assays, A.F.T.
performed FACS sorting experiments. M.S. and H.L. performed cloning of mCherry
Photolyase and ERCC1–GFP. N.M., A.B.H., W.V. and J.A.M. designed the experiments,
analysed the data and wrote the manuscript. All authors reviewed the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interest.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: van Cuijk, L. et al. SUMO and ubiquitin-dependent
XPC exchange drives nucleotide excision repair. Nat. Commun. 6:7499
doi: 10.1038/ncomms8499 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8499

10 NATURE COMMUNICATIONS | 6:7499 | DOI: 10.1038/ncomms8499 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair
	Introduction
	Results
	RNF111 is required for efficient GG-NER
	RNF111 is required for XPC release from sites of UV damage
	RNF111 is essential for efficient XPG and XPF/ERCC1 loading
	XPC release and ongoing NER is SUMO and K63-chain dependent

	Discussion
	Methods
	Cell culture and treatments
	Construction and expression of ERCC1–GFP and K8R XPC–GFP
	Unscheduled DNA synthesis
	Live-cell confocal laser-scanning microscopy
	Western blot
	Immunofluorescence
	Quantification of 6-4PP removal by immunofluorescence

	Additional information
	Acknowledgements
	References




