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Choice-correlated activity fluctuations underlie
learning of neuronal category representation
Tatiana A. Engel1,2,*, Warasinee Chaisangmongkon1,*, David J. Freedman3 & Xiao-Jing Wang1,4,5

The ability to categorize stimuli into discrete behaviourally relevant groups is an essential

cognitive function. To elucidate the neural mechanisms underlying categorization, we con-

structed a cortical circuit model that is capable of learning a motion categorization task

through reward-dependent plasticity. Here we show that stable category representations

develop in neurons intermediate to sensory and decision layers if they exhibit choice-

correlated activity fluctuations (choice probability). In the model, choice probability and task-

specific interneuronal correlations emerge from plasticity of top-down projections from

decision neurons. Specific model predictions are confirmed by analysis of single-neuron

activity from the monkey parietal cortex, which reveals a mixture of directional and cate-

gorical tuning, and a positive correlation between category selectivity and choice probability.

Beyond demonstrating a circuit mechanism for categorization, the present work suggests a

key role of plastic top-down feedback in simultaneously shaping both neural tuning and

correlated neural variability.
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T
hrough experience we can learn to classify a continuum of
sensory stimuli into discrete meaningful categories, which
are critical for guiding behaviour1,2. Training improves our

ability to discriminate stimuli belonging to different categories
and to group together perceptually dissimilar items within the
same category. Such learning and refinement of categorical
discriminations occur continuously in everyday life; however,
their neural basis is poorly understood.

During training on visual tasks, perceptual improvements are
accompanied by only moderate tuning changes in the early visual
cortex3,4, whereas more dramatic changes occur in inferior
temporal and posterior parietal cortices. In monkeys trained to
classify directions of random dot motion into two arbitrary
categories, neurons in the lateral intraparietal (LIP) area encoded
learned motion categories in an almost binary manner5, whereas
in naive animals LIP neurons represent directions uniformly with
bell-shaped tuning functions6. In contrast, categorization training
did not induce any apparent change in motion tuning of neurons
in the middle temporal (MT) area. Similarly, changes in responses
of LIP but not MT neurons were associated with improved
behavioural sensitivity on visual discrimination tasks7–9,
which had been attributed to refinements of functional
connectivity between MT and LIP through reinforcement
learning10,11; however, the underlying circuit mechanism
remains unknown.

We examined whether changes in tuning of LIP neurons
induced by training on a motion categorization task can emerge
in a neural circuit model through biophysically plausible Hebbian
synaptic plasticity modulated by reward prediction error
(RPE) signals12–15. Unlike the classical two-layer categorization
model16, our model incorporated a layer of neurons intermediate
to sensory and decision layers. We found that neurons in the
intermediate layer develop stable category representation if
fluctuations of their firing rates are correlated with behavioural
choices. In contrast, behavioural performance and neuronal
tuning deteriorate with training in networks where activity
fluctuations are not correlated with choices. Weak but systematic
correlations between neural fluctuations and choices, termed
choice probability (CP), have been found in many cortical
areas17,18. Here we show that CP is critical for successful learning
through reward-dependent Hebbian plasticity, which generally
holds across different network architectures and behavioural
tasks.

Our model predicts that a mixture of directional and
categorical tuning and bimodal distribution of preferred direc-
tions emerge in the intermediate-layer neurons through learning.
This prediction was confirmed by analysis of LIP responses
recorded in monkeys trained on the motion categorization task.
Moreover, the model predicts that neurons with larger CP exhibit
a larger increase in their category sensitivity (CS), leading to a
positive correlation between these measures, which was also
found in the LIP data. Finally, the model suggests that task-
specific noise correlations arise from the plasticity of top-down
connections and makes testable predictions about changes of
noise correlations throughout learning.

Results
A neural circuit model of category learning. We trained a neural
circuit model to perform a motion categorization task5. Twelve
motion directions were assigned to two categories, C1 and C2,
defined by an arbitrary category boundary (Fig. 1a), and the
model learned through trial and error to decide on the category
membership of these stimuli.

Our model is a recurrent neural network comprising three
interconnected circuits (Fig. 1b). Sensory neurons (MT) encode

motion directions with bell-shaped tuning functions (Fig. 1c),
arising from direction-selective bottom-up inputs and structured
recurrent excitation19. Association neurons (LIP) are also tuned
to motion directions initially (Fig. 1c)—just like LIP neurons in
naive monkeys6—because synaptic weights are initialized to be
stronger between sensory and association neurons with similar
preferred directions. Over the course of learning, tuning of
association neurons changes through synaptic plasticity. The
activity of association neurons is pooled by the decision network,
which consists of two competing populations (C1 and C2,
Fig. 1b,c) firing at higher rates for the two respective category
decisions20,21. These neurons encode the model’s choice and
represent a subpopulation of neurons within LIP or in the
prefrontal cortex. Synaptic connections between association and
decision neurons are initialized at random values; therefore, the
model’s categorization decisions are completely random initially.

Our model has plastic feedforward connections from sensory
to association (cS-A) and from association to decision (cA-D)
circuits, and plastic feedback connections from decision to
association circuit (cD-A, Fig. 1b). At the end of each trial, the
strength c of each plastic synapse is updated according to a
reward-dependent Hebbian plasticity rule:

c ! cþ q R� R jyh ið Þrpre rpost; ð1Þ

where rpre and rpost are the trial-average firing rates of pre- and
postsynaptic neurons, q is the learning rate parameter, R is the
reward received on each trial (1 or 0 for correct and incorrect
decisions, respectively), y stands for a motion direction stimulus
and hR|yi is a stimulus-specific reward expectation, which may be
encoded in the orbitofrontal cortex or basal ganglia. For
simplicity, we computed hR|yi as a running average of reward
history14. Phasic activity of dopamine neurons encodes the
difference R�hR|yi, called the RPE signal12,22,23, and dopamine
concentration modulates long-term plasticity24,25. In our model,
positive RPE signals lead to potentiation, while negative RPE
signals lead to depression. Finally, the synaptic strengths c are
bounded between 0 and 1.

Model learning performance. We compared the learning per-
formance of our model with that of two control networks: a
network without feedback, which had only feedforward connec-
tions between the local circuits, and a network with fixed tuning
of association neurons, which had only feedforward connections
and no plasticity of synapses between sensory and association
neurons (effectively, a classical two-layer categorization model16).
Initially, performance of all models rapidly improved from the
chance level to B80% correct responses over several thousand
trials (Fig. 2a). During this short period of associative learning,
the models learn to associate motion directions and categories,
driven by plasticity of the synapses from association to decision
neurons. Plasticity transforms the profile of these synapses from
random to nearly binary: association neurons with preferred
directions in category C1 have strong weights to C1 and nearly
zero weights to C2 decision neurons, and vice versa
(Supplementary Fig. 1b). As a result, motion directions from
category C1 generate stronger input into the C1 decision
population, which makes C1 choices more likely, because the
probability of choice in our model is determined by the difference
in input currents to two competing populations21. At this stage of
learning, the performance is less accurate for stimuli closest to
(15�) the category boundary (Fig. 2d). Near-boundary stimuli
activate a subpopulation of association neurons with preferred
directions in both categories (Fig. 1c), resulting in comparable
inputs to both decision populations and less reliable
categorization behaviour.
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As training progressed, the three models began to exhibit
markedly different performance trends (Fig. 2b,e). The network
with feedback steadily improved performance over a hundred

thousand trials (several months of training for monkeys), mainly
due to increasing accuracy for the near-boundary stimuli
(Fig. 2e). In contrast, the performance of network without
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Figure 1 | Categorization task and the neural circuit model. (a) A set of 12 motion direction stimuli is divided into two categories, C1 and C2 (red and blue

arrows), separated by a category boundary (black dashed line). On each trial, one randomly chosen motion stimulus is presented, and the model learned

through trial and error to indicate its category membership. (b) Schematic of the circuit model. The network comprises a sensory (MT), an association (LIP)

and a decision neural circuits. Neurons in the sensory circuit are tuned to motion directions (indicated by arrows). They receive directional bottom-up

inputs and provide inputs to the association neurons through feedforward synapses (cS-A). The decision circuit (C1 and C2 populations) pools activity of

association neurons through feedforward synapses (cA-D) and generates a category decision through competitive attractor dynamics. The model has

feedback connections from the decision to association neurons (cD-A). All synaptic connections between the local circuits undergo Hebbian plasticity

modulated by a reward prediction error signal. (c) An example network activity before categorization training. A motion direction stimulus (195�) is
presented for 1 s (grey bar). The sensory and association neurons show direction-tuned responses in their spatiotemporal activity patterns (lower and

middle panels, respectively). x axis, time; y axis, neurons labelled by the preferred direction; firing rate is colour-coded. The decision circuit generates

categorical choice through a winner-take-all competition between the C1 and C2 populations (upper panel). Firing rates of the C1 and C2 populations are

shown for two trials, where C1 (red line) and C2 (blue line) choice was made for the same stimulus.
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Figure 2 | Behavioural performance of the network models during training on the motion categorization task. Performance of the networks with

feedback (green), without feedback (purple) and with fixed tuning of association neurons (grey) is shown at three stages of learning: short (a,d),

intermediate (b,e) and long (c,f). (a–c) Overall percent correct responses as a function of the number of trials performed. (d–f) Psychometric functions

evaluated at the end of each training epoch: percent correct responses for stimuli close to (15�) and farther from (45� and 75�) category boundary.

At the short training stage, performance improved equally in all three models. As the training progressed, performance of the network with feedback

steadily improved especially for the near-boundary stimuli, while performance of the network without feedback gradually deteriorated and eventually

dropped to the chance level. Performance of the network with fixed tuning of association neurons remained at the level attained by the end of the

short training stage. Shaded area in a–c and error bars in d–f indicate s.d. across five independent realizations of each network type.
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feedback gradually deteriorated, whereby accuracy decreased for
all motion directions. The network with fixed tuning of
association neurons maintained the same performance level as
attained by the end of the associative learning period. These
performance trends were preserved throughout extensively long
training (Fig. 2c,f), by the end of which the performance of the
network without feedback dropped to the chance level.

Transformation of tuning in association neurons. The striking
differences in learning performance of the three models cannot be
explained by the synaptic connections from the association to
decision neurons, as they are shaped equally in all networks
during associative learning and remain virtually unchanged later
on (Supplementary Fig. 1b). The reason for the observed
performance differences is the change in tuning of association
neurons, driven by the plasticity of synapses between sensory and
association neurons (Supplementary Figs 1 and 2). In the
networks with and without feedback, association neurons have
initially the same uniform direction tuning, which is only slightly
altered after a short period of learning (6,000 trials, Fig. 3a, upper
row), but becomes dramatically different in the two models after
extensively long training (420,000 trials, Fig. 3a, lower row). In
the network without feedback, the direction tuning deteriorates:
the association neurons fire at the same rate for all motion
directions. Consequently, the decision circuit receives non-
selective inputs and the performance is at the chance level. In
contrast, tuning transforms from directional to categorical in the
network with feedback: two nonoverlapping subpopulations
emerge in the association circuit that respond selectively to
stimuli from their preferred categories. As a result, category
decisions are very accurate even for near-boundary stimuli.

To quantify the development of category selectivity throughout
learning, we computed the average category-tuning index5 (CTI)
of association neurons in the model with feedback. Categorical
tuning entails that neurons respond differently to stimuli in

different categories and do not differentiate between stimuli in
the same category. Accordingly, the CTI varies from � 1.0 to 1.0,
where positive values indicate larger response differences for
stimuli in different categories and negative values indicate larger
differences within each category (see Methods). Before learning,
the average CTI of association neurons was zero, indicating
uniform direction tuning (Fig. 3b), and then CTI gradually
increased. At the intermediate learning stage corresponding to the
amount of categorization training received by monkeys (65,000
trials orB10–12 weeks), the average CTI was 0.18, comparable to
the CTI value 0.125 previously reported for LIP neurons5.

The gradual increase in the CTI was accompanied by changes
in the tuning curves of individual association neurons, which
followed two systematic trends. In neurons that initially preferred
directions near category centres, tuning curves broadened
(Fig. 3c, right), while in neurons that initially preferred directions
near category boundaries, tuning curves shifted so that their
preferred directions moved towards centres of the respective
categories (Fig. 3c, left). Broadening and shifting of tuning curves
led to mixed tuning, whereby direction and category signals were
combined on the single-cell level. To quantify this mixture, we
fitted the tuning curve of each association neuron with a
generalized linear model (GLM)26, which contained a linear
combination of two regressor functions: a direction (bell-shaped,
equation (12)) and a category (binary step-like, equation (13))
tuning profiles (see Methods). The tuning was classified as pure
directional, pure categorical or mixed, according to GLM
coefficients that were significantly different from 0. At the
intermediate learning stage (65,000 trials), 15.6% of association
neurons exhibited a significant influence of category on their
tuning curves, while 84.4% remained purely direction-tuned. We
examined the distribution of preferred directions in direction-
tuned neurons, and found that more neurons were tuned to
category centres than to category boundaries (Fig. 3d, the result
did not change if all neurons were included).
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Figure 3 | Mixed direction and category tuning emerges in association neurons through learning. (a) Tuning profiles of association neurons after short

(6� 103 trials, upper row) and long (420� 103 trials, lower row) periods of training for the network without feedback (left column) and with feedback

(right column). x axis, stimulus motion direction; y axis, neurons arranged and labelled by their preferred direction before learning; firing rate is colour-

coded. After extensive categorization training, motion tuning deteriorates in the network without feedback, whereas categorical tuning develops in the

network with feedback. (b) The average category-tuning index of association neurons steadily increases over the course of training. (c–e) Mixed direction

and category tuning of the association neurons at the intermediate stage of training (65� 103 trials). (c) Tuning profiles of two example association

neurons before (grey dashed line) and after learning (coloured dots—firing rates, black solid line—best-fitted tuning function). Tuning curves broaden

(right panel) and shift towards category centres (left panel) in neurons with initial preferred directions near category centres and category boundaries,

respectively. (d) Bimodal distribution of preferred directions in direction-tuned association neurons (Hartigan’s dip test, P¼0.002). Majority of neurons

are tuned away from the category boundary (indicated by red dashed lines). (e) Multidimensional scaling analysis reveals a circular configuration of motion

directions in the representation of sensory neurons (left panel), and an elliptical configuration elongated along the axis perpendicular to the category

boundary in the representation of association neurons (right panel).
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Broadening and shifting of tuning curves alter the representa-
tion of motion directions in a way that facilitates the discrimina-
tion of categories. We visualized the ensuing representation on
the population level using classical multidimensional scaling27

(MDS). In this framework, stimuli are represented as vectors in a
high-dimensional space of neural firing rates, where each
dimension corresponds to a neuron in the population. The
MDS algorithm finds a two-dimensional configuration of the
stimuli that preserves the distances between them as much as
possible. In the sensory circuit, the MDS algorithm yields a
circular configuration (Fig. 3e, left) that faithfully reproduces the
arrangement of directions in the physical space. In the association
circuit, the configuration is elongated along the axis
perpendicular to the category boundary (Fig. 3e, right), which
increases the distances between near-boundary stimuli in
different categories making them more easily discriminable and
decreases distances between stimuli within the same category
making them less discriminable.

Mixed direction and category tuning in LIP neurons. We
compared tuning changes in our model to the tuning (during the
period of stimulus presentation) of MT and LIP neurons recorded
in monkeys trained to categorize motion directions5. Such a
comparison is meaningful, if the model and monkeys experienced
similar amount of categorization training and reached similar
behavioural performance. In the model, the time course of
learning depends on the learning rate q and the maximal strength
of feedback connections gD!A

max (Supplementary Fig. 3). We
simulated the model for a range of q and gD!A

max and used the
parameters that provided good match to experimental data for
the similar number of training trials (that is, 65,000 trials, see
Supplementary Fig. 4).

We fitted the tuning curve of each neuron in our database
(67 MT and 156 LIP neurons) with direction and category-tuning
functions and then classified tuning as directional, categorical or
mixed following the same procedure that was used for model
neurons. The majority of MT (91.0%) and LIP neurons (69.9%)
exhibited pure direction tuning (Fig. 4a, upper panels, Fig. 4b).
In agreement with our model prediction, the distribution

of preferred directions was significantly bimodal among
direction-tuned LIP neurons (Hartigan’s dip test P¼ 0.003,
Fig. 4c), but not among MT neurons (Hartigan’s dip test
P¼ 0.08). A considerable fraction of LIP neurons (18.0%) showed
a mixture of directional and categorical tuning (Fig. 4a, lower
panels). The distribution of preferred directions remained
significantly bimodal when the mixed-tuned LIP neurons were
included in the analysis (Hartigan’s dip test Po10� 7). A small
fraction of LIP neurons (3.9%) exhibited pure category tuning
(Fig. 4a, middle panels), and the rest (8.3%) were not stimulus-
selective. As a control, we repeated the analyses in different time
epochs during the trial (Supplementary Table 1) and using a
smoothed category-tuning function (Supplementary Table 2), and
obtained similar results.

The representation of motion directions at the population level
was consistent with the model prediction as well: the MDS
algorithm revealed a nearly circular configuration of motion
directions in MT (Fig. 4d, upper panel), whereas in LIP motion
directions were arranged on an elongated ellipse with the major
axis perpendicular to the category boundary (Fig. 4d, lower panel,
see Supplementary Note 1 for statistical significance test).
Similarly, CTI was significantly higher in LIP than in MT as
has been previously reported for the same dataset5. Although the
LIP population demonstrated high heterogeneity, the main
tuning features in LIP bear a remarkable resemblance to the
tuning transformation induced by learning in our model.

Reward-driven learning depends on choice probability. To
understand effects of learning on tuning of association neurons,
we need to examine the reward-dependent Hebbian plasticity rule
(equation (1)). The plasticity rule entails that the expected weight
change for each stimulus hDc|yi is proportional to the covariance
between the reward R and neural activity N¼ rpre rpost (ref. 15)
(see Supplementary Note 2):

Dc jyh i ¼ q Cov R;N j y½ �: ð2Þ
This means that average synaptic weight changes across many

trials are driven by covariation between trial-to-trial fluctuations
of the firing rates and reward. Thereby, synapses change to
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increase the expected reward. If for a particular synapse the
neural activity is systematically higher on trials when the reward
is above its mean, then the covariance is positive, the synapse is
potentiated, and hence the mean neural activity and the expected
reward increase (and analogously for negative covariance).
Fluctuations of both reward and neural activity are critical for
learning: if either R or N is deterministic, the covariance equals
zero and learning does not increase expected reward.

Covariation between neural activity and reward entails
covariation between neural activity and choices, if reward is
assigned on the basis of behavioural responses. This simple
intuition can be formalized mathematically, if we express the
covariance Cov[R,N|y] in terms of expectations conditioned on
choices. For tasks with only two possible choices, we obtain a
simple expression (see Methods for derivation and generalization
to arbitrary number of choices):

Cov R;N j y½ � ¼ N1;y �N2;y
� �

R1;y �R2;y
� �

P1;yP2;y: ð3Þ
Here Pi,y is the probability that Ci choice is made for the stimulus
y; Ri,y¼hR|y,Cii is the reward expected for choosing Ci for
stimulus y; and Ni,y¼hN|y,Cii is the expected neural activity
conditioned on the stimulus y and choice Ci.

The term (N1,y�N2,y) represents the difference between the
means of two neural activity distributions obtained on trials when
different choices are made for the same stimulus y, and is
monotonically related to a measure called choice probability17,28

(CP, Supplementary Fig. 5a). CP quantifies the accuracy with
which an ideal observer could predict choices given neuronal
firing rates on a trial-by-trial basis. A CP of 0.5 indicates no
correlation between neural fluctuations and choices (N1,yEN2,y,
Fig. 5b), whereas a CP of 1 (or 0) indicates that the neuron’s firing
rate is always higher (or lower) on trials when C1 is chosen than
on trials when C2 is chosen for the same stimulus y (N1,y4N2,y in
Fig. 5c; our convention of computing CP differs from refs 17,29,
see Supplementary Note 3).

Equation (3) demonstrates that synaptic updates lead to
increase in expected reward if CPa0.5 for pre- or postsynaptic
neurons; however, if CPE0.5 for both pre- and postsynaptic
neurons, the covariance Cov[R,N|y] vanishes irrespective of the
reward expectation. This result is a general property of reward-
modulated Hebbian plasticity and holds across different tasks and
network architectures. It can be illustrated using a single toy-
model neuron (Fig. 5a), whose firing rates for C1 and C2 choices
are sampled from two Gaussian distributions with different
means, without specifying mechanisms generating CP. We
assumed that C1 choices are rewarded, leaving other task details
unspecified. The synapse of this toy-model neuron is updated
according to the reward-modulated Hebbian plasticity rule. As
predicted by equation (3), CP determines the direction and
magnitude of synaptic changes in the toy model. If CP40.5, the
covariance Cov[R,N] is positive and the synapse is potentiated
(red traces in Fig. 5d), and if CPo0.5 the synapse is depressed
(blue traces in Fig. 5d). The covariance magnitude is larger for
larger |CP� 0.5|, resulting in faster synaptic changes. If CPE0.5,
the covariance vanishes; hence, synaptic modifications are driven
by noise similar to a random walk (yellow traces in Fig. 5d) and
over a long period of learning any synaptic weight becomes
equally likely (Fig. 5e).

This general principle explains both the fast associative
learning and slower behavioural improvements in our model.
Since activities of decision neurons directly represent the model’s
choices, the magnitude of their CP is large; hence, the synapses of
decision neurons change rapidly towards increasing expected
reward, underpinning fast associative learning. In the network
with feedback, CP arises via feedback from the decision circuit,
which produces multiplicative rate modulations in association

neurons30,31 (Supplementary Fig. 2). Initially, CP is scattered
around 0.5; however, when feedback connections become
structured (B500 trials), neurons receiving stronger input from
the C1 (C2) decision population fire at higher rates when C1 (C2)
choices are made and exhibit CP40.5 (CPo0.5, Fig. 6b). The
magnitude of CP is smaller in association than in decision
neurons; therefore, the tuning changes of association neurons and
ensuing behavioural improvements happen more slowly than
associative learning. In the network without feedback, CPE0.5 in
all association neurons and at all learning stages (Fig. 6a), because
local noise in the decision circuit—required to attain realistic
behavioural performance in the categorization task—diminishes
the influence of association neurons’ rate fluctuations on choices
(see Supplementary Note 4 for details). Resulting unstructured
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synaptic changes lead to deterioration of tuning and behavioural
performance. Regardless of which mechanism—feedforward or
feedback—is more plausible for generating CP in real neurons,
our results demonstrate the significance of CP for reward-
dependent learning.

Choice-correlated fluctuations shape neural tuning changes.
Over many trials, synaptic weight changes Dcij between the
association neuron i and sensory neurons j¼ 1yN follow the
same two trends as observed in tuning functions (Fig. 3c). For
neurons tuned to category centres, the initial bell-shaped profile
widens on both sides until it transforms into a step-like profile
aligned with the category boundary (Fig. 7e); hence, the tuning
curves broaden. For neurons tuned to directions near category
boundaries, synapses are strengthened on one side and weakened
on the other side of the initial bell-shaped profile (Fig. 7f); hence,
the tuning curves shift towards the category centre. Using
equation (2), the expected weight change for stimulus y can be
expressed as hDcij|yi¼ q Cov[R,rirj|y]Eq hrj|yiCov[R,ri|y] (see
Supplementary Note 2). The overall expected weight change is
then the average of hDcij|yi across all stimuli. Thus, synaptic
changes are determined by the covariance Cov[R,ri|y] weighted
by the rates of sensory neurons.

For neurons initially tuned to directions in category C1, CP40.5
and the covariance Cov[R,ri|y] is positive for stimuli yAC1 and
negative for yAC2 (Fig. 7a,b), since the term (R1,y�R2,y) in
equation (3) changes sign for y in different categories. The
covariance magnitude is proportional to the product of probabilities
of the correct response and error, P1,y(1� P1,y), which is largest for
near-boundary stimuli (P1,yB0.5). When this covariance is
combined with the firing rates of sensory neurons, the overall
synaptic weight change is step-like for neurons tuned to category
centres (Fig. 7c), and skewed towards the category centre for
neurons tuned near category boundaries (Fig. 7d). For neurons
initially tuned to directions in category C2, CPo0.5; hence, the
covariance has just the opposite sign leading to the preference for

category C2. Such tuning changes lead to behavioural improve-
ments because the feedforward cA!D

i and feedback cD!A
i connec-

tions become aligned through learning.

Plastic top-down feedback induces task-specific correlations.
In our model, category-tuning and neural fluctuations are
simultaneously shaped through plasticity of feedforward and
feedback connections to association neurons, giving rise to
testable model predictions.

First, our model predicts that association neurons with larger
CP exhibit greater sensitivity of their tuning curve to the stimulus
category (Fig. 8a). The latter is quantified by category sensitivity
(CS), which is the accuracy with which an ideal observer could
discriminate between stimuli from categories C1 and C2 given
neuron’s firing rates on correct trials. A positive correlation
between CP and CS arises because of reciprocal interaction of
plasticity on the feedforward cS-A and feedback cD-A connec-
tions to association neurons. On one hand, plasticity of
feedforward connections from sensory neurons leads to a greater
increase in CS for neurons with larger CP (Fig. 5). On the other
hand, plasticity of feedback connections from decision neurons
generates a greater difference in top-down inputs from two
decision populations, hence larger CP, for neurons with larger CS.
The correlation between CP and CS is not an a priori given,
because these measures quantify independent aspects of neuronal
response. CS measures the difference in response to stimuli from
different categories on correct trials, whereas CP measures the
difference in response to the same stimulus on correct versus
error trials. The correlation between CP and CS is abolished if the
learned profile of feedback connections is randomized
(Supplementary Fig. 6c).

We tested whether the predicted correlation between CP and
CS exists in MT and LIP neurons. The overall magnitude of CP
was significantly greater in LIP than in MT population (Wilcoxon
rank-sum test comparing distributions of |CP� 0.5|, P¼ 0.0006,
Fig. 8c). Ten LIP neurons (11.4%, N¼ 88) and none of MT
neurons (0%, N¼ 31) showed individually significant CP (shuffle
test with 1,000 shuffles and two-sample t-test, Po0.05, see
Methods). In agreement with the model prediction, CP and CS
were significantly correlated in the LIP (Fig. 8b, Pearson
correlation, r¼ 0.494, N¼ 88, P¼ 10� 6), but not in MT
population (r¼ � 0.181, N¼ 31, P¼ 0.33, Supplementary
Fig. 6d). We also repeated the analyses using CP computed
relative to the preferred category of each neuron17,29 and
obtained similar results (Supplementary Note 3 and
Supplementary Fig. 6e–h). Although CP magnitude is slightly
lower in LIP data than in the model, smaller CP magnitudes can
be obtained in the model with weaker top-down connections
(Supplementary Fig. 3). In addition, since recorded LIP neurons
were sampled randomly, some of them might not be engaged in
the categorization task and some were not visually responsive.
This sampling heterogeneity may reduce the average effect size in
the data and it is not incorporated in our model.

Second, our model predicts that interneuronal correlations
depend on CS. In association neurons, correlations between their
trial-to-trial rate fluctuations, termed noise correlations rnoiseij
(a Pearson correlation coefficient between rate fluctuations of
neurons i and j), arise from shared recurrent and feedforward
inputs. In the network without feedback, noise correlations
simply decrease with the difference in neurons’ preferred
directions reflecting the bell-shaped profile of their recurrent
and feedforward connections (Supplementary Fig. 5b). In the
network with feedback, association neurons with the same
category preference also share top-down input from decision
neurons, consequently noise correlations are stronger among
neurons that contribute to the same category decision (Fig. 8d),
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similar to previous experimental reports32. Moreover, noise
correlations are larger in neural pairs with smaller absolute
difference in their category sensitivities (DCSij¼ |CSi�CSj|):
rnoiseij is positive in pairs with similar CS (DCSijB0) and negative
in pairs with opposite category preference (DCSijB1, Fig. 8e).
In addition, the magnitude of noise correlations is larger in
neural pairs with higher CS strength, defined as
(|CSi� 0.5|þ |CSj� 0.5|)/2 (Fig. 8e). Such structured noise
correlations—that remained static throughout learning—were
required in a feedforward model10,29 to capture the correlation
between CP and task sensitivity observed in several experimental
studies7,8,29,33. However, the a priori assumption that noise
correlations depend on CS is not realistic, since categories are
assigned arbitrarily. Alternatively, our model suggests that
plasticity of feedback connections represents a common
mechanism by which the structure of noise correlations, CP
and CS all develop dynamically through learning.

Discussion
Here we proposed a neural circuit mechanism for visual category
learning. Our findings represent two major advances going
beyond a model for categorization. First, we demonstrated that
choice-correlated activity fluctuations, ubiquitous across cortical
areas7–9,17,34, are critical for learning through reward-dependent
Hebbian plasticity, which generally holds across different network
architectures and behavioural tasks. Second, we showed how
behavioural improvements, neuronal tuning changes, CP and
noise correlations can be all simultaneously shaped by a common

plasticity mechanism in a network incorporating top-down
feedback. Several model predictions about ensuing
interdependences between these measures were confirmed by
the analysis of LIP recordings.

The reward-dependent Hebbian plasticity in our model belongs
to the family of covariance-based learning rules15

using a stimulus-specific RPE signal, which is critical for
successful learning14 (Supplementary Fig. 7). The idea to harness
local fluctuations for reward-dependent learning has been first
proposed for connectionist networks35, and later instantiated in
networks of spiking neurons by exploiting either randomness of
Poisson spiking36,37 or stochasticity of synaptic transmission38.
Such plasticity rules can successfully learn precise spike patterns in
networks of just a few neurons, but fail in larger networks and when
behavioural outcomes are determined by population firing rates
rather than by spike times of individual neurons39,40. The reason
for their failure in these situations is precisely the lack of correlation
between population-level choices and local activity fluctuations. To
overcome this problem, plasticity rules have been employed
incorporating behavioural choice explicitly as a multiplicative
factor10,41,42. In contrast, our solution does not require any
special plasticity rule, but instead utilizes network architecture
where feedback from decision neurons generates choice-correlated
variability.

Task-specific neural representations develop in many training
paradigms across different cortical areas43–55. Our model
demonstrates how such task-specific representations can emerge
through reward-dependent plasticity. Although task-specific
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selectivity could arise through activity modulation via plastic
feedback connections56, in our model, top-down modulation
has a negligible effect on selectivity of association neurons
(Supplementary Fig. 2), yet it is critical to guide learning of
task-relevant features57.

Tuning changes of association neurons in our model allow for
more accurate categorization of near-boundary stimuli than in
the classical categorization model with fixed tuning16. In our
model, tuning changes arise from plasticity of feedforward
synapses from sensory (MT) to association (LIP) neurons;
however, similar results are obtained if plasticity acts only on
the recurrent synapses within the association circuit, or on both
the feedforward and recurrent synapses (Supplementary Fig. 8).
In our model, the initial direction tuning of association neurons
sets the profile of choice-correlated fluctuations, which in turn
governs tuning changes. However, initial tuning is not required
for successful learning: a population of nonselective neurons
carrying choice-correlated fluctuations develops categorical
tuning just as well. In this case, neurons develop purely binary
category selectivity with the category preference determined
solely by their CP (Supplementary Fig. 9). Last, retraining on a
categorization task with a new category boundary results in
readjustment of neural tuning (Supplementary Fig. 10) similar to
experimental observations5.

It has been speculated that category signals in LIP represent
abstract perceptual decisions: category C1 versus C2 (ref. 58). In
the motion categorization task, but not in classic motion
discrimination work in LIP7, abstract decisions were dissociated
from the actions signalling those decisions by using a two-interval
match-to-category design, where the required motor response
was unknown at the time of the first stimulus presentation.
Moreover, receptive fields of LIP neurons in the motion

discrimination task were aligned with the saccadic choice
targets and not with the motion stimulus as in our case; hence,
that design was better suited to examine response-related rather
than perceptual signals in LIP. Accordingly, these data were
interpreted using a feedforward model, where LIP neurons
represent a decision-variable pooling activity of MT neurons with
weights adjusted by a reinforcement learning rule10, and
behavioural improvements were ascribed to selective
strengthening of connections from the most sensitive sensory to
decision neurons8,10. In contrast, we find that during motion
categorization the representation of motion stimuli in LIP
constitutes a mixture of directional and categorical tuning that
facilitates discrimination of learned categories. Therefore, both
mechanisms—that co-exist in our model—may be concurrently
employed in the brain: refinements of sensory representations
and of their readout by decision neurons.

In our model, mixed selectivity is robustly observed over a
period from a few thousand to several hundred thousand trials,
accompanied by increasing category tuning. Consistent with high
CTI values reported previously in LIP5, we find that two factors
contribute to the increasing population CTI: shift of preferred
directions and emergence of mixed and pure category tuning.
Some LIP neurons carried category selectivity throughout the
delay period of the match-to-category task, which indicates that
category encoding may not be a purely feedforward effect.

Our work demonstrates the significance of CP for
reward-dependent learning regardless of its origin. The origin
of CP has been recently debated, with accumulating evidence for
top-down contributions18,34,59. Notably, CP signals we observe in
LIP are distinct from signals related to reward, attention and
upcoming movements5,54,60,61. Although origins of CP may differ
between earlier sensory areas such as MT and more cognitive
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areas such as LIP, our model provides a common framework for
understanding the impact of CP on plasticity of neuronal
representation.

We proposed a novel model for how CP influences plasticity in
LIP, although CP effects in sensory areas (for example, MT) have
been modelled previously18,29,62. Our model demonstrates how a
task-specific structure of CP, noise correlations and CS can arise
dynamically through reward-dependent plasticity of top-down
connections and predicts that neurons with larger CP develop
larger CS. Thus, learning-induced tuning changes may be more
pronounced in cortical areas that exhibit greater CP
(Supplementary Fig. 3). Interestingly, both CP and CS were found
to be significantly larger in LIP than in the prefrontal cortex54.
Similarly, low CP of MT neurons might explain the absence of
obvious tuning changes in this area through categorization training.
Small but significant learning-related tuning changes have been
observed in other sensory areas4 that also exhibit CP63. Therefore,
our findings may generalize across sensory areas not limited to LIP.

Methods
Neural circuit model. Network architecture. The network model comprises three
interconnected local circuits: sensory, association and decision. All three are
strongly recurrent networks with dynamics governed by local excitation and
feedback inhibition19,20,64. In simulations, we used a reduced mean-field model
that has been shown to reproduce neural activity of a full spiking neural network21.
The dynamics of each excitatory neural population is described by a single variable
s representing the fraction of activated N-methyl-D-aspartate receptor
conductance, governed by

ds
dt

¼ � s=ts þ 1� sð Þgr; ð4Þ

with g¼ 0.641 and ts¼ 60ms. The firing rate r is a function of the total synaptic
current I (refs 21,65):

r ¼ f Ið Þ ¼ aI� b
1� exp � d aI� bð Þ½ � ; ð5Þ

with a¼ 270Hz nA� 1, b¼ 108Hz and d¼ 0.154 s.
The total synaptic current I consists of recurrent and noisy components,

I¼ Irþ In. Recurrent input to a neuron i in the population A originating from the
population B reads:

IB!A
r;i ¼ 1

NB

X
j2B

gB!A
ij sBj ; ð6Þ

where gB!A
ij is the synaptic coupling between the neuron j in the population B and

the neuron i in the population A. The current is normalized by the number of
presynaptic neurons NB. Noisy current replicates background synaptic inputs and
obeys: tndIn=dt ¼ � In � I0ð Þþ ffiffiffiffiffi

tn
p

snZðtÞ, where Z(t) is a white Gaussian noise,
IS0 ¼ ID0 ¼ 0:3297 nA, IA0 ¼ 3:1 nA, tn¼ 2ms and sn¼ 0.009 nA.

The sensory and association circuits were each simulated by 128 discrete units
with equally spaced preferred directions from 0� to 360�. Within each circuit, the
synaptic couplings gij between neurons with preferred directions yi and yj have a
periodic Gaussian profile:

g yi � yj
� �

¼ J� þ Jþ exp � yi � yj
� �2

=2s2
� �

; ð7Þ

with s¼ 43.2�. Parameters J� and Jþ determine the amount of recurrent
excitation and inhibition. In sensory and association networks, the recurrent
inhibition is stronger than recurrent excitation, JS!S

� ¼ � 0:5, JS!S
þ ¼ 1:43,

JA!A
� ¼ � 10:0 and JA!A

þ ¼ � 0:4 nA. The particularly strong recurrent inhibition
in the association circuit sets this module in the normalization regime66, where the
total population activity remains approximately constant for different stimuli19.

The decision circuit consists of two populations (C1 and C2) representing
categorical choice, which pool activity of the association neurons. When
stimulated, activities of the C1 and C2 populations diverge according to winner-
take-all dynamics. This behaviour is attained through global inhibition and
structured recurrent excitation within the decision circuit21: gD!D

ij ¼ Jij with
JC1,C1¼ JC2,C2¼ 0.3725 nA, JC1,C2¼ JC2,C1¼ � 0.1137 nA.

Plastic synapses. All synapses connecting three local circuits (from sensory to
association, and between association and decision neurons) are plastic and
excitatory. Synaptic strengths of plastic connections are expressed as gij¼ gmaxcij,
where gmax is the maximal connection strength and cij is bounded between 0 and 1,
and represents the fraction of potentiated synapses between neurons i and j. At the
end of each trial, all cij are updated according to the Hebbain plasticity rule
modulated by the RPE as specified in equation (1), where the learning rate
q¼ 0.00003, and rpre and rpost are average firing rates during the stimulus period.
The stimulus-specific predicted reward hR|yi was estimated by a running trial

average14: �Ry
nþ 1 ¼ �Ry

n þ Rn � �Ry
n

� �
=tR , where tR¼ 5, and n enumerates trials with

stimulus y.
Plastic synapses between sensory and association neurons cS!A

ij

� �
were

initialized with the periodic Gaussian profile as in equation (7) with
JS!A
� ¼ 0; JS!A

þ ¼ 1. Plastic synapses between association and decision neurons
(cA!D

ij and cD!A
ij ) were initialized randomly from a uniform distribution on [0.25,

0.75]. The maximal connection strengths of plastic synapses were gS!A
max ¼ 1,

gA!D
max ¼ 0:03 and gD!A

max ¼ 0:01 nA.

Simulation protocol and external inputs. Each simulation trial starts with a
200-ms pre-stimulus period (no external inputs), followed by a 1-s presentation
of a motion direction stimulus and then by a 500-ms intertrial interval. When a
motion direction stimulus ys is presented, neurons in the sensory network receive
additional input current Is that depends on the neuron’s preferred direction y:

Is ¼ gsexp � ys � yð Þ2=2s2s
� �

; ð8Þ

where ss¼ 43.2� and gs¼ 0.1 nA. Neurons in the decision circuit receive a non-
selective gating current of 0.01 nA during the stimulus period, which sets the circuit
in the decision-making regime, and a brief � 0.08 nA reset current during the first
300ms of the intertrial interval, which represents the corollary discharge67 and
resets activity to the spontaneous level.

The model’s response on each trial was determined by comparing firing rates of
two decision populations with a 20-Hz threshold during the last 25-ms of the
stimulus period. The response is considered invalid if both or neither population
reach threshold, or either population reaches threshold before the stimulus onset.
Across trials, choices of the decision network are stochastic and are characterized
by a sigmoidal dependence of the probability of choice C1 on the difference DI in
synaptic input currents to two competing populations68. Reward equals R¼ 1 on
valid correct trials, R¼ 0 on valid incorrect trials and no plasticity is triggered on
invalid trials.

Noise correlation rnoiseij , CP and CS for the model neurons were estimated from
10,000 simulated trials with synapses ‘frozen’ (that is, no plasticity) at values
attained after specified number of learning trials. Noise correlation rnoiseij was
computed as the Pearson correlation coefficient between the firing rates of neurons
i and j across all correct trials for the same stimulus, and then averaged across
stimuli. CP and CS were computed as described in the Data analysis section, except
for the CP estimation the model’s choice was known explicitly and did not have to
be inferred.

Simulations were performed using a custom code written in Matlab
implementing Heun integration with a time step of 1ms. Code implementing the
model is available upon request via email.

Derivation of equation (3). The covariance in equation (2), Cov[R,N|y]¼
hRN|yi� hR|yihN|yi, can be expressed in terms of expectations conditioned
on the choice:

Cov R;N j y½ � ¼
Xn
i¼1

Pi;y RN j y;Cih i�
Xn
i¼1

Pi;y R j y;Cih i
Xn
i¼1

Pi;y N j y;Cih i; ð9Þ

for a task with n possible choices Ci, which are selected with probabilities Pi,y for
stimulus y. In tasks where reward is delivered on the basis of behavioural response,
the reward is independent of neural activity when conditioned on the choice;
therefore,

RN j y;Cih i ¼ R j y;Cih i N j y;Cih i;¼ Ri;yNi;y; ð10Þ
where Ri,y and Ni,y denote the conditional expectations of reward and neural

activity, respectively, for choice Ci and stimulus y. In these terms, equation (9) can
be rewritten as

Cov R;N j y½ � ¼
Xn
i¼1

Xn
j¼1

Ni;y �Nj;y
� �

Ri;y Pi;yPj;y: ð11Þ

For tasks with only two possible choices, equation (11) simplifies to equation (3). In
the categorization task reward is a deterministic function of choice (1 and 0 for
correct and error choice, respectively); hence, the term (R1,y�R2,y) in equation (3)
becomes þ 1 or � 1 for stimuli yAC1 or yAC2, respectively.

Toy-model neuron. We simulated a toy-model neuron (Fig. 5) to illustrate that CP
drives synaptic changes independently of a particular network architecture and
behavioural task. On each trial, a choice C1 or C2 was selected with probability 0.5.
The firing rate of the toy-model neuron was then sampled from a Gaussian dis-
tribution with the mean Ni for choice Ci and variance 5Hz. To generate different
CP values, the following (N1,N2) pairs were used: (55, 50), (51, 50), (50, 50),
(50, 51) and (50, 55) Hz. Synaptic changes were simulated with the plasticity rule in
equation (1). For simplicity, the firing rate of neuron on the other synaptic side was
assumed to be static through learning and set to 1. The mean firing rate and CP of
the toy-model neuron were also assumed not to change through learning for
simplicity. As in the circuit model, the predicted reward hRi was estimated by the
running average with tR¼ 5, the learning rate was q¼ 0.00003 and the synapse was
initialized at 0.5.
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Behavioural task and neurophysiological recordings. All monkey data are from
ref. 5, where experimental protocol and recording procedures were described in
detail69. Two rhesus monkeys (Macaca mulatta, weighing about 14 kg) were trained
to classify random-dot motion stimuli according to an arbitrary category boundary,
which divided 360� of motion directions into two 180�-wide categories. Stimuli were
circular patches (9� in diameter) of high-contrast square dots that moved with 100%
motion coherence and at a speed of 12� s� 1. Stimuli were always centred in the
response field (RF) of the neuron under study. To dissociate categorical decisions
from motor or premotor signals, the animals indicated category membership of the
first stimulus (sample) by reporting (with a hand movement) whether it matched the
category of the second stimulus (test). We focused on the categorization process of the
sample stimulus and studied neural activity during the sample period (150–750ms
after stimulus onset, stimulus duration was 650ms). To combine data from the two
monkeys, all stimulus directions were rotated so that the category boundary was
aligned with a 0�–180� axis.

The monkeys were implanted with a head post, scleral search coil and recording
chamber. Recording chambers were implanted in accordance with coordinates
(approximate centres at P3, L10) determined by magnetic resonance imaging, and
allowed access to both the intraparietal sulcus (IPS) and the superior temporal
sulcus by means of a dorsal approach. All surgical and experimental procedures
followed the Harvard Medical School and National Institutes of Health guidelines.
During LIP recordings, electrode penetrations sequentially encountered both the
medial and lateral banks of the IPS. Most IPS neurons were tested with a memory-
saccade task and a passive viewing flash-mapping task to generate detailed spatial
maps of neuronal RFs. Neurons were considered to be in LIP if they showed
spatially selective delay activity during the memory-saccade task or were located
between such neurons in that electrode penetration. LIP neurons were not
prescreened for direction selectivity. Area MT neurons were distinguished by
direction-selective responses to moving spots and bars, and RF sizes that were
roughly proportional to their eccentricity.

Data analysis. Tuning curve characterization. The firing rates of MT and LIP
neurons were transformed to standard z-scores. Tuning curves r(y) were then
constructed by computing average standardized firing rates in response to 12
motion direction stimuli y. Tuning curves r(y) of MT and LIP neurons, as well as
those of association neurons in the circuit model were fitted by directional and
categorical tuning profiles (least squares fit). The directional tuning profile was
modelled by an exponential cosine function:

r yð Þ ¼ r0 þ rmaxexp w cos y� y0ð Þ� 1ð Þ½ �; ð12Þ

where r0 is the baseline firing rate, rmax is the peak amplitude, w is the tuning width
parameter and y0 is the preferred direction. First, we obtained the median tuning
width w for each population from the unconstrained fit, and then refitted tuning
curves with w constrained within the 10 percentile range around the median
(93.4�–126.1� for MT and 101.4�–142.7� for LIP and association neurons) to avoid
very broad low amplitude (that is, nearly flat) directional fits. The resulting median
tuning width was 120.9� for LIP and 104.9� for MT neurons, similar to previous
reports6. The categorical tuning profile was modelled by a step function:

rðyÞ ¼ r j yh iy2C1; if y 2 C1;
r j yh iy2C2; if y 2 C2;

�
ð13Þ

where r j yh iy2Ci
is the average firing rate across stimuli in category Ci. We

repeated the analysis with more complex categorical tuning profiles (a periodic
sigmoid function and a step-like function with a smoother firing rate change near
category boundaries), and it did not change the conclusions of our study.

We then used a regularized GLM26 to determine the relative contribution of
fitted directional and categorical tuning profiles to neural firing rates. Regularized
GLM provides a principled way to assess the relative strength of direction and
category tuning in each neuron, without overfitting and avoiding confounds
because of correlation between direction and category-tuning profiles for neurons
tuned to category centres. The regression algorithm solves the matrix equation
b¼ (XTXþ lI)� 1XTr, where X is the matrix of three factors: fitted directional
tuning profile, categorical tuning profile and a baseline, r is the vector of neuron’s
firing rates across trials, b are the regression coefficients for each of the factors in X
and l is a ridge regression coefficient. The value of l was chosen on the basis of a
leave-one-trial-out cross-validation procedure, such that l minimized the mean
squared difference between predicted and actual firing rates70.

To determine whether the resulting b coefficients were significantly different
from zero, we used a standard t-test to compare b against the distribution of
shuffled b values, which was obtained by randomizing the trial order and then
refitting the linear regression model (1,000 reshuffles). Each neuron was then
classified as direction-tuned or category-tuned if the corresponding b was
significantly different from zero (Po0.05), mixed direction- and category-tuned if
both b’s were significantly different from zero and nonselective if neither b was
significantly different from zero.

CTI and CS. The CTI measured the difference in firing rate (averaged across all
trials for each direction) for each neuron between pairs of directions in different
categories (a between-category difference) and the difference in activity between
pairs of directions in the same category (a within-category difference). The CTI was
defined as the difference between the within-category and between-category

differences divided by their sum. Values of the index could vary from 1
(strong differences in activity to directions in the two categories) to � 1 (large
activity differences between directions in the same category, no difference between
categories). A CTI value of 0 indicates the same difference in the firing rate between
and within categories.

CS was estimated using a receiver-operating characteristic (ROC) analysis17

applied to the distributions of firing rates on correct trials with stimuli from
categories C1 and C2. CS is the area under the ROC curve, which ranges between 0
and 1, and indicates the accuracy with which an ideal observer can assign category
membership of a stimulus on the basis of the neuron’s trial-by-trial firing rate.
Values of 1 and 0 correspond to strong preference for categories C1 and C2,
respectively. Values of 0.5 indicate complete overlap of the firing rate distributions
for the two categories, that is, no category selectivity.

Estimation of CP in MT and LIP neurons. CP was estimated on trials for which the
test stimulus was far from (45� or 75�) the category boundary. The monkeys were
proficient in categorizing such stimuli (97% correct when both sample and test were
far from the boundary); therefore, we assumed that on these trials the test stimulus
was categorized correctly and inferred the monkey’s decision about the sample
category to be the same as the test category if the monkey responded match, and
different category if the monkey responded nonmatch54. For each stimulus, CP was
estimated using an ROC analysis applied to the distributions of firing rates on trials
with different category decisions for the same stimulus (that is, correct versus error
trials). CP is the area under the ROC curve that ranges between 0 and 1 and indicates
the accuracy with which an ideal observer can predict the monkey’s category decision
on a trial-by-trial basis given neuron’s firing rate. Values of 1 and 0 correspond to
strong preference (higher firing rate) for C1 and C2 category decisions, respectively.
Values of 0.5 indicate complete overlap of the firing rate distributions for two
decisions. To reliably estimate CP, only stimuli with at least three trials for each
category choice were included in the analysis, and only those neurons were included
that had a valid CP estimate for at least one stimulus in each category, which resulted
in 88 LIP and 31 MT neurons left for the analysis. The CP reported for each neuron
was the average CP across all stimuli that passed the inclusion criteria. Significance of
CP values for individual neurons was assessed with a shuffle test. To this end, choices
of the monkey were randomly assigned to the firing rate data (separately for each
stimulus), and then CP was recomputed (1,000 reshuffles). The actual CP was
compared with the shuffled distribution with a two-sample t-test.
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