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Multimode optomechanical dynamics in a cavity
with avoided crossings
D. Lee1, M. Underwood1, D. Mason1, A.B. Shkarin1, S.W. Hoch1 & J.G.E Harris1,2

Cavity optomechanics offers powerful methods for controlling optical fields and mechanical

motion. A number of proposals have predicted that this control can be extended considerably

in devices where multiple cavity modes couple to each other via the motion of a single

mechanical oscillator. Here we study the dynamic properties of such a multimode opto-

mechanical device, in which the coupling between cavity modes results from mechanically

induced avoided crossings in the cavity’s spectrum. Near the avoided crossings we find that

the optical spring shows distinct features that arise from the interaction between cavity

modes. Precisely at an avoided crossing, we show that the particular form of the optical

spring provides a classical analogue of a quantum non-demolition measurement of the

intracavity photon number. The mechanical oscillator’s Brownian motion, an important source

of noise in these measurements, is minimized by operating the device at cryogenic

temperature (500mK).
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O
ptomechanical systems are typically modelled as a single
cavity mode whose eigenfrequency depends linearly on
the displacement of a mechanical oscillator1. This ‘single-

mode’ model of optomechanics gives an accurate description of
devices in which there is a clear separation of frequencies (for
example, between the mechanical frequency and the cavity mode
spacings), and when only a single cavity mode is strongly driven2.
Single-mode optomechanical devices have been used to realize a
number of goals in recent years, including demonstrations of
quantum effects associated with Gaussian states of the cavity field
and/or the mechanical oscillator3–14.

For some optomechanical devices the single-mode description
breaks down and more complex behaviour can occur. In
particular, devices in which multiple cavity modes couple to
each other via the oscillator’s motion are predicted to offer novel
means for controlling and measuring both the mechanical motion
and electromagnetic fields15–23. Such a mechanical coupling
between the cavity modes can be produced by applying strong
coherent drives to the modes (in which case adiabatic elimination
of the mechanical degree of freedom results in an effective
coupling between the drives’ sidebands)22,23. This approach can
be realized in a very wide range of optomechanical systems, since
most cavities possess several modes that can be driven strongly,
and whose eigenfrequencies depend upon the oscillator’s
displacement. Recent experiments have used this approach24,25

(or a related approach that combines strong drives with a
piezoelectric material26) to transfer modulation sidebands
between different wavelengths, including from microwave to
near-infrared.

A different method for mechanically coupling cavity modes
(and one which does not require multiple strong drives) is to
employ devices in which the cavity’s eigenmodes (rather than
eigenfrequencies) depend strongly upon the oscillator’s displace-
ment. This situation occurs when the oscillator’s displacement
causes crossings in the cavity’s spectrum: these crossings are
typically avoided (owing to broken symmetries within the
device)27–29, and in the vicinity of each avoided crossing the
cavity’s eigenbasis depends strongly upon the oscillator’s
displacement29,30. Theoretical studies of the resulting coupling
show that it can offer improved performance over single-mode
devices, for example, in producing squeezed states of the
mechanical oscillator and optical field19–21. Perhaps more
importantly, the multimode coupling associated with avoided
crossings offers capabilities that are fundamentally distinct from
those of single-mode devices, with applications in macroscopic
matter-wave interferometry18 and measuring the phonon
statistics of a driven mechanical oscillator15,16.

Avoided crossings are not a generic feature in optomechanical
systems, but have been demonstrated in devices based on the
membrane-in-the-middle design27,29,31,32, ultracold atoms33 and
whispering gallery mode resonators34,35. To date, measurements
of these systems have mostly focused on static spectroscopy
of the cavity modes (that is, to determine the parameters of the
avoided crossings)27–29,31–35. However the utility of the avoided
crossings arises from their dynamical effects, which have received
much more limited experimental study33–35.

Here we address three outstanding issues related to multimode
optomechanical devices based on cavities with avoided crossings.
First, we describe thorough measurements of the optomechanical
dynamics in the vicinity of the avoided crossings. Far from the
crossings, we find a behaviour that is dominated by the
conventional dynamical back action1 of the laser driving the
cavity; in contrast, near the crossings the behaviour is dominated
by the elastic energy stored by the intracavity light. Second, we
exploit the elasticity of the intracavity light at the crossings to
demonstrate a classical analogue of a quantum non-demolition

measurement of the cavity’s photon number. Third, the device is
operated at temperature T¼ 500mK, which minimizes the
impact of thermomechanical noise, and should aid in future
work directed at observing quantum effects in multimode
optomechanical systems. These results complement the
earlier studies of classical multimode dynamics in different
systems, for example, in purely mechanical devices36,37, purely
electromagnetic devices38 and devices in which multiple
mechanical modes couple via a single electromagnetic mode39–41.

Results
Experimental setup. The experimental setup is shown in Fig. 1a. It
consists of a Si3N4 membrane (1mm� 1mm� 50nm) placed
inside a Fabry–Perot optical cavity and cooled by a 3He cryostat to
T¼ 500mK. The cavity finesse F¼ 4,000 (linewidth k/2p¼
1MHz), and the membrane’s fundamental mode resonates at
om/2p¼ 354.6 kHz with a quality factor Q¼ 100,000. Laser light
with wavelength l¼ 1,064 nm enters the cryostat via an optical
fibre. This light is coupled from the fibre to the cavity via cryogenic
free-space optics that are aligned in situ using piezoelectric motors.
Similar motors are used to adjust the membrane’s position, tip and
tilt within the cavity. An additional piezoelectric element allows for
fine displacement of the membrane along the cavity axis and for
excitation of the membrane’s vibrational modes.

Two lasers are used to address two cavity modes that are
separated by 8.13GHz (roughly twice the free spectral range). The
first laser is the ‘probe’ beam; it is locked to the cavity and detects
the membrane’s motion via a heterodyne scheme. The second
laser is the ‘control’ beam, and is locked to the probe beam with a
controllable frequency offset. This control beam produces the
multimode optomechanical interactions that are the main focus
of this paper. Additional information about the setup is provided
in Supplementary Fig. 1 and the Supplementary Methods.

Static spectroscopy. Figure 1b and c show the cavity reflection
spectra measured separately by the probe beam (upper plots) and
the control beam (lower plots). In each case the reflection was
recorded as a function of laser detuning and the membrane’s static
displacement zdis. The brightest curve corresponds to the TEM00

mode (‘singlet’), while the slightly dimmer curves correspond to
the TEM{20,11,02} (‘triplet’) modes. The triplet modes are nearly
degenerate, but can be resolved in the closer view shown in Fig. 1c.

The longitudinal order of the singlet mode differs by one from
that of the triplet modes; as a result their resonance frequencies
ocav undergo roughly opposite detuning as a function of zdis
(ref. 28), and so appear to cross each other near zdis¼ 0 nm and
zdis¼ � 160 nm. A closer view of the apparent crossing near
zdis¼ 0 nm shows that two of the triplet modes avoid the singlet
mode (Fig. 1d)29. The optomechanical dynamics that occur near
these avoided crossings is the main focus of this paper.

Because the probe and control beams address modes with
slightly different wavelength, the avoided crossings for the two
beams occur at different values of zdis. This makes it possible to
position the membrane so that the probe beam addresses a mode
that is not a part of an avoided crossing (and so simply provides
an efficient readout of the membrane’s oscillatory motion zosc(t))
while the control beam addresses modes that undergo an avoided
crossing (thereby producing multimode optomechanical cou-
pling). Such a position is indicated in Fig. 1c as a dashed yellow
line, which we define as zdis¼ 0 nm.

Optomechanical dynamics near the avoided crossings. To
demonstrate the impact of the avoided crossings on the mem-
brane’s motion, we first position the membrane at zdis¼ 0 nm
where the detuning of the modes addressed by the control beam is
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Figure 1 | System overview and cavity reflection spectroscopy. (a) Schematics of the cryogenic ‘membrane-in-the-middle’ setup. Two separate lasers

(‘probe’ and ‘control’) address a Fabry–Perot cavity containing a Si3N4 membrane at TB500mK. Two modulators (AOM and EOM) in the probe beam path

allow for Pound–Drever–Hall locking to the cavity and heterodyne detection of the membrane’s motion. (b) Cavity reflectivity, plotted as a function of the

membrane’s static displacement zdis and laser detuning D. The upper and lower plots are measured by the probe and the control lasers, respectively. The

cavity’s TEM00 singlet mode and the TEM{20,11,02} triplet modes are visible. (c) A closer view of the dashed area in b showing avoided crossings between

the singlet and triplet modes. The crossings in the modes addressed by the probe beam occur roughly 10 nm away from the crossings in the modes

addressed by the control beam. At zdis¼0nm (dashed yellow line), the probe beam can be used to detect membrane motion while the control beam

addresses the avoided crossings. (d) Zoom-in of the avoided crossings measured with the control beam. (e) The calculated cavity spectrum corresponding

to the same parameters as in d. (f) Measured power spectral density of the membrane’s Brownian motion as a function of control laser detuning D (the

range of D is given by the dashed green line in d). For this measurement zdis¼0nm and Pin¼80 mW. Shifts in the membrane’s resonance frequency,

consistent with quadratic optomechanical coupling, are visible around the cavity resonances at D¼±1.6MHz. (g) Calculated power spectral density of the

membrane’s Brownian motion for the same parameters as in f.
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quadratic to lowest order, that is, ocav / z2osc. In this case, each
intracavity photon is predicted27,42 to produce an optical spring
that shifts om by an amount g2 ¼ o00

cavz
2
ZP (the primes indicate

differentiation with respect to zosc, and zZP is the amplitude of the
membrane’s zero-point motion). Figure 1f plots the power spectral
density of the membrane’s Brownian motion (recorded by the
probe beam) as the control beam’s detuning D is varied.

These data show the two qualitative features of quadratic
coupling. First, the change in the membrane’s resonance
frequency dom is proportional to the number of intracavity
photons (that is, dom(D) has even symmetry about each cavity
resonance with an approximately Lorentzian shape). Second, the
sign of dom is set by the sign of o00

cav (that is, positive when the
laser is tuned to the higher-frequency cavity mode and negative
when the laser is tuned to the lower-frequency mode). In contrast,
for conventional single-mode optomechanics (in which the
detuning is linear: ocavpzosc) dom(D) has odd symmetry about
a cavity resonance and its sign is the same regardless of which
cavity mode is excited by the laser1.

To make a more quantitative comparison with the theory, we
use multimode optomechanics theory42 to calculate the cavity
reflection, optical spring and optical damping in the presence of
the avoided crossings (see the Supplementary Fig. 2 and the
Supplementary Note 1 for more details). The majority of the
parameters in this theory are determined by fitting the cavity’s
static spectrum to expressions that include three cavity modes.
Figure 1d,e shows a comparison of the measured and fitted
reflection, and the Supplementary Table 1 lists the values of all
the system parameters. To determine the remaining parameters,
and to test the predictions of this model with respect to the
dynamical behaviour, we measured the membrane’s Brownian
motion at several values of zdis between � 1 nm and þ 1.25 nm.
At each value of zdis, the control beam detuning D was varied over
a range that included both of the cavity modes participating in the
avoided crossing. For each value of D, the membrane’s resonance
frequency om and mechanical damping rate gm were determined
by fitting the Brownian motion spectrum. Figure 2 shows the
changes in these quantities (that is, the optical spring dom and
the optical damping dgm) as a function of D for each value of zdis.

When the membrane is furthest from the avoided crossing
(that is, for the uppermost and lowermost curves in Fig. 2), the
features in dom and dgm show odd symmetry about the cavity
resonances (which are indicated by dashed lines), consistent with
conventional single-mode optomechanics and linear coupling. As
zdis approaches 0 nm, the features in dom and dgm decrease in
size, consistent with the decreasing slope of the cavity detuning
near the avoided crossing. Precisely at the avoided crossing (olive-
coloured data in Fig. 2), the odd-symmetry feature in dom is
completely absent and is replaced by an even-symmetry feature
(as discussed above in the context of Fig. 1f).

The solid lines in Fig. 2 are calculated from the model
described in Methods. These calculations use the parameters
determined from the cavity’s static spectrum (Fig. 1d,e), as well as
three additional fit parameters. A complete description of the
fitting process is given in the Supplementary Figs 3–7 and the
Supplementary Note 2. The agreement between the data and the
fits in Fig. 2 indicates that multimode optomechanics theory
provides an accurate description of this system, particularly in the
vicinity of multiple avoided crossings between the cavity modes.

Figure 3 shows similar measurements, but carried out at fixed
zdisE0 nm as a function of the control beam power Pin. The data
are plotted along with the predictions of the model. These
predictions use the parameter values taken from the fits in Fig. 2,
except for zdis and Pin, which are used as fit parameters (the fit
values of zdis and Pin agree well with independent measurements,
as described in the Supplementary Fig. 7). Figure 3 shows clearly
that when zdisE0 nm, the feature in dom has an even symmetry
at each cavity resonance while the feature in dgm has odd
symmetry, in agreement with theory.

Previous measurements of static reflection spectra at room
temperature showed that it is possible to tune the avoided
crossings by adjusting the membrane’s tilt relative to the cavity
axis, and its position along the cavity axis29,32 (see also ref. 35). To
illustrate this capability at T¼ 500mK and to demonstrate its
impact on the optomechanical dynamics, cavity spectra are shown
in Fig. 4a,b for two different membrane alignments. When the
membrane is positioned near the cavity waist with nominally zero
tilt (Fig. 4a), only one of the triplet modes forms an avoided
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Figure 2 | Optomechanics near the cavity’s avoided crossings. (a–b) Changes in the frequency (a) and linewidth (b) of the membrane’s fundamental

mode, plotted as a function of the control laser detuning D and the membrane’s static displacement zdis. The avoided crossing occurs at zdis¼0nm.

The solid lines are the fits described in Methods and the Supplementary Note 2. The dashed lines indicate the cavity resonances. For clarity, each curve is

shifted vertically by 3Hz. For large negative values of zdis, the lower-frequency cavity mode produces larger optomechanical effects than the higher-

frequency cavity mode due to the fact that it corresponds to the TEM00 mode, which is more strongly coupled to the driving laser (as can be seen in

Fig. 1d). For large positive values of zdis, the situation is reversed.
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crossing with the singlet mode. After translating the membrane by
� 15mm along the cavity axis and tilting it by 0.3mrad (Fig. 4b),
two of the triplet modes form avoided crossings.

Figure 4c shows measurements of dom(D) for each of the three
avoided crossings in Fig. 4a,b. For each measurement, zdis was set
so that the membrane was at the avoided crossing. The solid lines
are fits to the same model as the previous figures. As the avoided
crossing gap is decreased, the peaks in dom move close together

and grow larger, reflecting the increase in o00
cav. For the uppermost

trace, the gap at the avoided crossing is no longer substantially
larger than k, and the two peaks begin to merge. See
Supplementary Table S2 for a full description of the fit results.

Classical analogue of a quantum non-demolition measurement.
Proposals for realizing a quantum non-demolition measurement of

15
50 μW

Pin= Pin=
50 μW

96 μW 96 μW
117 μW
145 μW
157 μW
183 μW

117 μW
145 μW
157 μW
183 μW10

5

0

–5

15

10

5

0

–8 –4 0 4
Laser detuning (MHz)

–8 –4 0 4
Laser detuning (MHz)

F
re

qu
en

cy
 s

hi
ft,

 �
�

m
 /2

π 
(H

z)

Li
ne

w
id

th
 c

ha
ng

e,
 �

� m
 /2

π 
(H

z)

Figure 3 | Optomechanics at an avoided crossing. (a–b) Changes in the frequency (a) and linewidth (b) of the membrane’s fundamental mode as a

function of the control laser detuning D and control beam power Pin. The membrane is nominally at the avoided crossing (zdis¼0nm). Pin and zdis are

the fit parameters for the theory curves. The fit results for Pin are shown in the legend. The fit results for zdis had a mean value of 0.32 nm with a s.d. of

0.03 nm. For clarity, each curve is shifted vertically by 3Hz.

N
orm

alized cavity
reflection

10

0.80

0.84

0.88

0.92

10

III

II

I

8

6

4

2

0

–2

–10 –5 0 5 10

8.7 MHz nm–2

�′′/2π =

4.2 MHz nm–2

1.7 MHz nm–2

0.96

1.00

0.77

0.82

0.86

0.91

0.95

1.00

0

–10

–5

La
se

r 
de

tu
ni

ng
 (

M
H

z)

Laser detuning (MHz)

10

0

–10La
se

r 
de

tu
ni

ng
 (

M
H

z)

50

I

III

II

–5 50
Membrane displacement (nm) Membrane displacement (nm)

N
orm

alized cavity
reflection

F
re

qu
en

cy
 s

hi
ft,

 �
�

m
 /2

π 
(H

z)

Figure 4 | Optomechanics as the avoided crossings are tuned. (a–b) Cavity reflection spectrum for two different membrane alignments: membrane

located at the cavity waist with a tilt of B0mrad (a) and translated � 15mm along the cavity axis and tilted 0.3mrad (b). The data in (b) is reproduced

from Fig. 1d. The three avoided crossings have quadratic coefficients o00
cav=2p ¼ 1:7MHznm2 (I), 4.2MHznm� 2 (II) and 8.7MHznm� 2 (III). (c) The

membrane’s frequency shift measured at the three avoided crossings as a function of the control laser detuning. For each measurement, Pin¼ 80mW. For

clarity, each curve is shifted vertically by 3Hz. See Supplementary Information for details of the theory and fit results. The data in Figs 2 and 3 were

measured using the crossing with o00
cav=2p ¼ 4:2MHz=nm2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7232 ARTICLE

NATURE COMMUNICATIONS | 6:6232 | DOI: 10.1038/ncomms7232 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


the membrane’s phonon number or the cavity’s photon number
make use of the fact that at an avoided crossing, a change in the
number of quanta in one oscillator (optical or mechanical) shifts
the frequency of the other oscillator by g2. Detecting individual
quantum jumps with such a measurement requires single-quan-
tum strong coupling30, which has not been achieved in
optomechanical devices to date. However, even without single-
quantum strong coupling the non-demolition nature of these
measurements is predicted to enable the detection of non-classical
fluctuations of a driven oscillator15,16. Here we demonstrate a
classical analogue of such a measurement by using the membrane’s
resonance frequency om to monitor classical fluctuations of the
intracavity laser power.

These fluctuations are produced by modulating the power of
the control laser with a frequency 75Hz and depth 0.77. At the
same time, the membrane’s fundamental mode is driven (using
the piezo element) in a phase-locked loop (PLL). The PLL
ensures that the frequency of the piezo drive tracks fluctuations
in om and the PLL error signal provides a record of these
fluctuations (see the Supplementary Methods for details).
Figure 5a shows Sff, the spectrum of these fluctuations, when
the membrane is positioned at an avoided crossing (zdis¼ 0 nm
in Fig. 4a) and the control beam is tuned to the cavity resonance
(D¼ 0). The peak in Sff at 75Hz reflects the response of om to
the laser’s modulation.

Figure 5b and c shows Ao, the amplitude of the 75Hz
modulation of om as a function of D. In Fig. 5b, Ao(D) is
measured with zdis¼ 0 nm (that is, at an avoided crossing).
The maximum value of Ao occurs at D¼ 0, as expected for
quadratic coupling. In contrast Fig. 5c, shows Ao(D) measured
with zdis¼ 3 nm (that is, far from an avoided crossing). In this
case, Ao has a minimum at D¼ 0 as expected for the
linear coupling. The solid lines in Fig. 5b,c are fits to the same
model as in the other figures. We emphasize that the important
difference between the quadratic and linear coupling is not the
specific form of Ao(D) (although measuring Ao(D) does provide
a simple practical means for distinguishing them), but rather the
different physical mechanisms by which the two couplings
produce an optical spring. Specifically, the optical spring
associated with linear coupling in single-mode devices arises
from the leakage of light into and out of the cavity with each
oscillation of the membrane1. In contrast, the optical spring
associated with quadratic coupling results from the elastic
energy stored in the intracavity field34. This distinction underlies
a number of the proposed applications of these avoided
crossings15–18.

Discussion
In summary, we have measured the dynamics of an optomecha-
nical device in which multiple cavity modes are coupled by the
motion of a single mechanical oscillator (in contrast with
previous work, which has focused on static spectroscopy). We
find that the avoided crossings between the cavity modes result in
an optical spring that differs substantially from conventional,
single-mode optomechanical devices. These results are in
quantitative agreement with a classical theory of the device’s
linear dynamics. This agreement, along with the demonstration of
this device’s in situ tunability and cryogenic operation, are
important steps towards studying the nonlinear and quantum
regimes of multimode optomechanical devices. In particular, by
improving this device’s cavity finesse and mechanical quality
factor (as demonstrated in ref. 14), it should be possible to exploit
multimode effects to efficiently produce squeezed states of the
mechanical oscillator and optical field19–21, transfer states
between cavity modes17, initialize macroscopic matter-wave
interferometers18 and measure the quantum statistics of a
driven mechanical oscillator15,16.

Methods
Following the description in ref. 42, we represent the cavity field as a superposition
of basis modes, which we take to be the cavity’s eigenmodes when the membrane is
far from the avoided crossings. The amplitudes of these modes, an, are the cavity’s
degrees of freedom. The membrane couples these modes and detunes them by an
amount that depends upon zdis and zosc (here zdis is the uniform translation of the
membrane chip and zosc is the instantaneous displacement associated with the
membrane’s oscillatory motion). For the small range of motion considered here, we
assume that this detuning is linear in both zdis and zosc. These effects can be
incorporated into the usual optomechanical equation of motion via the
Hamiltonian H1 ¼~ayM~aþ ‘oð0Þ

m byb, where the components of the vector ~a are
the mode amplitudes an, b is the amplitude of the mechanical oscillation andM is a
matrix whose diagonal elements represent the detuning of the cavity modes and
whose off-diagonal terms represent the coupling between modes42.

The optomechanical effects associated with the avoided crossings emerge from
this model even in the simple case of just two optical modes (n¼ 1, 2); in this case

M ¼
oc þo0

dis;1zdis þo0
osc;1zosc teif

te� if oc þo0
dis ;2

zdis þo0
osc;2zosc

 !
and

~a ¼
a1
a2

� �
:

ð1Þ

This model allows the detuning associated with zdis to have different coefficients
ðo0

dis;nÞ from the detuning associated with zoscðo0
osc;nÞ, since the exact location of

the cavity mode on the membrane is not known a priori. The cavity spectra in
Fig. 1b–d correspond to the case where zdis is varied (by scanning the voltage on a
small piezoelectric element) while zosc¼ 0 nm. In this case, the two cavity modes
would cross at zdis¼ 0 nm, but instead the off-diagonal terms in M produce a gap
with magnitude 2t.
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The sharp peak at 75Hz results from the intensity modulation (modulation depth b¼0.77) applied to the control beam, which modulates the membrane’s

frequency via the quadratic optomechanical coupling. (b,c) The amplitude of the peak in Sff, plotted versus control laser detuning at zdis¼0nm

(b) and zdis¼ 3 nm (c). The solid lines are fit to the absolute value of the expected optical spring. The fit results are zdis¼ �0.14±0.07 nm, b¼0.67±0.15

for b and zdis¼ 3.09±0.01 nm, b¼0.67±0.14 for c. The quoted errors are statistical fit errors. The data in this figure was taken using the lower branch of

the avoided crossing ‘I’ in Fig. 4a.
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The Supplementary Note 1 provides a more detailed description of this model
and describes how it is used to calculate the optical spring, optical damping and the
cavity reflection spectrum. We note that although the restriction to two optical
modes (equation (1)) provides an intuitive explanation of most of our data, we use
three optical modes (n¼ 1, 2, 3) for most of the quantitative analysis. Explicit
expressions for three optical modes are given in the Supplementary Note 1; they are
straightforward extensions of equation (1) in which M includes two coupling terms
(t1eif1 and t2eif2 ) corresponding to the two avoided crossings seen in Fig. 1d.

In fitting the cavity spectrum to this model (as in Fig. 1e) there are a large
number of fitting parameters; however the fits are highly constrained by the fact
that each of the model’s parameters corresponds to a prominent feature in the data.
For example, the three o0

dis;n are set by the slopes of the cavity resonances far from
the crossings, while the coupling rates t1 and t2 are determined by the magnitudes
of the gaps. The coupling phases f1 and f2 are determined by the amplitudes of
the cavity resonances near the crossing. Each mode’s k is determined by the width
of the resonance far from the crossing, while the input coupling of each mode is
determined by the amplitude of the resonance far from the crossing. This analysis
of the cavity’s static spectrum provides all the model parameters except for the
three coefficients o0

osc;n . The o
0
osc;n are extracted from fitting the optical spring and

optical damping data in Fig. 2, as described in the main body of the paper.
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