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Interaction between emotional state and learning
underlies mood instability
Eran Eldar1,w & Yael Niv1,2

Intuitively, good and bad outcomes affect our emotional state, but whether the emotional

state feeds back onto the perception of outcomes remains unknown. Here, we use behaviour

and functional neuroimaging of human participants to investigate this bidirectional

interaction, by comparing the evaluation of slot machines played before and after an

emotion-impacting wheel-of-fortune draw. Results indicate that self-reported mood instability

is associated with a positive-feedback effect of emotional state on the perception of

outcomes. We then use theoretical simulations to demonstrate that such positive feedback

would result in mood destabilization. Taken together, our results suggest that the interaction

between emotional state and learning may play a significant role in the emergence of mood

instability.
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W
hat makes you happier, finding a stray dime when in a
good mood, or in the middle of a bad day? Outcomes
may be subjectively perceived as better when one is in

a good mood1. But unexpected outcomes can also change one’s
mood2,3. This would result in a positive feedback loop, in which
improved outcomes improve mood, which then further improves
perceived outcomes. Conversely, good outcomes could devalue
subsequent outcomes due to diminishing subjective value (think
about finding a dime right after winning the lottery). This latter
possibility, which is consistent with prospect theory in
behavioural economics4,5, suggests, in contrast, negative
feedback dynamics. While negative feedback typically promotes
stability, positive feedback constitutes a principal cause of
instability throughout the natural world6–11. Accordingly, we
hypothesized that individuals with a positive feedback
relationship between emotional state and outcomes would tend
to suffer from instability of mood, whereas negative feedback
would be associated with emotionally stability.

We thus set forth to test the effect of a large unexpected
outcome on emotional state and on the valuation of subsequent
outcomes. Fifty-six human participants played a game in which
they chose between pairs of slot machines that differed in
probability of dispensing small (25 cent) rewards, learning by
trial-and-error which machine is more rewarding (Fig. 1a). Then,
to induce a change in emotional state, we held a wheel of fortune
(WoF) draw in which participants either won or lost a relatively
large sum ($7) at chance. Following this, participants played two
more slot machine games, each with a new set of slot machines. If
an unexpected outcome induces an emotional state, which then
feeds back positively onto the perception of outcomes, winning

the WoF draw should make participants happier, and, in
addition, they should value rewards received after the draw more
highly than those received before the draw. Critically, for a
positive feedback loop to ensue, subjective valuations must
increase above and beyond any shift in reference point that may
diminish valuations of subsequent rewards4. Similarly,
participants who lose the draw should become less happy and
value subsequent rewards less highly.

Our results show that an outcome that affects emotional state
also biases the valuation of subsequent outcomes, but only in
participants who report a tendency to mood instability. A
computational model suggests that such a bidirectional interac-
tion between perceived outcomes and emotional state may, in
fact, generate mood instability.

Results and Discussion
The effect of wheel of fortune outcomes on emotional state. To
evaluate emotional state, at 3 points during each slot-machine
game we asked participants to rate how they currently feel. The
data indicated that the result of the WoF draw significantly
affected participants’ feeling during the subsequent slot-machine
game (mean mood change: þ 0.38±0.24 for participants who
won the WoF draw versus � 0.97±0.16 for participants who lost
the WoF draw, n¼ 56, t54¼ 4.6, Po10� 5, t test), though by
game 3 this effect was no longer significant (n¼ 56, t54¼ 1.7,
P¼ 0.09, t test, for difference between the third and first games;
Fig. 1b). In addition, the WoF draw resulted in an increase in
pupil diameter, indicating increased emotional arousal12 (mean
diameter change across both Win and Lose groups:
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Figure 1 | Experimental design and emotional response. (a) The experiment included three slot-machine games, a wheel of fortune (WoF) draw, and a

test game. Half of the participants won $7 in the WoF draw and half lost $7. In the test phase, participants were asked to choose between slot machines

that they had learned about before and after the draw. Reward obtained during the test game was not revealed until the end of the experiment so as to test

previously learned valuations of the slot machines. (b) Mean self-reported feeling during the three slot-machine games, on a scale of 5 (completely happy)

to � 5 (completely unhappy). Winning the WoF draw improved mood, whereas losing the draw had the opposite effect (n¼ 56, t54¼4.6, Po10� 5, t test).

(c) Mean self-reported feeling during the first and second slot-machine games, as function of HPS score. Participants were divided into equal-sized groups

using a median split on HPS score. Participants with higher HPS scores were more strongly affected by the WoF draw (n¼ 56, F1,52¼8.5, P¼0.005,

ANCOVA HPS�WoF interaction). Error bars, s.e.m; n¼ 56 participants, including data from both behavioural and fMRI experiments.
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þ 4.0%±1.0%, n¼ 45, t44¼ 4.1, Po10� 4, t test; there were no
significant differences between the groups or between game 2 and
game 3). We therefore focused our subsequent analyses on the
first and second game, that is, the games immediately before and
immediately after the WoF draw.

We next examined whether the degree to which the WoF
outcome affected feeling was correlated with susceptibility to
mood instability. To this end, participants completed the
International Personality Item Pool13 version of the Hypomanic
Personality Scale14 (HPS)—a self-report measure that has been
shown to correlate with frequency of good and bad moods15, as
well as with risk of developing bipolar disorder16. A higher HPS
score (indicating less stable mood) was associated with a greater
change in feeling following the WoF draw (Fig. 1c; n¼ 56,
F1,52¼ 8.5, P¼ 0.005, ANCOVA HPS�WoF interaction), but
accounting for differences in baseline mood level (that is, before
the WoF draw) weakened this result to trend level (n¼ 56,
F1,52¼ 3.6, P¼ 0.06, ANCOVA HPS�WoF interaction).

The effect of the WoF on perception of subsequent outcomes.
To examine whether the WoF draw affected not only participants’
emotional state, but also their subsequent valuations, in a final
test game participants chose between slot machines that had
appeared before and after the WoF draw, and had objectively
similar reward probabilities (Fig. 1a). As predicted, participants
with high HPS scores who won the draw favoured slot machines
that they had encountered after the draw, whereas participants
with high HPS scores who lost the draw favoured slot machines
encountered before the draw. In contrast, participants with low

HPS scores were not biased by the outcome of the draw. This
result was true both for participants who only performed the
behavioural experiment (Fig. 2a; n¼ 30, F1,26¼ 4.1, P¼ 0.05,
ANCOVA HPS�WoF interaction), and for a separate group of
participants who performed the experiment in a Magnetic
Resonance Imaging (MRI) scanner (Fig. 2b; n¼ 26, F1,22¼ 4.2,
P¼ 0.05, ANCOVA HPS�WoF interaction; see Supplementary
Fig. 1 for the combined data). Furthermore, this result could not
be explained by an effect of the WoF outcome on the balance
between exploration and exploitation (see Methods for details).
Interestingly, the WoF draw did not bias participants’ explicit
valuations of how likely each machine was to yield reward
(n¼ 56, F1,52¼ 0.02, P¼ 0.88, ANCOVA HPS�WoF interac-
tion). This is consistent with our hypothesis that the behavioural
bias reflected biased perception of the subjective value of reward,
not the frequency of reward.

If biased test-game choices indeed resulted from biased
perception of reward, we should expect to see a corresponding
bias in neural responses to rewards in the striatum—a brain area
where blood-oxygen-level dependent (BOLD) signals have been
shown to reflect a reward prediction error signal that drives
learning and guides future choices17–25 (Fig. 2c). To test for this,
we compared striatal BOLD responses with slot machine rewards
before and after the WoF draw. Higher HPS score was associated
with stronger BOLD responses to rewards in the second game for
participants who won the WoF draw, and weaker responses to
rewards for participants who lost the draw (Fig. 2d; n¼ 25,
F1,21¼ 10.1, Po0.005, ANCOVA HPS�WoF interaction). This
interaction between HPS score and WoF outcomes was also
significant (n¼ 25, t1,21¼ 2.8, Po0.05, robust regression) under a
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Figure 2 | Test-game slot-machine choices and striatal response to reward, as a function of HPS score and WoF outcome. (a,b) Difference between

percent choices of post-WoF slot machines and pre-WoF slot machines, in the behavioural experiment (a, n¼ 30 participants, F1,26¼4.1, P¼0.05,

ANCOVA HPS�WoF interaction) and in the fMRI experiment (b, n¼ 26, F1,22¼4.2, P¼0.05, ANCOVA HPS�WoF interaction). (c) A striatal region of

interest was defined at the group level as those voxels within the anatomical boundaries of the striatum that responded more to reward than to no-reward

outcomes throughout the experiment (Po0.0001 uncorrected, GLM). Y and Z indicate MNI coordinates. (d) Striatal response to reward in game 2 (which

followed the WoF draw) compared with game 1, as a function of HPS (GLM), divided according to the outcome of the WoF draw (total n¼ 25). HPS scores

are on a scale of 1 (least hypomanic) to 5 (most hypomanic). The difference between the Win and Lose groups (F1,21¼ 10.1, Po0.005, ANCOVA

HPS�WoF interaction) remained statistically significant when tested using robust regression (t1,21¼ 2.8, Po0.05), indicating that it could not be explained

by the effect of outliers.
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more conservative analysis that accounts for potential
outliers26,27, as well as when controlling for differences in the
balance between exploration and exploitation (see methods for
details). Moreover, a whole-brain analysis revealed a similar bias
in the BOLD response to reward in reward-sensitive areas outside
of the striatum, and in particular in the ventromedial prefrontal
cortex (Supplementary Fig. 2). However, there was no such bias
in the BOLD response to the appearance of task stimuli (n¼ 25,
P40.05, ANCOVA HPS�WoF interaction; see Methods). Thus,
the post-WoF draw bias was not due to a general effect of
emotional state on BOLD responses (for example, due to global
effects on arousal or attention), but rather was specific to the
valuation of reward.

In sum, our two experiments showed that in participants
whose mood tends to be less stable, a large unexpected outcome
affected emotional state, and biased reward perception in the
same direction. In contrast, participants with more stable mood
showed no such positive feedback interaction between unex-
pected outcomes (and their associated mood) and valuation of
future rewards.

A model of the interaction between mood and learning. We
next formalized the feedback interaction between emotional state
and reward perception that was evident in our experiments in a
reinforcement-learning model28 in which positive surprises

(prediction errors) improve mood and negative surprises
worsen mood (see Methods for model equations). In line with
previous work29,30, ‘mood’ was formalized as a running
average of recent outcomes. We note that this implementation
allows mood both to change gradually due to the aggregated
effect of multiple outcomes as is considered typical for mood, or
more rapidly, in response to a single highly significant outcome
(as is more characteristic of emotions31). Critically, in our model,
the effect of mood on subjective perception of reward was
controlled by a parameter f. If f¼ 1 mood does not bias reward
perception. With f41, mood exerts positive feedback. That is,
reward is perceived as larger in a good mood and as smaller in a
bad mood. Conversely, 0ofo1 corresponds to negative feedback,
with reward perceived as smaller in a good mood and as larger in
a bad mood.

To test the validity of the model, we assessed how well it
explained participants’ trial-to-trial choices and self-reported
feeling throughout the experiment, as compared with two
alternative models: a model in which outcomes do not affect
mood (‘no mood’ model) and a model in which outcomes affect
mood, but mood does not affect perception of outcomes (‘no
mood bias’ model). As shown in Fig. 3a, for participants with
high HPS scores, the full model outperformed both the ‘no mood’
model and the ‘no mood bias’ model. This indicates that both the
effect of outcomes on mood and the effect of mood on outcomes
played a role in determining the behaviour of participants that are
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Figure 3 | Model-based analysis of experimental data using a reinforcement-learning model of mood. (a) Comparison of the mood model to the

alternative ‘no mood’ and ‘no mood bias’ models in terms of each model’s ability to explain participants’ behaviour. Positive log Bayes factors favour the full

mood model, and negative log Bayes factors favour the alternative model. Participants (n¼ 56) were divided into equal-sized groups using a median split on

HPS score. Error bars: bootstrap 95% confidence intervals. **Po10�6, *Po0.05, NS, P40.5, bootstrap test. (b) Model-estimated mood bias (plotted on a

log scale) as compared with HPS score. The more participants were susceptible to mood instability, as measured by the HPS, the more the reward-

perception bias inferred by the model tended to the positive (that is, 41; n¼ 56, Pearson’s r¼0.3, Po0.05). (c) Participants’ model-estimated mood bias

(log scale) was correlated with the degree to which striatal activity followed prediction error signals that are attributable to the effect of mood on

perception of reward as compared with standard reinforcement learning prediction errors (n¼ 25, Perason’s r¼0.43, Po0.05). Negative t-values reflect

anti-correlation between the additional contribution of the positive-feedback model’s mood-induced biases (above and beyond the no-mood model

prediction errors) and striatal activations, as would be expected for participants with a negative feedback relationship between mood and reward

perception. (d) Within-participant correlations between mood as estimated by the model and the participant’s self-reported feeling. The mean correlation

(Pearson’s r¼0.31; solid line) was positive (n¼ 54, t53¼4.5, Po10� 5). Dashed line: s.e.m.
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susceptible to mood instability. In contrast, in participants with
low HPS scores, the modelling results indicated that outcomes
affected mood (that is, the mood model outperformed the ‘no
mood’ model), but mood not did not significantly affect
perception of outcomes (that is, the ‘no mood bias’ model and
the full mood model accounted for participants’ behaviour
equally well).

Next, to determine individual effects of mood on reward
perception, we established the value of f for each participant
separately by fitting the mood model to the participant’s trial-to-
trial choices. In line with our hypothesis, a stronger mood bias
(that is, higher f) was correlated with self-reported mood
instability as measured by the HPS questionnaire (n¼ 56,
Pearson’s r¼ 0.30, Po0.05; Fig. 3b). We then tested whether
participants’ striatal prediction error signals were better predicted
by a positive-feedback mood model than by the ‘no mood’ and
‘no mood bias’ models (both of which make the same predictions
concerning striatal activity). To do this, for each participant, we
generated two sequences of reward prediction error signals: one
from the ‘no mood’ model and one from a mood model with
positive feedback (that is, with f¼ 2.1; see Methods). We then
regressed the fMRI data against a design that included the ‘no
mood’ model prediction errors, and the difference between the
positive-feedback mood model prediction errors and the ‘no
mood’ model prediction errors. The degree to which BOLD
activity correlates with this difference reflects the degree to which
the positive-feedback mood model accounted for additional
variance in the striatal response to rewards, above and beyond the
no-mood model32. The results showed that the degree to which
the additional mood-model component accounted for striatal
activity was correlated with participants’ inferred mood bias
(n¼ 25, Pearson’s r¼ 0.43, Po0.05; Fig. 3c). Specifically, striatal
prediction errors reflected the additional component predicted by
the positive-feedback mood model in participants whose
behaviour was consistent with a strong positive-feedback bias
(that is, f in upper quartile (41.3); mean GLM t-value
0.69±0.15), but not in participants whose behaviour indicated
a weak or negative-feedback bias (fo1.3; mean GLM t-value
� 0.04±0.14).
In addition, the mood that the model inferred from

participants’ choices and outcomes accorded with participants’
self-reported feeling throughout the experiment (mean Pearson’s
r¼ 0.31, n¼ 54, t53¼ 4.5, Po10� 5, t test; Fig. 3d). This match
between the model-inferred mood and participants’ feeling held
even when game 2, which was characterized by a relatively
predictable change in feeling, was excluded from the analysis
(mean Pearson’s r¼ 0.27, n¼ 52, t51¼ 2.1, Po0.05, t test). The
model-inferred mood also predicted BOLD activity in frontal and
temporal brain regions previously shown to distinguish between
positive and negative mood33 (mean GLM t-value 0.18±0.06,
t25¼ 3.0, Po0.01, t test).

The theoretical consequence for mood instability. Finally, we
use the model to ask what would be the long-term results of such a
positive feedback interaction between mood and valuation. Given
that positive feedback is destabilizing, we specifically tested for the
stability of mood over time. To isolate the effects of this feedback
relationship from environmentally induced instability, we simu-
lated repeated encounters with an outcome of value 10. Simulation
results showed that with fr1 the true reward value of 10 was
learned and eventually predicted, as mood did not bias perception
of reward (Fig. 4a). However, when mood biased perception of
reward so as to exert positive feedback (fZ1.2), good mood led to
the subjective perception, and thus learning, of a higher reward
value, eventually leading to disappointment once mood returned to

baseline, which led to subsequent bad mood. Similarly, bad mood
resulted in learning of a lower reward value that in turn led to
positive surprises and good mood. Thus, mood and learned value
oscillated, failing to converge to the true reward value (Fig. 4b).
While these simulations were conducted with a particular set of
parameters (r¼ 10, Zv¼ 0.1, Zh¼ 0.1), a dynamical system analysis
of the model showed that oscillations are guaranteed to emerge as
long as there are some prediction errors (that is, vinitar), and the
biasing effect of mood is strong enough relative to the magnitude

of the outcome and update rates (specifically, when f4e
1
r 1þ Zv

Zh

� �
;

see Methods). Moreover, similar dynamics emerged in simulations
conducted with parameters that were inferred from the experi-
mental data (Supplementary Fig. 3), with different initial condi-
tions (Supplementary Fig. 4), with multiple states and random
outcomes (Supplementary Fig. 5), and with variants of the model
in which mood was not bound to be between � 1 and 1, or in
which the effect of mood on reward perception was additive
instead of multiplicative (Supplementary Fig. 6). It should be
noted, however, that fully predicted outcomes (that is, situations in
which vinit¼ r) are not sufficient for oscillations to emerge. Rather,
unexpected changes in outcomes are necessary, with the resulting
prediction errors acting as triggers that lead to the emergence of
mood instability (Supplementary Fig. 7), in agreement with
observational studies of bipolar patients34,35.

Thus, mood instability emerges in a wide class of models in
which unexpected outcomes affect emotional state and emotional
state affects perception of outcomes, creating a positive feedback
loop. It is important to note, however, that while this class of
models provides a parsimonious explanation for our experimental
data, there could be alternative explanations that do not involve
the effect of mood. In particular, the effect of winning the WoF
draw could, in principle, be explained by an accelerating (that is,
convex) utility function in the domain of gains. This explanation,
however, proposes a utility function that is counterintuitive and
contradictory to a large body of behavioural economic research36,
and it leaves open the question of why only high-HPS
participants would have a convex utility function. Nevertheless,
to establish that mood does indeed destabilize as a result of the
process that our experimental and theoretical findings suggest,
the effect of outcomes on mood would have to be assessed in
response to multiple, successive mood-affecting outcomes.
Finally, we note that it is not necessary for mood itself to affect
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Figure 4 | Simulations of the interaction between learning and mood

using a reinforcement-learning model. The model was repeatedly exposed

to the same outcome of r¼ 10 for 500 iterations for each setting of f, the

parameter mediating the effect of mood on perception of reward. (a) With

f¼ 1 (no mood bias), the expected value converged quickly to the true value

and mood remained stable. (b) With f¼ 1.2 (perceived reward positively

biased by mood), learned value as well as mood oscillated and did not

converge.
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perception of reward for our theory to explain mood instability.
Instead, unexpected outcomes can affect mood as well as bias
perception of subsequent outcomes. Thus, perceived outcomes
could form the same unstable positive-feedback dynamics
illustrated in our model, and these dynamics could lead to
mood instability due to the separate effect of outcomes on mood.

We thus propose our model as a candidate framework for
studying disorders of mood instability. As shown above,
the model can account for a cyclical pattern of mood change,
as observed in psychiatric conditions such as cyclothymia
and bipolar disorder37. In real life, mood cycles typically
unfold over months38–41, making it difficult to study the full
oscillatory dynamics in a laboratory experiment. However,
our model provides a tool for simulating such cycles based on
easily attainable information regarding the strength of a
mood-valuation bias in a specific individual. This can be used
to generate predictions concerning future mood dynamics, for
instance, the frequency of mood cycles (for example, in the case of
the rapid cycling variant37), or the relationship between the
timing and duration of different treatment options and
their efficacy42. In any case, targeted, longitudinal studies of
patients would be necessary to determine whether this interaction
between mood and learning indeed constitutes the
neuro-computational process that underlies cyclical fluctuations
of mood in psychiatric conditions.

Methods
Participants. Thirty-one participants (mean age 21.4, age range 18–33, 25 females)
performed the behavioural experiment and 33 different participants (mean age
20.6, age range 18–26, 21 females) performed the fMRI experiment. Sample sizes
were determined in line with our previous experience studying across-participant
correlations of behaviour, fMRI and personality measures43. Specifically, 30
participants, divided into two groups of 15, allow detection with a confidence level
of 95% of a difference between a positive and a negative correlation that each equal
r¼±0.38 or higher. Participants were from the Princeton University area and
gave written informed consent before taking part in the study, which was approved
by the university’s institutional review board. Participants in the behavioural
experiment received monetary compensation according to their performance on
the task ($14.25-$32.25, mean $23.21). fMRI participants received monetary
compensation for their time ($30), as well as a bonus according to their
performance ($14.75-$32, mean $23.4).

Stimuli. All visual stimuli were designed in the processing programming envir-
onment44. To minimize luminance-related changes in pupil diameter, stimuli were
made isoluminant with the background, to best approximation, by scaling all
colours so as to equate the mean estimated perceived luminance with the
background. Perceived luminance was estimated by conversion of each pixel’s RGB
values from standard RGB colour space to the CIE 1976 L*a*b* space45. Sound
effects were obtained from www.freesound.org.

Slot-machine games. Participants played three slot machine games, each invol-
ving three different slot machines (nine machines overall). Each machine had a
distinct colour and a distinct pattern depicted on it, and some fixed probability of
yielding reward when chosen. Unbeknownst to participants, within each game
these probabilities were always 0.2, 0.4 and 0.6. On each trial, participants chose
between two machines that appeared on the screen, and were either rewarded with
25 cents or not rewarded, according to the probability associated with the chosen
machine. Participants had 3 s to make their choice. Participants’ choices were
followed by a short (3.1 s) animation sequence coupled with appropriate sound
effects, in which the handle of the chosen machine moved and its wheels rolled
until the outcome was revealed. A ‘win’ outcome was indicated by the appearance
of $ signs coupled with a metal ‘ping’ sound, whereas a ‘no win’ outcome was
indicated by the appearance of X signs. The outcome stayed on the screen for 2.5 s.
Inter-trial intervals were varied randomly (uniformly) between 7 and 9 s. Each
game consisted of 42 trials. After the 7th, 21st and 35th trials, participants
responded to the question ‘how do you feel right now?’, by choosing one out of a
series of figures whose face varied from unhappy to happy (the self-assessment
manikin46). After the 14th, 28th and 42nd trials, participants were asked to
estimate how likely each of the three slot machines in the current game was to yield
reward, between 0 and 100%.

Wheel of fortune. To generate a large prediction error aimed at affecting parti-
cipants’ emotional state, we held a single WoF draw between the first and second

slot-machine games. The possible outcomes, a win or loss of $0-$8, were depicted
on the wheel, which rolled, slowing down gradually, for 42 s. When the wheel
stopped, an indicator above it pointed to the outcome of the draw. The rolling of
the wheel and the outcome were accompanied by appropriate sound effects.
Unbeknownst to participants, the draw was set up so that half of the participants
won $7 and half lost $7. Participants were notified in advance that they would be
paid according to their earnings in the whole experiment. There was no extra
compensation to participants who lost in the WoF draw, so this loss was a real one.

Test slot-machine game. To compare between the valuations that participants
formed in different slot-machine games, and specifically, whether the change in
emotional state due to the WoF draw affected their valuations, we had participants
play a final test game that involved all nine machines previously encountered. This
time, however, the outcomes of choices were not shown, so that participants had to
rely on what they had learned in previous games. To encourage participants to try
to choose the most rewarding machines, participants were informed that ‘wins’
would be tallied towards their overall earnings, and that each slot machine ‘win’
would be rewarded with double the regular amount (that is, 50 cents). We were
particularly interested in choices between slot machines that had similar reward
probabilities but were encountered in different games. Thus, the test game included
two trials with each such pair of machines (18 trials total). Eighteen additional
trials involved pairs of machines with different reward probabilities. Of these latter
trials, performance on those trials that involved one of the machines that had the
highest reward probability (which we expected participants to recognize if they
performed the task well) was examined to verify that participants were attentive
and that they understood the task correctly. Data from one participant in the
behavioural study and seven participants in the fMRI study, who did not perform
above chance in the test game (P40.1, one-tailed binomial test) were excluded
from further analysis.

Questionnaires. All participants filled out the international personality item
pool13 (IPIP) version of the HPS14. To make sure that the results reflected neither
an effect of the WoF draw on responses to the HPS questionnaire, nor the reverse
effect, of the HPS questionnaire on performance in the experiment, the
questionnaire was administered after the WoF draw in the behavioural experiment,
but before the beginning of the experiment in the fMRI experiment. In addition, to
mitigate a possible recency effect on choices in the final test game, we separated in
time the second and third games, as well as the third and test games, by having
participants fill out additional questionnaires, whose results were not analysed.
These included the BIS/BAS scales47, and the IPIP version of the NEO Personality
Inventory48. Finally, to verify that the results involving HPS scores did not simply
reflect the association between HPS and extraversion15, the results of all correlation
and covariance analyses involving HPS scores were replicated after regressing out
extraversion scores from HPS scores.

Pupillometry. A desk-mounted SMI RED 120Hz eye-tracker (SensoMotoric
Instruments, MA) was used to measure participants’ left and right pupil diameters
at a rate of 60 samples per second while they were performing the behavioural task
with their head fixed on a chinrest. An SMI iViewX MRI-LR unit was used to
measure pupil diameter during the functional MRI experiment. Pupil diameter data
were processed to detect and remove blinks and other artefacts. For each trial,
baseline pupil diameter was computed as the average diameter over a period of 1 s
before the beginning of the trial (at the end of the inter-trial interval, at which point
pupil dilation from the previous trial should have subsided). Baseline pupil dia-
meter measurements in which more than half of the samples contained artefacts
were considered invalid and excluded from the analysis. Only participants with at
least 40 valid trials were included in the pupil diameter analysis (n¼ 25 for the
behavioural experiment, n¼ 20 for the imaging experiment).

fMRI data acquisition and preprocessing. Functional (EPI sequence; 37 slices
covering whole cerebrum; resolution 3� 3� 3mm3 with no gap; repetition time
(TR) 2.0 s; echo time (TE) 28ms; flip angle 71�) and anatomical (MPRAGE
sequence; 256 matrix; 0.9� 0.9� 0.9mm3 resolution; TR 2.3 s; TE 3.08ms; flip
angle 9�) images were acquired using a 3T Skyra MRI scanner (Siemens, Erlangen,
Germany). Data were processed using MATLAB and SPM8 (Wellcome Trust
Centre for Neuroimaging, UCL). Functional data from one participant contained
unusually extensive dropout artefacts in much of the brain including the striatum
and were thus excluded from further analysis. Functional data were motion cor-
rected prospectively during scanning and retrospectively using SPM. Low-fre-
quency drifts were removed with a temporal high-pass filter (cutoff of 0.0078Hz).
The data were spatially smoothed using an 8-mm FWHM Gaussian kernel. Images
were normalized to Montreal Neurological Institute (MNI) coordinates. MNI
coordinates provided by the MNI space utility (http://www.ihb.spb.ru/Bpet_lab/
MSU/MSUMain.html), which correspond to the Caudate and Putamen labels in
the Talairach atlas (www.talairach.org), were used to restrict analysis to grey matter
within the striatum.
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General linear model. We used a general linear model (GLM) to examine striatal
response to reward in the different slot-machine games. The model included
regressors indicating stimulus onset, response onset, ‘reward’ outcome and ‘no
reward’ outcome, separately for each slot-machine game, as well as stimulus onset
and response onset regressors for the rating trials. These regressors were convolved
with SPM’s default hemodynamic response function. In addition, regressors of no
interest reflecting head movement parameters were included in the model. As we
were interested in examining activity in reward-sensitive areas of the striatum,
analysis was restricted to a functional region of interest (fROI) that included all
grey-matter voxels within the striatum that responded more to ‘reward’ outcomes
than to ‘no reward’ outcomes throughout the experiment, according to a group-
level analysis (Po0.0001 uncorrected; similar results were obtained defining the
fROI with FWE correction for multiple comparisons within the striatum
(Po0.05)). We then examined activity within this striatal fROI in response to
‘reward’ outcomes in the second game (which came immediately after the WoF
draw) compared with the first game (that occurred immediately before the WoF
draw). The resulting t-values were averaged across voxels within the fROI, and
regressed against HPS score, WoF outcome, and the interaction between the two,
using both the standard ANCOVA analysis and a more conservative robust
regression analysis26,27, which accounts for potential outliers by assuming non-
Gaussian noise. As a control, to test whether the WoF draw generally biased neural
response to the task, we compared response to onset of the stimuli in the second
game compared with the first game, in voxels that were responsive to stimulus
onset according to a group-level analysis (Po0.0001 uncorrected). This latter
analysis was conducted on the whole brain, and then repeated in each cortical lobe
separately, as well as in the striatum, to test for a more localized bias in the BOLD
response to the task.

Reinforcement learning model. In standard reinforcement learning, the expected
value (v) of a stimulus is updated according to a reward prediction error (d), which
reflects the difference between the actual reward obtained (r) and the expected
value (i.e., d¼ r–v). This simple framework has proved successful in explaining a
wide range of behavioural and neural data, including, most importantly, the activity
of the midbrain dopamine system, which is thought to signal reward prediction
error49,50. To account for effects of mood on valuation, we modified the model to
compute prediction errors with respect to perceived reward rather than actual
reward:

d ¼ rperceived � v ð1Þ
where perceived reward (rperceived) was different from actual reward (r) in that it
reflected the biasing effect of mood (m):

rperceived ¼ r � f m: ð2Þ
Here, m indicates good (0omo1) or bad (� 1omo0) mood, and f is a positive
constant that indicates the direction and extent of the mood bias. If f¼ 1 mood
does not bias the perception of reward. With f41, mood exerts positive feedback as
reward is perceived as larger in a good mood and as smaller in a bad mood.
Conversely, 0ofo1 corresponds to negative feedback, as reward is perceived as
smaller in a good mood and as larger in a bad mood. The biasing effect of mood on
reward perception was modelled as a multiplicative effect so as to maintain scale
invariance51. We note, however, that this choice was not essential, as the same
results were obtained by modelling the effect of mood on reward perception as an
additive effect.

To model the effects of unexpected outcomes on mood3, we assumed that mood
reflects recent prediction-error history (h), tracked using a step-size parameter Zh,

h ¼ hþ Zh d� hð Þ ð3Þ
and constrained to the range of � 1 to 1 by a sigmoid function:

m ¼ tanh h ð4Þ
Apart from these modifications, we assumed traditional reinforcement learning,
that is, expected values were updated after every trial according to the reward
prediction error with a step size (learning rate) parameter Zv:

v ¼ vþ Zvd: ð5Þ
The model was repeatedly exposed to an outcome of r¼ 10 for 500 iterations.
Expected value (v) and mood (m) were initialized as 0. The simulation was repeated
with different values of the parameter f, which controls the degree to which mood
biases perception of reward.

Model-based behaviour analysis. We used the mood model described above to
characterize each participant’s trial-to-trial choices. In the model, a Softmax
function was used to derive choice probabilities from the expected values of the
available slot machines, so that the probability P(ct¼ c, t) of choosing slot machine
c at trial t was proportional to ebvc;t . The inverse temperature parameter b con-
trolled the exclusivity with which choices were directed towards higher-valued
options. Thus, the mood model included four free parameters: f, Zh, Zv and b.

We estimated the parameters of the model for each participant individually by
computing a weighted mean of 1,000,000 randomly sampled parameterizations
(importance sampling52), in which each sample was weighted by the likelihood that

it assigned to the observed sequence of choices,
Q

t Pðct ; tÞ. Values vc,t were
computed using the models and the preceding sequence of actual observed choices
c1yt–1 and rewards r1yt–1. The step-size parameters (Zh and Zv), and the inverse
temperature parameter (b) were sampled from a uniform distribution between 0
and 1, and between 0 and 20, respectively. To avoid biasing the mood model in
favour of or against a mood-consistent bias, we sampled the reward perception
parameter (f) in the log domain from a uniform distribution between ln1/10 and
ln10. In addition, we compared the mood inferred by the model, based on
participants’ choices and outcomes, with participants’ rating of their feeling. For
this purpose, we computed for each participant the correlation between his or her
nine feeling self-reports (three self-reports per game) and the mean of the model-
inferred mood for each third of each game.

Finally, to test whether our main results might be explained by an effect of the
WoF outcome on the balance between exploration and exploitation, rather than by
an effect on mood, we fit the ‘no mood’ model to participants’ choices in game 1
(before the WoF draw), and, separately, to participants’ choices in game 2 (after the
WoF draw). We then repeated the analyses of test game choices and striatal
responses to reward with the inclusion of a control covariate that reflected the
change in the inferred inverse temperature parameter (b) from game 1 to game 2.

Model comparison. We compared the mood reinforcement-learning model,
which is described above, with two alternative models: the first ‘no mood’ model is
similar to the full model except that outcomes do not affect mood, which thus stays
neutral (that is, equals 0) throughout the experiment. The second ‘no mood bias’
model does include an effect of outcomes on mood that is similar to the full model,
but does not include an effect of mood on perception of outcomes (that is, the
parameter f is set to 1). We assumed Gaussian noise on self-reports, and thus we
computed the probability of observing a particular self-reported feeling given a

particular model as proportional to e� mreported �mmodelð Þ2 , where mreported is the
z-scored feeling reported by the participant, and mmodel is the z-scored mood
predicted by the model at the time of self-report. We compared between the full
mood model and the alternative models in terms of the likelihood that they
assigned to each participant’s data, as measured by the log of the Bayes factor53,
which was approximated by the mean log likelihood of each model given 1,000,000
random parameterizations. Since log Bayes factors were not normally distributed
(n¼ 56, ‘no mood’ model: Po10� 14; ‘no mood bias’ model: Po0.005; one-sample
Kolmogorov-Smirnov test54), we used bias-corrected and accelerated
bootstrapping55 (with 1,000,000 samples) to estimate significance.

Model-based fMRI analysis. To generate model-based regressors for the imaging
analysis, both the mood model and the ‘no mood’ model were simulated using each
participant’s actual sequence of rewards and choices to produce per-participant,
per-trial estimates of the reward prediction error signals dt. To provide an inter-
pretable measure for between-participant comparison, we used the same exact
models to generate fMRI regressors for all participants, by instantiating each of the
models with the group mean estimated parameters. Using the group mean para-
meters has the additional advantage of regularizing the individual estimates, which
are otherwise noisy32,56. To test whether striatal activity was biased in line with a
positive feedback effect of mood on reward perception, we instantiated the mood
model using the mean mood bias and mood step-size parameters of participants
whose mood bias parameter was consistent with positive feedback (that is, f41).

To examine the effect of mood on prediction error signals, we decomposed the
series of prediction-error signals generated by the mood model dmood

t into the sum
of the prediction-error signals generated by the ‘no mood’ model dstdt and an
additional component dmood

t � dstdt
� �

attributable to the effect of mood. We then
used dstdt and dmood

t � dstdt
� �

as modulatory regressors in a GLM, which included in
addition regressors for stimulus onset and choice onset, for both choice and rating
trials, as well as regressors that reflect head movement parameters. We note that
while dmood

t and dstdt were, as expected, strongly correlated (n¼ 25, mean Pearson
r¼ 0.96, t24¼ 10.1, Po10� 10, t test), dstdt and dmood

t � dstdt
� �

were not significantly
correlated (n¼ 25, mean Pearson’s r¼ � 0.29, t24¼ � 1.4, P¼ 0.18, t test).
Moreover, linear regression does not assign variance that is shared between two
correlated regressors to either of the regressors. Thus, the GLM coefficients only
reflect variance that is unique to each regressor. We verified that the striatal ROI
significantly correlated with the dstdt regressor (n¼ 25, t24¼ 7.1, Po10� 7, t test).
The t-values computed for the dmood

t � dstdt
� �

regressor then indicated for each
participant whether the striatum demonstrated a pattern of activity that is captured
by the positive-feedback mood model, above and beyond the standard model.

Habel et al.33 found nine cortical areas (excluding cerebellum, which we did not
scan) that distinguished between positive and negative mood, evoked using a
standardized mood-induction procedure. To test whether the mood inferred by the
model matched activity in these brain areas, we created a single ROI composed of
the nine corresponding spheres, which included all grey-matter voxels within a 5
voxel radius from the reported locations. We then conducted a GLM analysis,
similar to the one described above, with the addition of a parametric regressor
reflecting the changes in mood that were inferred by the model for each participant
during the three slot machine games (the regressor was inverted for those spheres
in which Habel et al. reported that activity was inversely related to positive mood).
BOLD responses to this regressor were used to assess the degree to which the
model-predicted mood matched activity in the ROI.
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Dynamical system analysis. By substituting57 d, rperceived and m in equations 3
and 5 with the corresponding expressions in equations 1, 2 and 4, the model can be
reduced to the following two-variable dynamical system:

Dh ¼ Zh r � f tanh h � v� h
� �

ð6Þ

Dv ¼ Zv r � f tanh h � v
� �

ð7Þ

Given that the model’s update rates (Zh and Zv) have nonzero values, Dh and Dv
both equal zero only when h¼ 0 and v¼ r. Thus, the system’s only fixed point is
reached when expected value is equal to the actual reward and mood is neutral. To
examine whether the system is stable around this fixed point, we derived the
eigenvalues (l) of its Jacobian matrix:

l ¼ 1
2

Zh r ln f � 1ð Þ� Zvð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zh r ln f � 1ð Þ� Zvð Þ2 � 4ZvZh

q	 

ð8Þ

When f ¼ e
1
r 1þ Zv

Zh

� �
, l is complex and its real component equals 0, which indicates

non-converging oscillations around the fixed point. With greater values of f, the
real component of l is positive, indicating that the system moves away from the
fixed point. In addition, we know that the system remains bounded, given that
Zvo1 and Zho1, we can conclude from equations 6 and 7 that |v| cannot exceed

r � f and |h| cannot exceed 2r � f. Thus, for f � e
1
r 1þ Zv

Zh

� �
, the system does not

approach the fixed point, but rather, continues to fluctuate within a bounded
region. Simulations of the model with different values of f, r, Zv and Zh confirmed

that e
1
r 1þ Zv

Zh

� �
is a critical value of f, beyond which the system oscillates

continuously.

Statistical analysis. Statistical analysis was carried out using MATLAB. We did
not find a significant difference between the behavioural and fMRI groups with
respect to any of the effects of interest, and thus data from both experiments
were pooled together where appropriate. Correlation values reported are Pearson
correlation coefficients. Robust regression was performed using default options
(bisquare weighting, tuning constant 4.685). Since the parameter f is multiplicative,
and was sampled in the log domain, means and correlations involving f were
computed in the log domain. Owing to the non-additivity of correlation
coefficients, averaging of correlation coefficients was preceded by Fisher r-to-z
transformation and followed by Fisher’s z-to-r transformation58. All results of
ANCOVA interaction between HPS score and WoF outcome were replicated
with the inclusion of a control regressor indicating baseline self-reported mood
(measured before the WoF draw). All statistical tests reported are two-tailed.
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Corrigendum: Interaction between emotional state
and learning underlies mood instability
Eran Eldar & Yael Niv

Nature Communications 6:6149 doi: 10.1038/ncomms7149 (2015); Published 21 Jan 2015; Updated 3 Jan 2017

In the Methods section of this Article under ‘Model comparison’, the log of the Bayes factor is incorrectly reported as
being approximated by the mean log likelihood of each model given 1,000,000 random parameterizations. The words ‘mean
log likelihood’ should have read ‘log of the mean likelihood’. Furthermore, in panels b and d of Supplementary Fig. 2, there
are errors in the labelling of the y-axes. The word ‘Striatal’ should have read ‘Whole brain’. The correct version of this figure appears
below as Fig. 1.
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