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Disproving the Peres conjecture by showing
Bell nonlocality from bound entanglement
Tamás Vértesi1 & Nicolas Brunner2

Quantum entanglement has a central role in many areas of physics. To grasp the essence

of this phenomenon, it is fundamental to understand how different manifestations of

entanglement relate to each other. In 1999, Peres conjectured that Bell nonlocality is

equivalent to distillability of entanglement. The intuition of Peres was that the non-classicality

of an entangled state, as witnessed via Bell inequality violation, implies that pure entangle-

ment can be distilled from this state, hence making it useful for quantum information

protocols. Subsequently, the Peres conjecture was shown to hold true in several specific

cases, and became a central open question in quantum information theory. Here we disprove

the Peres conjecture by showing that an undistillable bipartite entangled state—a bound

entangled state—can violate a Bell inequality. Hence Bell nonlocality implies neither

entanglement distillability, nor non-positivity under partial transposition. This clarifies the

relation between three fundamental aspects of entanglement.
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T
he predictions of quantum theory are incompatible with
any physical model that satisfies a natural principle of
locality, as shown by Bell1,2. Specifically, the correlations

obtained by performing local measurements on an entangled
quantum state violate an inequality, Bell’s inequality, which is
satisfied by all local correlations. Understanding the link between
entanglement and Bell nonlocality is a longstanding and
challenging problem2,3. While the observation of Bell inequality
violation implies the presence of entanglement, it is still not
known whether all entangled states can lead to Bell inequality
violation.

While nonlocality turns out to be a generic feature of all
entangled pure states4,5, the situation is however much more
complex for mixed states. There exist mixed entangled states
which are local, as they admit a local hidden variable model6,
even for the most general type of non-sequential measurements7.
Nevertheless, it turns out that certain local entangled states can
violate a Bell inequality when a more general scenario is
considered. If pre-processing by local operations and classical
communication (LOCC) is performed before the local
measurements, the ‘hidden nonlocality’ of some local entangled
states can be revealed8–10. Alternatively, when several copies of
the state can be jointly measured in each run of the Bell test,
nonlocality can be super-activated11,12. Finally, the nonlocality of
certain local entangled states can be revealed by placing several
copies of the state in a quantum network13,14.

In the most general case, an arbitrary number of copies of the
state can be pre-processed by LOCC operations before perform-
ing the Bell test. Hence the problem becomes intimately related to
entanglement distillation15. A bipartite entangled state is said to
be distillable if, from an arbitrary number of copies, it is possible
to extract pure entanglement by LOCC16. It thus follows that any
entangled state that is distillable can lead to Bell inequality
violation.

There exist however entangled states which are not distillable,
so-called ‘bound entangled’ states17, shown to be relevant for
instance in quantum many-body systems18–20. Hence the
phenomenon of entanglement displays a form of irreversibility.
On the one hand, entanglement is required to produce a bound
entangled state, that is, the state cannot be produced via LOCC.
On the other hand, no pure entanglement can ever be extracted
from a bound entangled state by LOCC. This leads naturally to
the question of whether bound entangled states can also violate a
Bell inequality. In 1999, Peres21 first discussed this problem and
conjectured that bound entanglement can never lead to Bell
inequality violation. Originally, the conjecture was formulated
using the notion of partial transposition22, one of the most useful
tools for characterizing entanglement23, directly related to
symmetry under time reversal and to distillability of
entanglement17. Specifically, Peres suggested that entangled
quantum states with positive partial transpose (PPT)22, and
hence no distillable entanglement, can never give rise to
nonlocality. An alternative formulation of the conjecture is that
any entangled state that leads to Bell inequality violation must be
non-positive under partial transposition (NPT). Peres’ intuition
was that distillability of entanglement is equivalent to nonlocality,
that is, the violation of a Bell inequality by measurements on a
quantum state necessarily implies that some pure entanglement
can be distilled out of this state.

In recent years, an intense research effort has been devoted to
this problem. Several works provided evidence in favour of the
Peres conjecture, showing that the violation of important classes
of Bell inequalities implies distillability24,25 and non-positivity
under partial transposition26,27. On the other hand, weaker
versions of the conjecture were disproven, in the multipartite
case28–30, and more recently considering the notion of quantum

steering31–33. However, Peres’ original conjecture remained open,
and has become known as one of the main conjectures in
quantum information theory. Solving this problem is thus an
important challenge as it would lead to a deeper understanding of
how different manifestations of the phenomenon of entanglement
relate to each other (see Fig. 1).

Here, we disprove the original Peres conjecture. Specifically, we
present a bipartite entangled state which is PPT, hence bound
entangled, but which can nevertheless violate a Bell inequality.
This shows that Bell nonlocality is fundamentally different from
both entanglement distillability and non-positivity under partial
transposition. Finally, we show that bound entanglement can be
useful in nonlocality-based quantum information protocols, in
particular for device-independent randomness certification34,35.

Results
Bound entangled state. We start by constructing the bound
entangled state, and will later show that it violates a simple Bell
inequality. We consider a state of two qutrits, that is, of local
Hilbert space dimension d¼ 3. Note that there are no PPT
entangled states for qubit–qubit and qubit–qutrit systems23.
Specifically, we consider an entangled state of the form

R ¼
X4
i¼1

li jciihci j: ð1Þ
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Figure 1 | Relation between different fundamental manifestations of

quantum entanglement. Bell nonlocality, non-positivity under partial

transposition, and entanglement distillability represent three facets of the

phenomenon of entanglement. Understanding the connection between

these concepts is a longstanding problem. It is well known that

entanglement distillability implies both nonlocality25 and non-positive

partial transpose17. Peres21 conjectured that nonlocality implies non-

positivity under partial transposition and entanglement distillability; hence

represented by the dashed arrows. The main result of the present work is to

show that this conjecture is false, as indicated by the red crosses. To

complete the diagram, it remains to be seen whether non-positive partial

transpose implies distillability, one of the most important open questions in

entanglement theory45,46. If this conjecture turns out to be false, it would

remain to be seen whether non-positive partial transpose implies Bell

nonlocality.
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where a ¼
ffiffiffiffiffi
131
2

q
. The state R is part of a family of states recently

discussed in ref. 31. Importantly the above choice of eigenvalues
and eigenvectors ensures that the state R is invariant under the
partial transposition map22, that is, PT(R)¼ (1#TB)(R)¼ r,
where TB denotes the transposition operation on the second
subsystem. This ensures that the state R is PPT, that is, PT(R)j0,
and therefore undistillable17.

Bell inequality violation. Nevertheless, the state R is entangled,
hence bound entangled, as it can lead to Bell inequality violation.
To prove this, we consider a Bell test with two distant observers,
Alice and Bob. Alice chooses between three measurement set-
tings, xA{0, 1, 2}, and Bob among two settings, yA{0, 1}. Alice’s
settings yield a binary outcome, aA{0, 1}. Bob’s first setting
(y¼ 0) has a ternary outcome, bA{0, 1, 2}, and his second setting
(y¼ 1) is binary, bA{0, 1}. The experiment is thus characterized
by the joint probability distribution p(ab|xy). These statistics can
be reproduced by a local model if they admit a decomposition of
the form:

pðab jxyÞ ¼
Z

dlmðlÞpða jxlÞpðb jylÞ ð3Þ

where l represents the shared local variable distributed according
to the density m (l). For the Bell test considered here, all statistics
of the above form satisfy the Bell inequality36:

I ¼� pAð0 j2Þ� 2pBð0 j1Þ� pð01 j00Þ� pð00 j10Þ
þ pð00 j20Þþ pð01 j20Þþ pð00 j01Þ
þ pð00 j11Þþ pð00 j21Þ � 0;

ð4Þ

where pA(a|x) and pB(b|y) denote Alice’s and Bob’s marginal
distributions. Hence a violation of the above inequality, that is,
I40, implies the presence of nonlocality.

In particular, this can be achieved by performing judiciously
chosen local measurements on the bound entangled state R. The
local measurement operators, acting on C3, are denoted Ma|x for
Alice and Mb|y for Bob. The measurement operators of Alice are
rank-1 real-valued projectors M0|x¼ |AxS/Ax|, with
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where p¼ 1/5. We have thatM1|x¼ 1�M0|x, where 1 denotes the
identity operator in C3. Bob’s first measurement is given by
Mbj0 ¼jBb

0ihBb
0 j (for b¼ 0, 1) by
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and M2|0¼ 1�M0|0�M1|0. For Bob’s second setting, we take
M0|1¼ |2S/2| and M1|1¼ 1�M0|1. The resulting statistics is
given by the probability distribution

pðab jxyÞ ¼ TrðRMajx � MbjyÞ: ð7Þ
These statistics do not admit a decomposition of the form (3),
as they lead to a violation of the Bell inequality (4), given
analytically by

IR ¼
� 3386þ 18
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This proves that a bipartite bound entangled state can give rise to
nonlocality, thus disproving the Peres conjecture (see Fig. 2).

To derive this result, we followed a numerical optimization
method based on semi-definite programming (SDP)37, briefly
outlined in the Methods section. The construction described above
is however analytical, and was reconstructed from the output of the
optimization procedure. In fact, slightly higher Bell violations, up to
IPPT ¼ 2.6526� 10� 4, could be found numerically for two-qutrit
PPT states. Moreover, using the SPD techniques of ref. 38, an upper
bound on the largest possible violation obtainable from PPT states is
here found to be Imax

PPTo4:8012�10� 4, hence leaving the possibility
open for a slightly higher violation using PPT states of arbitrary
Hilbert space dimension.

Finally, it is worth pointing out that our result implies that the
set of PPT states violating Bell inequality (4) is of non-zero
measure. Although the Bell violation we observe is small, it is
nevertheless finite. Hence it follows that any state obtained by
adding a sufficiently small (but finite) amount of an arbitrary
separable state to the bound entangled state R, will also violate the
Bell inequality. As the set of separable states is of non-zero
measure, the result follows.

Randomness certification. The fact that a bound entangled state
can violate a Bell inequality suggests potential applications in
quantum information processing, in particular in nonlocality-
based tasks. Here we consider randomness expansion based on
Bell nonlocality34,35, in which true quantum randomness can be
certified without relying on a detailed knowledge about the
functioning of the devices used in the protocol. The security of
the protocol is therefore called ‘device-independent’. Following
the techniques of refs 39,40, we obtained lower bounds on the
amount of randomness that can be certified from the nonlocal
statistics. The randomness is captured by the probability of
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Figure 2 | Building a counter example to the Peres conjecture. To

disprove the conjecture, we construct a quantum state R with the following

properties: (1) R is positive under partial transposition (PPT) and (2) R is

Bell nonlocal. Property (1) follows here from the fact that R is invariant

under partial transposition, and implies that R cannot be distilled. Property

(2) follows from the fact that the statistics resulting from local

measurements on R violate a simple Bell inequality.

Table 1 | Device-independent randomness certification using
bound entangled states.

Bell violation IPPT Hmin (y¼0) Hmin (y¼ 1)

2.6314� 10�4 4.2320� 10�4 3.6191� 10�4

2.6526� 10�4 4.2310� 10�4 3.6530� 10�4

We describe here the randomness, as quantified via the min-entropy Hmin (see main text), from
the statistics of the Bell experiment. The values represent lower bounds on Hmin (obtained
at the third level of the SDP hierarchy, see refs 39,40) for the outcome of Bob’s measurements
(y¼0, 1). The first line corresponds to our analytical construction, while the second line is for
the statistics corresponding to the largest violation we found using a PPT state. Surprisingly,
it turns out that no randomness can be extracted from the outcome of Alice’s measurements.
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guessing the outcome of Bob’s (or Alice’s) measurement pg(b|y).
Note that this guessing probability is computed by a
maximization over all possible realizations that are compatible
with the observed data p(ab|xy), see refs 39,40 for details. To
quantify the randomness it is useful to consider the min-entropy,
Hmin¼ � log2pg(b|y), which represents the number of random
bits that can be extracted per run of the Bell test (using adequate
post-processing) from Bob’s measurement setting y. The results,
summarized in Table 1, show that randomness can indeed be
certified using a bipartite bound entangled state. Note that in
practice, implementing such a protocol would be extremely
challenging, as the Bell violation is very small, and hence very
sensitive to noise.

Finally, it would be interesting to see if bound entanglement is
useful for other quantum information protocols based on
nonlocality. First, given its usefulness in quantum key distribution
(QKD)41, it would be interesting to see if bound entanglement
could also be used to establish a secret key in the context of
device-independent QKD42. Second, our bound entangled state
could be useful in communication complexity, a task which is
strongly connected to quantum nonlocality. Using the techniques
of ref. 43 (see also ref. 44), it should be possible to construct a
communication complexity problem for which bound
entanglement helps reducing the amount of communication
compared to classical resources.

Discussion
To summarize, we have shown that bipartite bound entangled
states can lead to Bell inequality violation, thus disproving the
longstanding conjecture of Peres. This represents significant
progress in our understanding of the relation between entangle-
ment and Bell nonlocality, demonstrating in particular that
nonlocality does not imply non-positivity under partial transpo-
sition or entanglement distillability (see Fig. 1). The main open
question now is whether all bound entangled states can give rise
to Bell inequality violation, which would imply that entanglement
and nonlocality are basically equivalent. From a more applied
perspective, we also showed that bound entanglement can be
useful in nonlocality-based quantum information tasks, in
particular device-independent randomness certification.

Methods
Numerical method. Consider a Bell inequality of the form

I ¼
X

a; b; x; y

cabjxypðab jxyÞ � L ð9Þ

with real coefficients cab|xy and local bound L. To find efficiently violations
of such an inequality for PPT states of local Hilbert space dimension d,
we use the semi-definite programming procedure described in Box 1.
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