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Renormalization group running
of neutrino parameters
Tommy Ohlsson1 & Shun Zhou1,2

Neutrinos are the most elusive particles in our Universe. They have masses at least one

million times smaller than the electron mass, carry no electric charge and very weakly interact

with other particles, meaning that they are rarely captured in terrestrial detectors. Tre-

mendous efforts in the past two decades have revealed that neutrinos can transform from

one type to another as a consequence of neutrino oscillations—a quantum mechanical effect

over macroscopic distances—yet the origin of neutrino masses remains puzzling. The phy-

sical evolution of neutrino parameters with respect to energy scale may help elucidate the

mechanism for their mass generation.

E
ver since their discovery in the 1950s (ref. 1), neutrinos have continued to surprise us. In
the Standard Model (SM) of elementary particle physics, neutrinos are massless particles.
However, since the results from the Super-Kamiokande experiment in 1998 (ref. 2), the

phenomenon of neutrino oscillations has been well established, indicating that neutrinos do have
nonzero and non-degenerate masses and that they can convert from one flavour to another3.
This important result was followed by a boom of results from several international
collaborations. Certainly, these results have pinned down the values of the various neutrino
parameters to an incredible precision, especially considering that neutrinos are extremely elusive
particles and the corresponding experiments are extraordinarily complex4. Currently operating
experiments and future investigations under construction are aimed at determining the missing
neutrino parameters, such as the CP-violating phase (which can be important for understanding
the matter–antimatter asymmetry in the Universe), the sign of the large mass-squared difference
for neutrinos, and the absolute neutrino mass scale. In addition, the cubic kilometre scale
neutrino telescope at the South Pole, IceCube5, has been successfully constructed to search for
ultra-high energy astrophysical neutrinos, while a number of underground experiments are
looking for neutrinoless double-beta decay (see refs 6–10) and others are waiting for neutrino
bursts from galactic supernova explosions (see refs 11,12).

However, the origin of neutrino masses and lepton flavour mixing remains a mystery,
and calls for new physics beyond the SM. It is believed that new physics should appear
somewhere above the electroweak scale (that is, LEWB102GeV) but below the Planck scale (that
is, LPB1019 GeV) for the following reasons. First, the smallness of neutrino masses can be
ascribed to the existence of superheavy particles, whose masses are close to the grand unified
theory (GUT) scale (for example, LGUTB1016 GeV), such as right-handed neutrinos in the
canonical seesaw models13–17. Moreover, the out-of-equilibrium and CP-violating decays of
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heavy right-handed neutrinos in the early Universe can produce a
lepton number asymmetry, which will be further converted into a
baryon number asymmetry18. Therefore, the canonical seesaw
mechanism combined with so-called leptogenesis provides an
elegant solution to the generation of tiny neutrino masses and the
matter–antimatter asymmetry in our Universe. Second, the strong
hierarchy in charged-fermion masses (that is, mt44mc44mu,
mb44ms44md and mt44mm44me) and the significant
difference between quark and lepton mixing patterns (that is,
three small quark mixing angles while two large and one small
leptonic mixing angles) could find their solutions in the
framework of GUTs extended by a flavour symmetry19,20.
Therefore, an attractive and successful flavour model usually
works at a superhigh-energy scale, where quarks and leptons are
unified into the same multiplets of the gauge group but assigned
into different representations of the flavour symmetry group.
Third, the SM Higgs particle with a mass of 126GeV has recently
been discovered at the Large Hadron Collider at CERN in
Geneva, Switzerland21,22. If this is further confirmed by future
precision measurements and the top-quark mass happens to be
large, the SM vacuum will become unstable around the energy
scale 1012 GeV. In this case, new physics has to show up to
stabilize the SM vacuum23. In the canonical seesaw model with
heavy right-handed neutrinos, the SM vacuum is actually further
destabilized. However, if an extra scalar singlet is introduced to
generate right-handed neutrino masses, the SM vacuum can be
stabilized and the tiny neutrino masses are explained via the
seesaw mechanism24. Hence, the assumption that neutrino
masses and lepton flavour mixing are governed by new physics
at a superhigh-energy scale is well motivated.

The experimental results will guide us to the true theory of
neutrino masses, lepton flavour mixing and CP violation. At the
same time, they will also rule out quite a large number of
currently viable flavour models. However, this will only be
possible if the renormalization group running of neutrino
parameters, which describes their physical evolution with respect
to energy scale, is properly taken into account. Thus, it may help
to elucidate the mechanism for neutrino mass generation. The
aim of this Review is to examine neutrino renormalization group
running in more detail. First, we briefly summarize the current
status of neutrino parameters and the primary goals of future
neutrino experiments, and present a general discussion about the
effective theory approach and renormalization group equations
(RGEs) in particle physics. Then, we consider several typical
neutrino mass models in the framework of supersymmetric and
extra-dimensional theories, and the running behaviour of
neutrino parameters is described and explained. Finally, the
impact of renormalization group running on flavour model
building and leptogenesis is illustrated and emphasized.

Neutrino parameters at low energies
Neutrinos are produced in beta decay of radioactive nuclei,
nuclear fusion in the Sun, collisions between nucleons in the
Earth atmosphere and cosmic-ray particles and in the man-made
high-energy accelerators. Since they are always accompanied by
the charged leptons e, m and t in production, it is convenient to
define the neutrino flavour eigenstates {|neS,|nmS,|ntS} and
discriminate them according to the corresponding charged
leptons. The neutrino flavour eigenstates |naS (for a¼ e,m,t)
are related to three neutrino mass eigenstates {|n1S,|n2S,
|n3S} with definite masses {m1,m2,m3} by the superposition
|naS¼Ua1|n1SþUa2|n2SþUa3|n3S, where the 3� 3 unitary
matrix U is the so-called lepton flavour mixing matrix25–27.
It is conventional to parameterize U by three Euler-like
mixing angles {y12,y13,y23} and three CP-violating phases

{d,r,s}, namely3
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with cij�cos yij and sij�sin yij for ij¼ 12, 13, 23. As a
consequence of quantum interference among the three neutrino
mass eigenstates, neutrinos can transform from one flavour to
another, when propagating from the sources to the detectors. This
phenomenon of neutrino flavour oscillations will be absent if
either the two independent neutrino mass-squared differences
Dm2

21 � m2
2 �m2

1 and Dm2
31 � m2

3 �m2
1 (or Dm2

32 � m2
3 �m2

2)
or the three leptonic mixing angles {y12, y13, y23} are vanishing.
Note that we will use Dm2

31 instead of Dm2
32.

Thanks to a number of elegant experiments in the past two
decades3, the phenomenon of neutrino flavour oscillations has
now been firmly established. The latest global analysis of data
from all existing past and present neutrino oscillation
experiments provides our best knowledge on the neutrino
mixing parameters, as shown in Table 1. Note that Dm2

31 has
been used in ref. 28 to fit the oscillation data in both cases of
normal neutrino mass hierarchy (that is, m1om2om3) and
inverted neutrino mass hierarchy (that is, m3om1om2), only the
results from ref. 28 are listed in this table to get a ballpark feeling
of the values of the neutrino parameters. Two other independent
global-fit analyses in refs 29,30 yield different best-fit values.
However, the 3s confidence intervals of neutrino parameters
from all three groups are indeed consistent.

At present, although there are weak hints for a nonzero Dirac
CP-violating phase d (see the last row of Table 1), it is fair to say
that no direct and significant experimental constraints exist for
the leptonic CP-violating phases. Furthermore, since neutrino
oscillation experiments are blind to the Dirac or Majorana nature
of neutrinos and to the Majorana CP-violating phases {r,s}, it is
still an open question whether neutrinos are Dirac or Majorana
particles. In the latter case, neutrinos are their own antiparticles,
which would lead to neutrinoless double-beta decay of some
nuclear isotopes and can hopefully be confirmed with this kind of
experiments31. The primary goals of ongoing and forthcoming

Table 1 | Latest measurements and global-fit results of
neutrino parameters.

Parameters Neutrino oscillation
experiments*

Global-fit resultsw

Dm2
21 KamLAND (ne ! ne)134 ½7:60þ0:19

�0:18� � 10� 5 eV2

Dm2
31 T2K (nm ! nm)135 þ ½2:48þ0:05

�0:07� � 10� 3 eV2

(NH)
MINOS (nm ! nm, nm ! nm)136 � ½2:38þ0:05

�0:06� � 10� 3 eV2

(IH)
y12 solar neutrinos (ve-ve)

Borexino137, SNO138,139,
Super-Kamionkande I–IV140

34:63�þ 1:02�
� 0:98�

y13 Daya Bay (ne ! ne)141 8:80�þ 0:37�
� 0:39� (NH)

RENO (ne ! ne)142 8:91�þ 0:35�
� 0:36� (IH)

y23 atmospheric neutrinos (nm ! nm,
nm ! nm)

48:9�þ 1:6�
� 7:4� (NH)

Super-Kamiokande I–IV143 49:2�þ 1:5�
� 2:5� (IH)

d — 241�þ 115�
� 68� (NH)

266�þ 62�
� 57� (IH)

IH, inverted neutrino mass hierarchy; NH, normal neutrino mass hierarchy.
*The experiments that dominate the accuracy of particular neutrino parameters determination
are shown.
wThe best-fit values and 1s uncertainties are taken from ref. 28.
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neutrino oscillation experiments are to precisely measure the
three leptonic mixing angles, to determine the neutrino mass
hierarchy, and to discover the leptonic Dirac CP-violating phase.
In addition, non-oscillation neutrino experiments aim to pin
down the absolute neutrino masses and to probe the Majorana
nature of neutrinos.

Confronting theories with experiments
Although most neutrino parameters have already been measured
with a reasonably good precision, the origin of tiny neutrino
masses and bi-large lepton flavour mixing remains elusive. To
accommodate tiny neutrino masses, one may have to go beyond
the SM at the electroweak scale and explore new physics at a
superhigh-energy scale. In this case, an immediate question is
how to compare theoretical predictions at a high-energy scale
with the observables at a low-energy scale. With this question in
mind, we present a brief account of effective theories and
renormalization group running, and describe how neutrinos fit
into this framework.

Effective theory approach. The effective theory approach is very
useful, and sometimes indispensable in particle physics, where
interesting phenomena appear at various energy scales. The basic
premise for this approach to work well is that the dynamics at
low-energy scales (or large distances) does not depend on the
details of the dynamics at high-energy scales (or short distances).
For instance, the energy levels of a hydrogen atom are essentially
determined by the fine-structure constant of the electromagnetic
interaction aE1/137 and the electron mass meE0.511MeV. At
this point, we do not need to know the inner structure of the
proton, and the existence of the top quark and the weak gauge
bosons. That is to say, the energy levels of a hydrogen atom can
be calculated by neglecting all dynamics above the energy or
momentum scale L much higher than ame, and the corre-
sponding error in the calculation can be estimated as ame/L. If a
higher accuracy is required, L will increase and the dynamics at a
higher-energy scale may be needed. See refs 32,33 for general
reviews on effective field theories.

Now, consider a toy model with a light particle f and a heavy
one F, whose masses are denoted by m and M, respectively. Since
m � M, there exist two widely separated energy scales. The
Lagrangian for the full theory can be written as
Lfull ¼ L1ðfÞþLhðf;FÞ, where the interaction between the
light and heavy particles has been included in the second term.
Since we are interested in physical phenomena at a low-energy
scale m � m � M, where the experiments are carried out, we
can integrate out the heavy particle as in the path-integral
formalism. Hence, an effective Lagrangian involving only the light
particle Leff ¼ L1ðfÞþ dLðfÞ is derived, and higher-dimen-
sional operators appear in dLðfÞ ¼ ciOi=Mdi � 4, where ci is a
coefficient and di stands for the mass dimension of Oi. It is
evident that the dynamics at the high-energy scale can affect the
low-energy physics by modifying the coupling constants and
imposing symmetry constraints, but the overall effects are
suppressed by the heavy particle mass M. The method of
effective field theories becomes indispensable when we even do
not know at all whether a complete theory with the heavy
particles exists or not.

Matching and threshold effects. Ultraviolet divergences appear
in quantum field theories if radiative corrections are taken into
account. In the presence of higher-dimensional operators, effec-
tive theories are nonrenormalizable in the sense that an ultra-
violet divergence cannot be removed by a finite number of
counter terms in the original Lagrangian. However, since there is

an infinite number of higher-dimensional operators in the
Lagrangian Leff, it is always possible to absorb all divergences and
obtain finite results with a desired accuracy. Although any phy-
sical observables should be independent of the renormalization
scheme used, it is a nontrivial task to choose a convenient
renormalization scheme such that perturbative calculations are
valid and simple.

According to the Appelquist–Carazzone theorem34, heavy
particles decouple automatically in a mass-dependent scheme,
and their impact on the effective theory will be inversely
proportional to the heavy particle mass M and disappear in the
limit of an infinitely large mass. Nevertheless, higher-order
calculations in this scheme become quite involved. The mass-
independent schemes, such as the modified minimal subtraction
scheme (MS) (refs 35–37), have been suggested for practical
computations in effective theories38, where the strategy to
construct a self-consistent effective theory in the MS scheme is
outlined and applied to the determination of the heavy gauge
boson mass MG in the SU(5) GUT39.

One problem for the mass-independent scheme is that the
heavy particles contribute equally to the so-called beta functions
for gauge coupling constants, leading to an incorrect evolution at
a low-energy scale m � MG. The solution to this problem is to
decouple heavy particles by hand and match the effective theory
with the full theory at m¼MG so that the same physical results
can be produced in the effective theory as in the full theory. At
any other energy scale below MG, gauge coupling constants are
governed by renormalization group running, which will be
discussed in the following subsection. Therefore, if there are
several heavy particles with very different masses, we should
decouple them one by one to obtain a series of effective theories.
The matching conditions (that is, the boundary conditions) at
each mass scale are crucial for the effective theory to work below
this scale. As a consequence, physical quantities (such as coupling
constants and masses) may dramatically change at a decoupling
scale or mass threshold. To figure out threshold effects, one has
first to start with the full theory and construct the effective
theories following the above strategy.

Renormalization group running. The renormalization group was
invented in 1953 by Stückelberg and Petermann40. However, it was
Gell-Mann and Low41 who studied the short-distance behaviour of
the photon propagator in quantum electrodynamics in 1954 by
using the renormalization group approach. The important role
played by the renormalization group in Gell-Mann and Low’s work
was clarified in 1956 by Bogoliubov and Shirkov42. The same
approach was applied by Wilson to study critical phenomena and
explain how phase transitions take place43–45.

The essential idea of the renormalization group stems from the
fact that the theory is invariant under the change of renormaliza-
tion prescription. More explicitly, if the theory is renormalized at
a mass scale m, any change of m will be compensated by changes in
the renormalized coupling constant g(m) and the mass m(m) such
that the theory remains the same. By requiring that the physical
quantities, for example, the S-matrix element S[m,g(m),m(m)], are
invariant under this transformation, namely mdS/dm¼ 0, one can
derive

m
@S
@m

þb
@S
@g

� gmm
@S
@m

¼ 0; ð2Þ

which is a specific form of the Callan–Symanzik equation46,47.
Note that we have introduced the RGEs for the coupling constant
and the mass

m
@gðmÞ
@m

¼ bðgÞ; � m
m
@mðmÞ
@m

¼ gmðgÞ ; ð3Þ
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where b(g) and gm(g) are the beta function and the anomalous
dimension, respectively, depending only on the coupling constant
g in the MS scheme.

As pointed out by Weinberg48 a long time ago, the standard
electroweak model can be regarded as an effective theory at low
energies, and the impact of new physics at high-energy scales can
be described by higher-dimensional operators, which are
composed of the already known SM fields. If the SM gauge
symmetry is preserved, but the accidental symmetry of lepton
number is violated, there will be a unique dimension-five
operator O5 ¼ ‘LHHT‘CL , where ‘L and H stand for the SM
lepton and Higgs doublets, respectively. After spontaneous
breakdown of electroweak gauge symmetry, neutrinos acquire
finite masses from the so-called Weinberg operator O5.
Therefore, neutrinos are assumed to be Majorana particles in
this case. It is expected that the lightness of neutrinos can be
ascribed to the existence of a superhigh-energy scale. Now, it
becomes clear that if neutrino masses originate from some
dynamics at a high-energy scale, such as the GUT scale, neutrino
parameters including leptonic mixing parameters and neutrino
masses will evolve according to their RGEs as the energy scale
goes down to where the parameters are actually measured in low-
energy experiments.

Neutrino mass models
To generate tiny neutrino masses, one has to go beyond the SM
and extend its particle content, or its symmetry structure, or both.
In this section, we summarize several typical neutrino mass
models, which are natural extensions of the SM that have

attracted a lot of attention in the past decades. In Fig. 1, the
Feynman diagrams for neutrino mass generation in those models
are shown.

Canonical seesaw models. As the Higgs particle has recently been
discovered in the ATLAS21 and CMS22 experiments at the Large
Hadron Collider, the SM gauge symmetry SU(2)L�U(1)Y and its
spontaneous breaking via the Higgs mechanism seem to work
perfectly in describing the electromagnetic and weak interactions.
On the other hand, nonzero neutrino masses indicate that the SM
may just be an effective theory below and around the electroweak
scale LEW¼ 102GeV. Thus, one can preserve the SM gauge
symmetry structure and take into account all higher-dimensional
operators, which are relevant for neutrino masses, as pointed out
by Weinberg48. The total Lagrangian is

L ¼ LSM � 1
2
kabð‘aLHÞðHT‘CbLÞþ h:c:

� �
; ð4Þ

where LSM denotes the SM Lagrangian, ‘aL and H stand for the
SM lepton and Higgs doublets, respectively. The coefficients
kab (a,b¼ e,m,t) are of mass dimension � 1 and related to
the Majorana neutrino mass matrix as Mn¼k/HS2, where
/HSE174GeV is the vacuum expectation value of H.

One of the simplest extensions of the SM, leading to the
Weinberg operator, is the so-called type-I seesaw model, in which
three right-handed singlet neutrinos nR are introduced. Since the
nR’s are neutral under transformations of the SM gauge
symmetry, they can have Majorana mass terms, namely, their
masses are the eigenvalues of a complex and symmetric mass
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Figure 1 | Feynman diagrams for neutrino mass generation. The origin of neutrino masses calls for new physics beyond the SM of particle physics. Each

neutrino mass model is represented by a Feynman diagram, below which the effective neutrino mass matrix Mn is given. In the canonical seesaw models of

type-I (a), type-II (b) and type-III (c), after the new superheavy particles are integrated out, the dimension-five Weinberg operator is obtained and

neutrinos acquire tiny Majorana masses. (d) In the inverse seesaw model, the lepton number-violating mS term can be naturally at the keV scale, which

together with F � YnhHi½YT
S hFi�

� 1 � Oð10� 2Þ leads to sub-eV neutrino masses. (e) In the scotogenic model, neutrino masses are suppressed by

a loop factor compared with the canonical type-I seesaw model. Hence, the masses of right-handed neutrinos and another Higgs doublet can be at the TeV

scale, which is accessible at the Large Hadron Collider at CERN, and additional scalar bosons could be dark-matter candidates. (f) This is an example

to show how to realize Dirac neutrino masses74. Two singly charged scalar particles s1,2
þ with masses Ms1,2 are added, and they are mixed through a

mass term m2. Compared with the charged-lepton masses, neutrino masses are suppressed by the loop factor, Yukawa couplings h and f, and perhaps the

loop function Iðm2;M2
s1
;M2

s2
Þ that depends on the mass parameters.
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matrix MR. On the other hand, they are coupled to the lepton and
Higgs doublets via a Yukawa-type interaction with a coupling
matrix Yn. Since the masses of right-handed neutrinos are not
subject to electroweak symmetry breaking, we can assume that
OðMRÞ44LEW and integrate out the three nR’s. At a lower-energy
scale, one obtains the Weinberg operator with k ¼ �YnM� 1

R YT
n .

Therefore, the smallness of neutrino masses can be attributed to
the heaviness of the nR’s (refs 13–17).

In the type-II seesaw model49–54, the scalar sector of the SM is
enlarged with a Higgs triplet D. To avoid an unwanted Goldstone
boson associated with the spontaneous breakdown of the global
U(1) lepton number symmetry, one can couple the Higgs triplet
to the lepton doublet with a Yukawa coupling matrix YD, and
simultaneously to the Higgs doublet with a mass parameter mD.
Assuming that the Higgs triplet mass MD is well above the
electroweak scale, that is, MD 	 LEW , we can integrate out D to
obtain the Weinberg operator with k¼YDmD/MD

2 , indicating that
the neutrino masses are suppressed by MD.

In the type-III seesaw model55, one introduces three fermion
triplets Si (i¼ 1,2,3) and couple them to the lepton and Higgs
doublets with a Yukawa coupling matrix YS. In each Si, there are
three heavy fermions: two charged fermions �


i and one neutral
fermion �0

i . Given a Majorana mass matrix MS of the fermion
triplets and OðM�Þ 	 LEW , we can construct an effective theory
without the heavy Si’s at a lower-energy scale. In this effective
theory, the same Weinberg operator for neutrino masses can be
obtained and the coefficient is identified as k ¼ �Y�M� 1

� YT
�.

One can observe that the �0
i ’s are playing the same role in

generating neutrino masses as the nR’s in the type-I seesaw model.
However, due to their gauge interaction, the fermion triplets are
subject to more restrictive constraints from lepton-flavour-
violating decays of charged leptons and direct collider searches.

A common feature of the above three seesaw models is the
existence of superheavy particles. Given neutrino masses
OðMvÞ � 0:1 eV and /HSB100GeV, one can estimate the
seesaw scale LSSB1014 GeV. Therefore, an effective theory with
the same Weinberg operator is justified at any scale between LEW

and LSS. Although the leptogenesis mechanism for the matter–
antimatter asymmetry can be perfectly implemented in the seesaw
framework, the heaviness of new particles renders the seesaw
models difficult to be tested in low-energy and collider
experiments.

Inverse seesaw model. To lower the typical seesaw scale LSS in a
natural way, one can extend the type-I seesaw model by adding
three right-handed singlet fermions SR and one Higgs singlet F,
both of which are coupled to the nR’s by a Yukawa coupling
matrix YS. A proper assignment of quantum numbers under a
specific global symmetry can be used to forbid the Majorana mass
term of nR and the nR–F Yukawa interaction. However, the
mixing between nR and SR is allowed through a Dirac mass term
MS¼YS/FS, so is the Majorana mass term mSSCRSR. In this
setup, the Majorana mass matrix for three light neutrinos is given
by Mn ¼ MDðMT

S Þ
� 1mSM

� 1
S MT

D, where MD�Yn/HS is the
Dirac neutrino mass matrix as in the type-I seesaw model.

Given OðMSÞ � 10 TeV and OðMDÞ � 102 GeV, the sub-eV
neutrino masses OðMnÞ � 0:1 eV can be achieved by assuming
mSB1 keV. In this inverse seesaw model56, the neutrino masses
are not only suppressed by the ratio of the electroweak and
seesaw energy scales, that is, LEW/LSS¼MD/MSB10� 2, but also
by the tiny lepton number-violating mass parameter mS compared
with the ordinary seesaw scale. The smallness of mS is natural
in the sense that the model preserves the lepton number
symmetry in the limit mS-0 (ref. 57). In contrast to the
ordinary seesaw models, the inverse seesaw model is

testable through non-unitarity effects in neutrino oscillation
experiments58, lepton-flavour-violating decays of charged
leptons59–61 and collider experiments62,63.

Scotogenic model. A radiative mechanism for neutrino mass
generation is to attribute the smallness of neutrino masses to loop
suppression instead of the existence of superheavy particles64–68.
One interesting model of this type is the so-called scotogenic
model67, where three nR’s and one extra Higgs doublet Z are
added to the SM. Furthermore, a Z2 symmetry is imposed on the
model such that all SM fields are even, while nR and Z are odd.
Even though the SU(2)L�U(1)Y quantum numbers of Z are the
same as the SM Higgs doublet and the nR’s have a Majorana mass
term, the Dirac neutrino mass term is forbidden by the Z2
symmetry and neutrino masses are vanishing at tree level.

In the scotogenic model, neutrino masses appear first at one-
loop level and the exact Z2 symmetry guarantees the stability of
one neutral scalar boson (from the Higgs doublet Z), which would
be a good candidate for a dark-matter particle67. Due to loop
suppression, sub-eV neutrino masses can be obtained even when
nR’s and scalar particles are at the TeV scale. Therefore, this
model has observable effects in lepton-flavour-violating processes,
relic density of dark matter and collider phenomenology67.

Dirac neutrino model. Finally, we consider the Dirac neutrino
model. In the SM model, both quarks and charged leptons
acquire their masses through Yukawa interactions with the Higgs
doublet. After introducing three nR’s, one can do exactly the same
thing for neutrinos, and thus, tiny neutrino masses can be
ascribed to the smallness of neutrino Yukawa couplings. One
difficulty with the Dirac neutrino model is why the fermion
masses span 12 orders of magnitude, exaggerating the strong
hierarchy problem of fermion masses in the SM. Solutions to the
above problem can be found in extra-dimensional models69,
where the SM particles are confined to a three-dimensional brane
and the nR’s are allowed to feel one or more extra dimensions70.
In this case, the neutrino Yukawa couplings are highly suppressed
by the large volume of the extra dimensions. Another solution is
to implement a radiative mechanism, as in the scotogenic model,
such that light neutrino masses are due to loop suppression71–74.
See Fig. 1 for an illustration. However, in both kinds of models,
an additional U(1) symmetry (that is, lepton number
conservation) has to be enforced to forbid a Majorana mass term.

Running behaviour of neutrino parameters
Now, we proceed to discuss the running behaviour of neutrino
parameters. First of all, we note that there are two different ways
to study the renormalization group running. In the top–down
scenario, a full theory is known at the high-energy scale and the
theoretical predictions for neutrino parameters are given as initial
conditions. At the threshold of heavy particle decoupling, one has
to match the resulting effective theory with the full theory, so that
the unknown parameters in the effective theory can be
determined and used to reproduce the same physical results as
in the full theory. Then, the running is continued in the effective
theory. This procedure should be repeated in the case of multiple
particle thresholds until a low-energy scale where the neutrino
parameters are measured. In the bottom–up scenario, we start
with the experimental values of neutrino parameters at a low-
energy scale, and evolve them by using the RGEs in the effective
theory to the first particle threshold. At this moment, more input
or assumptions about the dynamics above the threshold are
needed for the running to continue. Otherwise, the running is
terminated and some useful information on the full theory cannot
be obtained.
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In the following, we will focus on the bottom–up approach and
explore the implications of measurements of neutrino parameters
for the dynamics at a high-energy scale, where a full theory of
neutrino masses and lepton flavour mixing may exist. However,
we shall also comment on the threshold effects in the top–down
scenario once a specific flavour model is assumed. In the effective
theory, where the SM is extended by the Weinberg operator, the
RGE for the effective neutrino mass parameter k was first derived
in refs 75,76, and revised in ref. 77. In general, we have the RGE
for k given by

16p2
dk
dt

¼ akkþCk YlY
y
l

� �
kþ k YlY

y
l

� �T
� �

; ð5Þ

where t¼ ln(m/LEW) and Yl stands for the charged-lepton Yukawa
coupling matrix. In equation (5), Ck is a constant, while ak depends
on the gauge couplings and all Yukawa coupling matrices of the
charged fermions. Given the initial values of all relevant coupling
constants and masses at LEW, one can evaluate the neutrino
parameters at any energy scale between LEW and a cutoff scale L,
after solving equation (5) together with the RGEs of the other
model parameters and diagonalizing k. Since k is diagonalized by
the lepton flavour mixing matrix U(y12,y13,y23,d,r,s) in the basis
where Yl is diagonal, one can derive, using equation (5), the
individual RGEs for the leptonic mixing angles {y12,y13,y23}, the
CP-violating phases {d,r,s}, and the neutrino mass eigenvalues
{m1,m2,m3}, which can be found in refs 78–80.

The Standard Model. In the framework of the SM, the relevant
coefficients in equation (5) are given by CSM

k ¼ � 3=2 and
aSMk � � 3g22 þ 2y2t þ 6y2t þ l, where only the Yukawa couplings
of the heaviest charged lepton and quark are retained, and l is the
quartic Higgs self-coupling constant. Since the Yukawa couplings
of charged leptons are small compared with gauge couplings, the
evolution of neutrino masses can be essentially described by a
common scaling factor. For the running of the leptonic mixing
angles, the contribution from tau Yukawa coupling yt¼mt/
/HSB0.01 is dominant. However, yt itself is already a very
small number, so one expects that the running effects of all three
leptonic mixing angles are generally insignificant.

On the other hand, the evolution of the leptonic mixing angles
can be enhanced if the neutrino mass spectrum is quasi-
degenerate, that is, m2

i 	jDm2
31 j. In particular, the leptonic

mixing angle y12 has the strongest running effects, partly due to
Dm2

21 �jDm2
31 j. In the limit of quasi-degenerate mass spectrum

and CP conservation, the RGEs for the two neutrino mass-
squared differences and the three leptonic mixing angles are
given by

8p2
d
dt

Dm2
21 � akDm2

21 þCky
2
t

h
2s223

�
m2

2c
2
12 �m2

1s
2
12

�

þ
�
m2

1 þm2
2

�
sin 2y23sin 2y12s13

i
;

ð6Þ

8p2
d
dt

Dm2
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2
�
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3c
2
23 �m2

1s
2
12s
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23

�
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i
;

ð7Þ

8p2
d
dt

y12 � �Cky
2
t

m2
1

Dm2
21
s223sin 2y12 ; ð8Þ

8p2
d
dt

y13 � �Cky
2
t

m2
1

Dm2
31
c223sin 2y13 ; ð9Þ

8p2
d
dt

y23 � �Cky
2
t

m2
1

Dm2
31
sin 2y23 ; ð10Þ

where the relevant coefficients are presented in Table 2. It is now
straightforward to observe that the evolution of y12 is enhanced
by a factor of jDm2

31 j=Dm2
21 � 30, compared with that of y13 and

y23. For illustration, the evolution of y12 from MZ¼ 91.19GeV to
L¼ 1010 GeV is shown in Fig. 2. At MZ, the gauge coupling
constants and the quark mixing parameters are taken from the
Particle Data Group3, the quark and charged-lepton masses from
refs 81,82 and the leptonic mixing parameters are set to the best-
fit values from the NuFit group30. The Higgs massMH¼ 126GeV
is assumed to be consistent with the latest measurements by the
ATLAS21 and CMS22 experiments. It is worthwhile to mention
that MH or equivalently the Higgs self-coupling constant l ¼
M2

H=hHi2 affects the running of neutrino masses, and also the SM
vacuum stability23. Finally, a quasi-degenerate neutrino mass
spectrum is adopted with the lightest neutrino mass m1¼ 0.2 eV
and the Majorana CP-violating phases {r,s} are set to zero. Even
with these extremely optimistic assumptions, the value of y12
turns out to be only larger by 1� at L¼ 1010 GeV than at MZ.

Table 2 | Relevant coefficients of the renormalization group
equations for neutrino parameters.

SM* MSSM 5D-UEDMw

Ck � 3/2 1 � 3(1þ s)/2
ak � 3g22 þ 2y2t �6g21 =5� 6g22 � 3g22 þ 2y2t þ 6y2t þ l

þ6y2t þ l þ6y2t þ sð� 3g21 =20� 11g22=4þ 12y2t þ lÞ

MSSM, minimal supersymmetric extension of the SM; SM, standard model; UEDM, universal
extra-dimensional model.
*Here, g2 and g1 are the SU(2)L�U(1)Y gauge couplings, l the Higgs self-coupling constant, yt
and yt the Yukawa couplings of tau charged lepton and top quark, respectively.
wAt the energy scale, m, the number of excited Kaluza–Klein states s¼Im/m0m is an integer just
below m/m0 with m0¼ 1 TeV.

20°

24°

28°

32°

36°

2 3 4 5 6 7 8 9 10

5D-UEDM

SM

MSSM

� 1
2

Log10(�/GeV)� = MZ

Figure 2 | Evolution of the leptonic mixing angle h12 in the bottom–up

scenario. The running behaviour of y12 is compared with the SM (dotted

curve), the Minimal Supersymmetric Standard Model (MSSM, dotted-

dashed curve) and the five-dimensional UEDM (5D-UEDM, solid curve),

where the vertical dashed line corresponds to a cutoff scale L¼40TeV. In

this figure, a quasi-degenerate neutrino mass spectrum is assumed and

m1¼0.2 eV is chosen. At the energy scale MZ¼91.19GeV, the gauge

coupling constants and the quark mixing parameters are taken from the

Particle Data Group3, the quark and charged-lepton masses from refs 81,82

and the leptonic mixing parameters are set to the best-fit values of the

NuFit group30. In addition, a supersymmetry breaking scale at 1 TeV and

tan b¼ 10 are assumed in the MSSM case.
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The previous observations apply well to seesaw models with
L¼ 1010 GeV identified as the mass of the lightest new particle.
Above the seesaw threshold, the running of neutrino parameters
has also been studied in the complete type-I83–85, type-II86–88 and
type-III89 seesaw models. However, for low-scale neutrino mass
models, there exist new particles at the TeV scale. Therefore, the
running behaviour of neutrino parameters can be significantly
changed by threshold effects in the inverse seesaw model90,91 and
the scotogenic model92. In the Dirac neutrino model, the RGEs of
the neutrino parameters have also been derived and investigated
in detail93.

Supersymmetric models. In the minimal supersymmetric
extension of the SM (MSSM), all fermions have bosonic partners,
and vice versa94. Although there is so far no direct hint on
supersymmetry, the MSSM is regarded as one of the most natural
alternatives to the SM for its three salient features: (1) elimination
of the fine-tuning or hierarchy problem; (2) implication for grand
unification of gauge coupling constants; (3) candidates for the
dark matter. Hence, neutrino mass models in the supersymmetric
framework are extensively studied in the literature78.

In the MSSM extended with the Weinberg operator, the
corresponding coefficients in equation (5) are CMSSM

k ¼ 1 and
aMSSM
k � � 6g21=5� 6g22 þ 6y2t . The neutrino mass matrix is
then given by Mn ¼ khHi2sin2 b with tanb being the ratio
of the vacuum expectation values of the two Higgs doublets
in the MSSM. Similar to the SM, the running of the leptonic
mixing angles is dominated by the tau Yukawa coupling
yt ¼ mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b

p
=hHi. However, now yt can be remarkably

larger than its value in the SM if a large value of tan b is
chosen. Consequently, apart from the enhancement due to a
quasi-degenerate neutrino mass spectrum, the running effects of
the leptonic mixing angles can be enlarged by tanb. In Fig. 2, we
show the evolution of y12 in the MSSM with tan b¼ 10, where the
input values at MZ are the same as in the SM. In addition, the
supersymmetry breaking scale is assumed to be 1 TeV, below
which the SM works well as an effective theory. The value of y12
decreases with respect to an increasing energy scale, whereas it
increases in the SM. This is due to the opposite signs of CMSSM

k
and CSM

k .
As an example for the top–down approach, one considers a

bimaximal-mixing pattern (that is, y12¼ y23¼ 45� and y13¼ 0) at
the GUT scale LGUT¼ 2� 1016 GeV (refs 84,95). It is worthwhile
to mention that the leptonic mixing angles above the seesaw scale
arise from the diagonalization of YnM� 1

R YT
n , and the leptonic

mixing angles and the neutrino masses at this scale can be viewed
as a convenient parametrization of YnM� 1

R YT
n , which is a

combination of fundamental model parameters Yn and MR.
Therefore, a bimaximal-mixing pattern may result from a flavour
symmetry at the GUT scale. For a complete type-I seesaw model
at LGUT, the full flavour structure of the neutrino Yukawa
coupling matrix Yn should be specified, and the mass matrix of
right-handed neutrinos is reconstructed from the light neutrino
mass matrix and Yn from the seesaw formula. See ref. 84 for the
other input parameters. In Fig. 3, the running behaviour of the
three leptonic mixing angles are depicted, where the gray-shaded
areas stand for the decoupling of three right-handed neutrinos at
M3¼ 8.1� 1013 GeV, M2¼ 2.1� 1010 GeV and M1¼ 5.5� 108

GeV. As one can observe from Fig. 3, the decoupling of the
heaviest right-handed neutrino and the matching between the
first effective theory and the full theory have remarkable impact
on the running of y12 and y13. This impact depends on the
presumed flavour structure in the lepton sector, indicating that
the running of neutrino parameters has to be taken into account
in the flavour model at a superhigh-energy scale.

In the MSSM, it is in general expected that running effects of
neutrino parameters are significant, in particular for large values
of tan b and a quasi-degenerate neutrino mass spectrum. This
generic feature should also be applicable to supersymmetric
versions of neutrino mass models discussed in the previous
section.

Extra-dimensional models. The existence of one or more extra
spatial dimensions was first considered by Kaluza96 and Klein97

in the 1920s. The recent interest in extra dimensions and their
implications for particle physics was revived by the seminal works
in refs 98–100. In extra-dimensional models, the fundamental
energy scale for gravity can be as low as a few TeV, solving the
gauge hierarchy problem of the SM. Furthermore, the excited
Kaluza–Klein (KK) modes of the SM fields serve as promising
candidates for cold dark matter. See ref. 101, for a brief review.

As an interesting example for the running of neutrino
parameters in extra-dimensional models, we consider the
so-called universal extra-dimensional model (UEDM) first
introduced in ref. 102, in which all SM fields are allowed to
propagate in one or more compact extra dimensions. Since
the KK number is conserved and the excited KK modes
manifest themselves only at loop level, current mass bound
on the first KK excitation from electroweak precision measure-
ments and direct collider searches is just about a few hundred
GeV (ref. 102). In the five-dimensional UEDM, the corres-
ponding coefficients in equation (5) are CUEDM

k ¼ ð1þ sÞCSM
k and

aUEDMk ¼ aSMk þ sð� 3g21=20� 11g22=4þ lþ 12y2t Þ, where s¼Im/m0m
is the number of excited KK modes at the energy scale m. Note
that m0 denotes the mass of the first KK excitation, or equivalently
R¼ m0� 1 is the radius of the compact extra dimension. In contrast
to the SM and the MSSM, the running of k in the UEDM obeys a
power law due to the increasing number of excited KK modes,
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Figure 3 | Evolution of the leptonic mixing angles in the top–down

scenario. At the GUT scale, the bimaximal-mixing pattern with

y12¼ y23¼45� and y13¼0 is assumed, and used to reconstruct the

effective neutrino mass matrix Mn. The mass matrix of heavy Majorana

neutrinos MR is built from Mn and a specific structure of Yn by inverting the

seesaw formula84, namely MR ¼ YT
v M

� 1
v Yv. Consequently, the heavy

neutrino masses M3¼8.1� 1013 GeV, M2¼ 2.1� 1010GeV and

M1¼ 5.5� 108GeV can be obtained, and they determine the decoupling

energy scales represented by shaded regions, where the particle content in

each energy region is also indicated. This figure is adapted, with permission,

from ref. 84 & Institute of Physics.
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implying a significant boost in the running103–105. The reason is
simply that, at a given energy scale m, we have an effective theory
with s¼Im/m0m new particles, which will run in the loops and
contribute to the RGEs of neutrino parameters.

In Fig. 2, the evolution of y12 in the five-dimensional UEDM is
shown, where the input parameters at MZ are the same as in the
SM and a cutoff scale L¼ 40TeV has been chosen to guarantee
that a perturbative effective theory is valid. One can observe that
the running effect is significant even in such a narrow energy
range. It is worthwhile to mention that y12 increases with respect
to an increasing energy scale in both the SM and the UEDM,
whereas it decreases in the MSSM.

Generic features. Now, we summarize the generic features of the
running of neutrino parameters in the SM, the MSSM and the
UEDM. First, due to small Yukawa couplings of charged leptons
in the SM, the evolution of the leptonic mixing angles is insig-
nificant, even in the case of a quasi-degenerate neutrino mass
spectrum. The running effects can be remarkably enhanced in the
MSSM through a relatively large value of tan b, and instead
through the number of excited KK modes in the UEDM. Second,
among the three leptonic mixing angles, y12 has the strongest
running effect due to an enhancement factor jDm2

31 j=Dm2
21. The

running of y12 in the SM and the UEDM is in the opposite
direction to that in the MSSM. However, the actual running
behaviour also crucially depends on the choice of the currently
unconstrained leptonic CP-violating phases78. The running
neutrino masses at high-energy scales can be approximately
obtained by multiplying a common scaling factor, depending on
the evolution of the gauge couplings. Third, the running effects of
the leptonic CP-violating phases have been studied in detail in
refs 78,106–108, where the evolution of the three CP-violating
phases has been found to be entangled. Consequently, a nonzero
Dirac CP-violating phase can be radiatively generated even if it is
assumed to be zero at a high-energy scale, and vice versa.

Finally, it is worth mentioning that threshold effects may
significantly change the running behaviour of different neutrino
parameters. However, the accurate description of threshold effects
is only possible if the full theory is exactly known.

Phenomenological implications
The running of neutrino parameters has important implications
for flavour model building, the matter–antimatter asymmetry via
the leptogenesis mechanism, and the extra-dimensional models.
We now sketch the essential points and refer interested readers to
relevant references.

Flavour model building. In connection with flavour mixing in
the quark sector, flavour models are usually built at a high-energy
scale, for example, the GUT scale. As for flavour model building,
the running effects should be taken into account in general, and
for the case of quasi-degenerate neutrino masses in particular.
The running effects of mixing parameters can be used to interpret
the discrepancy between quark and lepton flavour mixing109,110.
As a possible symmetry between quarks and leptons, quark–
lepton complementarity relations, such as yq12 þ yl12 ¼ 45� and
yq23 þ yl23 ¼ 45�, where the superscripts specify the mixing angles
in the quark and lepton sectors, have been conjectured111,112.
Radiative corrections to these relations have been calculated in
the type-I seesaw model113.

To describe the observed lepton mixing pattern, one may
impose a discrete flavour symmetry on the generic Lagran-
gian19,20. As discussed in the previous section, a bimaximal-
mixing pattern (that is, y12 ¼ y23 ¼ 45� and y13¼ 0) at LGUT

turns out to be compatible with current neutrino oscillation data

if running effects are taken into account95. In addition to
bimaximal mixing114, tri-bimaximal115–117, democratic118 and
tetramaximal mixing119 patterns have been proposed to describe
lepton flavour mixing, and their radiative corrections have also
been examined120–126.

Matter–antimatter asymmetry. It remains an unanswered
question why our visible world is made of matter rather than
antimatter. From cosmological observations, the ratio between
baryon number density and photon number density
Zb¼ (6.19±0.15)� 10� 10 has been precisely determined3. One
of the most attractive mechanisms for a dynamic generation of
baryon asymmetry is leptogenesis18, which works perfectly in
various seesaw models for neutrino mass generation.

Take the type-I seesaw model, for example, where three heavy
right-handed neutrinos are introduced. In the early Universe,
when the temperature is as high as the masses of heavy neutrinos,
they can be thermally produced and decay into the SM particles,
mainly lepton and Higgs doublets. If the neutrino Yukawa
couplings are complex, heavy neutrinos decay into leptons and
antileptons in different ways. When the Universe cools down,
CP-violating decays go out of thermal equilibrium and a lepton
asymmetry can be generated, which will be further converted into
a baryon asymmetry.

The final baryon asymmetry ZbE0.96� 10� 2e1kf depends on
the CP asymmetry e1 from the decays of the lightest heavy
neutrino, and the efficiency factor kf from the solution to a set of
Boltzmann equations127. Moreover, the maximal value of e1 can
be derived

emax
1 � 3M1 jDm2

31 j
16p2hHi2m

; ð11Þ

where m denotes the mass of heaviest ordinary neutrino128. Now,
it is evident that the running of neutrino masses from the low-
energy scale to M1 (that is, the mass of n1R) should be taken into
account84,129. As the evolution of neutrino masses can be
described by a common scaling factor and they become larger
at a higher-energy scale, the maximum of the CP asymmetry
scales upwards as neutrino masses. However, larger values of
neutrino masses at M1 imply larger Yukawa couplings, which
enhance the washout of the lepton asymmetry, and thus reduce
kf. The outcome from the competition between the enhancement
of e1 and the reduction of kf depends on the neutrino mass
spectrum, and also on the value of tanb in the MSSM78. See
ref. 130, for a review on the recent development of leptogenesis in
seesaw models.

Bounds on extra dimensions. A general feature of quantum field
theories with extra spatial dimensions is that they are non-
renormalizable131, since there exist infinite towers of KK states
appearing in the loops of quantum processes. As pointed out in
ref. 131, the higher-dimensional theories could preserve
renormalizability if they are truncated at a certain energy scale
L (see Fig. 2), below which only a finite number of KK modes is
present. In the UEDM, L is usually taken to be the energy scale
where the gauge couplings become non-perturbative132, but it
could also be related to a unification scale for the gauge
couplings131.

The recent discovery of a Higgs particle with MH¼ 126GeV
leads to a reconsideration of the stability of the SM vacuum82,23.
The instability is essentially induced by the fact that the Higgs
self-coupling constant l runs into a negative value at a high-
energy scale. Since the model parameters have a power-law
running in the UEDM, in contrast to a logarithmic running in the
ordinary four-dimensional theories, the requirement of vacuum

REVIEW NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6153

8 NATURE COMMUNICATIONS | 5:5153 | DOI: 10.1038/ncomms6153 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


stability will place a restrictive bound on the cutoff scale L and
the radius of extra dimensions R. It has been found that LRo5
for R� 1¼ 1TeV in the five-dimensional UEDM133, while this
bound becomes more stringent LRo2.5 in the six-dimensional
UEDM104, which can be translated into the maximal number of
KK modes being five and two, respectively. As a consequence, the
running of neutrino parameters in these models will be limited to
a narrow energy range.

Outlook
Our knowledge about neutrinos has been greatly extended in the
past decades, especially due to a number of elegant neutrino
oscillation experiments. As for the leptonic mixing parameters,
we are entering into the era of precision measurements of three
leptonic mixing angles and two neutrino mass-squared differ-
ences. The determination of the neutrino mass hierarchy and the
discovery of leptonic CP violation are now the primary goals of
the ongoing and upcoming neutrino oscillation experiments. On
the other hand, the tritium beta decay and neutrinoless double-
beta decay experiments, together with cosmological observations,
will probe the absolute scale of neutrino masses. Whether or not
neutrinos are their own antiparticles will also be clarified if
neutrinoless double-beta decay is observed. Therefore, we will
obtain more information about the neutrino parameters at the
low-energy scale.

However, the origin of neutrino masses and lepton flavour
mixing remains a big puzzle in particle physics. In this review
article, we have elaborated on the evolution of neutrino
parameters from the low-energy scale to a superhigh-energy
scale, where new physics may appear and take the responsibility
for generating neutrino masses. The running effects of neutrino
parameters can be very significant and should be taken into
account in searching for a true theory of neutrino masses and
lepton flavour mixing. On the other hand, the successful
applications of renormalization group running in neutrino
physics, and more generally in elementary particle physics and
condensed matter physics, will demonstrate the deep connection
between different branches of physical sciences and the amazing
power of quantum field theories in describing nature.

In the foreseeable future, with direct searches at colliders and
precision measurements of quark and lepton flavour mixing
parameters, we hope that all observations will finally converge
into hints for new physics beyond the SM and lead us to a
complete theory of fermion masses, flavour mixing and CP
violation.
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17. Mohapatra, R. N. & Senjanović, G. Neutrino mass and spontaneous parity

violation. Phys. Rev. Lett. 44, 912–915 (1980).
18. Fukugita, M. & Yanagida, T. Baryogenesis without grand unification. Phys.

Lett. B 174, 45–47 (1986).
In this seminal paper, it was recognized that the decays of heavy Majorana
neutrinos in the early universe can explain the matter-antimatter
asymmetry, which is the so-called leptogenesis mechanism.

19. Altarelli, G. & Feruglio, F. Discrete flavor symmetries and models of neutrino
mixing. Rev. Mod. Phys. 82, 2701–2729 (2010).

20. King, S. F. & Luhn, C. Neutrino mass and mixing with discrete symmetry.
Rep. Prog. Phys. 76, 056201 (2013).

21. Aad, G. et al. Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716,
1–29 (2012).

22. Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).

23. Buttazzo, D. et al. Investigating the near-criticality of the Higgs boson. J. High
Energ. Phys. 1312, 089 (2013).

24. Elias-Miro, J., Espinosa, J. R., Giudice, G. F., Lee, H. M. & Strumia, A.
Stabilization of the electroweak vacuum by a scalar threshold effect. J. High
Energ. Phys. 1206, 031 (2012).

25. Pontecorvo, B. Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957).
Possible neutrino-antineutrino oscillations were proposed in analogy to the
oscillations in the neutral kaon system.

26. Maki, Z., Nakagawa, M. & Sakata, S. Remarks on the unified model of
elementary particles. Prog. Theor. Phys. 28, 870–880 (1962).
The leptonic flavour mixing was described for the first time.

27. Pontecorvo, B. Neutrino experiments and the problem of conservation of
leptonic charge. Sov. Phys. JETP 26, 984–988 (1968).
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