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Flocking at a distance in active granular matter
Nitin Kumar1, Harsh Soni1,2, Sriram Ramaswamy1,2 & A.K. Sood1

The self-organized motion of vast numbers of creatures in a single direction is a spectacular

example of emergent order. Here, we recreate this phenomenon using actuated nonliving

components. We report here that millimetre-sized tapered rods, rendered motile by contact

with an underlying vibrated surface and interacting through a medium of spherical beads,

undergo a phase transition to a state of spontaneous alignment of velocities and orientations

above a threshold bead area fraction. Guided by a detailed simulation model, we construct an

analytical theory of this flocking transition, with two ingredients: a moving rod drags beads;

neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and

experiment agree on the structure of our phase diagram in the plane of rod

and bead concentrations and power-law spatial correlations near the phase boundary. Our

discovery suggests possible new mechanisms for the collective transport of particulate or

cellular matter.
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T
he flocking of animals1–4 relies on organisms sensing each
other’s presence, orientation and direction of movement.
Physical scientists interested in this spontaneous breaking

of rotation invariance in living systems have adopted a variety of
approaches to the problem5–7, including experiments in vivo and
in vitro8, computer simulations and theory. Artificial analogues of
self-propulsion9–16 are currently a subject of intense interest, both
as a controlled testing ground for theoretical predictions and as a
rich source of new phenomena and applications.

We focus here on the case of macroscopic particles with a
stepwise tapered rod-like shape, with inelasticity and static
friction, placed on a rapidly vibrating surface. The tilt of the
particle takes up the vibrational energy and, through a frictional
mechanism already described elsewhere9,17–19, transduces it into
directed motion along the surface. It is proper to regard such
particles as self-propelling: the sustained energy input from the
vibrating surface is nutrient or fuel, the tilt of the particle is the
motor coordinate, the direction of motion is set by the particle
orientation and not by an external force and the net in-plane
force on particle plus base is zero. The motility mechanism can be
viewed as a noisy ratchet20 with the novelty that the asymmetry is
carried not by the substrate but by the particle, as in ref. 21.

A single such motile rod on a bare vibrated surface translates,
with mean speed 0.36 cm s� 1 and standard deviation
0.25 cm s� 1, where the statistics is obtained from 150 rods,
primarily in the direction of the vector from its thick end to its
thin end. That vector itself executes rotational diffusion, losing
memory of its initial orientation on long enough timescales. As a
result, the centre of mass of the rod describes a persistent two-
dimensional random walk in the plane of the surface on which it
lies. Anisotropy is crucial: spheres, lacking a distinguished axis,
cannot tilt and thus cannot achieve motility, that is, self-
propulsion, by means of the mechanism that animates the rods.
A sphere can move laterally only if pushed or dragged by the
motile rods; an isolated sphere on a vibrating surface simply
bounces in place18,19. The movements of a single motile rod
amidst a sea of spherical beads were shown earlier18 to display
some remarkable statistical properties as a consequence of the
obstacles to rod motion presented by the beads. In the present
work we look for novel interaction effects, structural or dynamical
in origin, in the collective behaviour of motile rods dispersed
among spherical beads.

Our curiosity is amply rewarded: we find that the rods self-
organize into a globally oriented moving state at a remarkably low
concentration provided the bead background is dense enough. A
well-defined phase transition separates this ordered state or flock
from the disordered isotropic phase. We create a detailed
mechanistic simulation model of this system, which reproduces
the phenomena observed and uncovers the underlying physical
processes. We integrate the insights from experiment and
simulation into a simple analytical theory whose predictions are
borne out by our observations. Our work demonstrates for the
first time the formation of a true flock in a collection of dry
grains. Our discovery that a small concentration of motile
particles can coherently transport a large passive cargo, with an
efficiency that increases with the load, could find applications in
granular flow. We speculate further that the mutual interaction of
a small population of motile living organisms and a background
of non-motile material could yield self-organization of the former
and enhanced transport of the latter.

Results
Experimental results. Figure 1 shows a representative image of
our granular flock. Despite their low concentration the rods
display a high degree of orientational order. This and further

results emerge from our experiments on a mixture of stepwise
tapered rods and spherical beads confined between surfaces
subjected to rapid vertical vibration (see Fig. 2a and Methods).
The system is initialized by introducing the beads into the sample
cell and distributing the rods amidst the beads, to yield a
homogeneous rod–bead monolayer. We then study the nature of
the statistically stationary state of the vibrated rod–bead mixture
as a function of the area fractions Fb and Fr, defined as the
fraction of the surface covered by the two-dimensional projec-
tions of the beads and rods, respectively. We monitor the centroid
positions ri of all the particles and the tail-to-head unit vectors ni,
where i labels the particle in question, and all vectors lie in the
horizontal plane.

With increasing Fb (or, less surprisingly, Fr) the system is seen
to undergo a phase transition from a disordered state to one in
which the rod orientation vectors are aligned. Correspondingly,
the rods move in random directions in the low-density state
(Fig. 2b and Supplementary Movie 1) and coherently at high
densities (Fig. 2d and Supplementary Movie 2). At long
times the global movement in the ordered phase is a clockwise
or anticlockwise circulation with equal probability (Supplemen-
tary Fig. 1), with the orientation vectors aligned parallel to the
boundary. The direction of circulation once selected does not
change for the duration of the experiment.

We have checked that neither crystalline order nor mechanical
rigidity of the bead bed is an essential ingredient in promoting the
flocking of the rods. For example, the flock in Fig. 1 is on a liquid-
like bead background. Further, rods in an amorphous bead bed,
generated by using a mixture of bead sizes, are also seen to self-
organize into a flock (Supplementary Fig. 2 and Supplementary
Note 1). Creating and maintaining a homogeneous state in
bidisperse systems is complicated by size-segregation effects, which
is why we have continued to work with beads of a single size. The
rich physics that enters when the bead medium is a single- or
multidomain crystal requires a separate study, now underway.

In a confined geometry the simplest flock consists of particles
globally circulating around a common centre, which is the

Figure 1 | A granular flock. A monolayer of millimetre-sized tapered brass

rods align spontaneously on a vibrating surface amidst a background of

aluminium beads. Bead and rod area fractions are 0.51 and 0.16

respectively.
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motion seen in our experiments. Accordingly, we resolve ni into
local polar-coordinate components ðni � r̂i;ni�r̂iÞ � pi, which
we use to evaluate the order parameter P�/piS distinguishing
isotropic and oriented states, and G(r)¼/pi � pjSr�P2, which
measures correlations of orientational fluctuations about the
mean for pairs i, j of rods with separation |ri� rj|¼ r. The
instantaneous in-plane bead-velocity unit vectors ui, transformed
to the local polar frame to give vi � ðui � r̂i; ui�r̂iÞ, provide
another measure of flocking, v�/viS. The averaging denoted by
the angle brackets is carried out over all rods and over all times in
the steady state for P, about 100 statistically independent images
for G(r) and 25 frames for v (frame rate¼ 40 s� 1, and the plate is
vibrated at 200Hz).

The disordered and ordered phases are most clearly distin-
guished by growth kinetics. Figure 2c shows a typical disordered
state with the magnitude P(t)�|P(t)| of the instantaneous order
parameter, averaged over rods but not over time t, fluctuating just
above zero, and Fig. 2e presents an ordered state where P(t) grows
and saturates to a value close to 1, which implies that polar rods
are now moving parallel to the boundary. We construct a phase
diagram based on the steady-state value of P as shown in Fig. 3a.
For Fr40.025 we find that P increases abruptly across the
line Fbþ kFrC0.65, kC2. We identify this line, provisionally, as
the location of the nonequilibrium phase transition between the

disordered and ordered states, bearing in mind the effects of finite
size and the sample boundary. Correspondingly, Fig. 3c shows
the experimentally measured polar order parameter as a function
of Fb for Fr¼ 0.08. At the smallest values of Fr the phase
boundary bends sharply upwards, possibly implying a true lower
limit to the Fr required to produce a flock regardless of Fb. At the
highest densities arrested states are observed, where rods either
jam against the particles of the bead medium or cluster along the
boundary (Supplementary Fig. 3a). Figure 3e reports the variation
of the steady-state orientational correlations G(r) (scaled by its
value at the smallest r) of the rods as the system approaches
and then crosses the phase boundary. For Fb¼ 0.45, spatial
correlations consistent with a power-law are seen, while for larger
or smaller Fb, safely within the ordered or the disordered phase,
correlations decay more rapidly. These observations can
consistently be interpreted as pretransitional fluctuations in the
vicinity of a nonequilibrium phase transition, although the system
sizes explored are too small to permit a claim about the order of
the transition. As effects of finite size limit the accuracy of our
estimates of the value of the order parameter and the location of
the phase transition, we present in Supplementary Fig. 4a the
correlation functions of the orientation without the mean
subtracted. The flocking of the polar rods is accompanied by
coherent motion of the beads (Fig. 4a) as well, as measured by the
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Figure 2 | Structure and kinetics of the disordered and ordered states. (a) Dimensions and confinement geometry of the polar rod used in the

experiment, with arrow indicating direction of self-propulsion. (b–e) Typical configuration and corresponding time-evolution of polar order parameter in the

disordered phase, bead and rod area fractions Fb¼0.41, Fr¼0.05 (b,c), and in the ordered phase, Fb¼0.68, Fr¼0.05 (d,e); for the simulation

in the flower geometry: (f) rod used in simulation, (g–j) as in (b–e): Fb¼0.48, Fr¼0.06 (g,h), Fb¼0.66, Fr¼0.06 (i,j); for the simulation with periodic

boundary conditions, configuration and order-parameter evolution for the disordered phase, Fb¼0.20, Fr¼0.11 (k,l) and the ordered phase,

Fb¼0.60, Fr¼0.11 (m,n).
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bead-velocity order parameter v, which shows the same growth
kinetics as P (Fig. 4b).

Simulation results. To understand the physics underlying this
novel realization of a flocking transition, and to explore which of
the many possible control parameters are essential, we create a
computer model of tapered rods and spherical beads. For con-
venience in simulation the rods are constructed by joining
overlapping spheres in a straight line (Fig. 2f), but their shape is
chosen to resemble as closely as possible the stepwise tapered rods
in the experiment. We have also tried other shapes such as a
uniform taper and find qualitatively similar results which we do
not present here. We carry out two types of studies, one in an
enclosure constructed to imitate the experimental geometry, the
other with periodic boundary conditions in the horizontal plane.
In both cases the simulations, like the experiments, are three-
dimensional, with a base and a lid permitting tightly confined

motion in the third dimension. The energy input, precisely as in
the experiment, is through vertical agitation of the container. The
particles move according to the laws of Newtonian mechanics.
Collisions of the particles with each other and with the bounding
surfaces are governed by inelasticity and static Coulomb friction.
We add a small rotational noise to the dynamics of individual
rods. This improves the fidelity of our imitation of the experi-
mental system, in which minute imperfections in particle shape
and base or lid topography endow each rod with rotational
diffusion even when no beads or other rods are present.

Our simulation results can be seen in Figs 2g–j,k–n, 3. In the
‘flower’ geometry we find precisely the behaviour seen in the
experiment. Random motion at low area fraction (Supplementary
Movie 3) gives way to an ordered, circulating flock at high area
fraction (Supplementary Movie 4), and a phase diagram broadly
corresponding to that in the experiment is obtained. The
numerical experiment, moreover, can be performed in a periodic
simulation box, eliminating the effects of sample boundaries.
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Figure 2k,l (Supplementary Movie 5) and Fig. 2m,n
(Supplementary Movie 6) show that the order parameter, now
measured in a global Cartesian frame, remains at values
consistent with zero for all times at low Fb, while at high Fb it
grows to saturation. Clear evidence of a flocking transition
around FbC0.35 is seen in Fig. 3d showing polar order
parameter as a function of bead area fraction. Consistent with
these findings and with the experiments, Fig. 3f shows evidence of
power-law correlations for Fb¼ 0.4, but appreciable curvature on
a log–log plot for Fb well in the ordered or the disordered regime.
Increasing Fb serves to promote orientational correlations for Fr

as low as 0.03 (Supplementary Fig. 5). As in the experiments, we
present the ‘unsubtracted’ correlation functions in Supplementary
Fig. 4b. For good measure, we also investigate and rule out, in
Supplementary Fig. 6 (and Supplementary Note 2), the possibility
that the only role played by the beads is to reduce the rotational
diffusion of rods. These simulation results establish beyond
reasonable doubt that the phenomenon we observe is a phase
transition, with the beads playing a direct role in mediating an
aligning interaction among the rods.

Finally, on theoretical grounds, in particular because the
suspending medium of beads is compressible16, we expect large
number fluctuations in our system as in standard flocking models
of the Toner-Tu type2. In such systems, large-scale correlated
particle currents arise as a result of the coupling to easily excited
and slowly decaying variations in the orientation field, both in the
ordered phase2 and in the isotropic phase near onset22. In
Methods we show that the separate conservation of rods and
beads leaves unaltered the arguments2 for anomalously large
number fluctuations. We have carried out a limited set of
numerical studies of fluctuations in the number density of rods in
the ordered and disordered phases, and find an excess in both
cases (Fig. 5). Our simulation measurements of the standard
deviation DN in the number of polar rods in regions containing
/NS particles on average show that DN=

ffiffiffiffiffiffiffiffi
hNi

p
grows with /NS.

However, more extensive simulations or experiments are
required for a useful fit to a power law or other dependence
on /NS, and to probe the relation of this phenomenon to
known sources2,5,22–24 of enhanced density fluctuations in active
systems.

Theory. We now integrate the insights gained from experiment
and simulation to construct a theory. The sequence of events in
Fig. 6 also seen in simulation studies, shows that coherently
moving polar rods are able to entrain a stray rod initially moving

in the opposite direction, through the bead flow they generate, as
seen in Supplementary Movies 2, 4 and 6. These observations
suggest that the coupling of flow and orientation lies at the heart
of the phenomenon of flocking at a distance, as we now show
through a minimal, universal hydrodynamic theory whose para-
meters and their dependence on Fb are measured in our simu-
lation. We also discuss the connection to the particular case of
Bricard et al.16

As we are concerned with large-scale ordering, we work with
coarse-grained fields. Our system is a suspension of polar rods in
a compressible two-dimensional fluid of beads on a substrate. The
variables of interest are therefore the local order parameter P(r, t),
given by the average of the orientation vectors pi of the polar
rods, and the number densities r and s of beads and rods,
respectively, in a small neighbourhood around point r at time t.
Below, for simplicity, we consider the limit of small rod
concentration, and so treat only the bead density r(r, t). A
treatment with both densities is in Methods. In addition, we
include v(r, t), the average bead-velocity vector in the
neighbourhood, as it has a crucial role in mediating the
interactions that lead to order. In the dilute-rod limit v can be
viewed as the total velocity field of both species.

The equations of motion follow from a few general principles
and some key elements of the dynamics of the system.
Conservation of particles is embodied in the continuity equation

@trþr � ðrvÞ ¼ 0: ð1Þ
Newton’s second law locally reads

r@tv ¼ �ðG� Zr2Þvþ aP�Brrþ ::: ; ð2Þ
where we present only the leading-order terms in an expansion in
powers of gradients and fields. In (2), G40 damps motion with
respect to the substrate and lid, the term in B can be viewed as
describing pressure forces, driving flow downhill in density for
B40, and ameasures the degree to which orientation of the polar
rods gives rise to propulsive flow. We note in passing here that
such a term was argued to arise25 in the two-dimensional
projection of the three-dimensional hydrodynamics of a
suspension of motile organisms confined to a thin layer of
fluid. We discuss below the somewhat different origin of the term
in the case of our monolayer system. The viscosity Z describes
transmission of momentum in the plane of the system. The local
order parameter P, again to leading order in gradients and fields,
obeys

@tP ¼ lv�ða�Kr2ÞP�Arrþ ::: ð3Þ
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where a measures the rate at which an initial polarization relaxes,
presumably through rotational diffusion, and the magnitude and
sign of A characterize the tendency of rods to orient parallel or
antiparallel to concentration gradients2,26. The parameter l

determines the rate at which a uniform velocity (with respect to
the confining walls) aligns the polarization. The parameter K
governs spatial variations in the direction and magnitude of
the order parameter. The ellipsis in (2) and (3) denotes
contributions2 at higher orders in p, v and r, discussed in
Methods.

The terms with coefficients a and l are the key players in (2)
and (3). No symmetry rules out their existence; a phenomen-
ological theory must therefore include them. However, the physics
underlying these terms, especially as regards their signs, merits
some discussion. Recall that pi for the ith rod points from the thick
to the thin end. Depending on the detailed contact mechanics with
the vibrating base, the rod could propel itself on average parallel or
antiparallel to pi. Friction would cause the bead medium in the
vicinity to be dragged in the direction of motion of the rod.
A collection of such rods thus generates a force proportional to the
mean polarization P. The parameter a measures the strength of
this forcing. The magnitude of a should grow with the mean rod
concentration and propulsion speed, and should further depend
on the surface characteristics of a rod, which influence its ability to
carry the ambient medium with it, by dragging or pushing. A rod
with spontaneous motion parallel (antiparallel) to pi has a40
(ao0). By suitably engineering the geometry, mass distribution,
surface properties and contact mechanics of a rod, and exploring a
range of vibration parameters, it should be possible to make polar
rods with a range of magnitudes and either sign of a; the rods we
work with here have a40.

The mechanics underlying l is reminiscent of the interaction of
wind with a weathercock. Imagine a single tapered rod lying
athwart a uniform flow of particles over a surface. Although the
momentum transfer is distributed uniformly across the rod, its
mass is concentrated, and hence its pivot point shifted, towards
one end. This leads to a net torque due to the flow, and a
consequent rotation as shown in Fig. 7a. Geometrical arguments
alone cannot determine the sign of l and hence the sense of
rotation, and self-propelling activity could influence its value. It
should be possible to engineer lo0 by using intrinsically
higher-density material at the thin end, or a hollow interior at
the thick end.

The availability of a numerical simulation model provides
independent measurements of all phenomenological parameters
of importance to our theory. To measure l, we place a single
polar rod initially pointing in the x direction, and impose a flow
of beads with velocity v in the y direction (see Supplementary
Movie 7). By measuring the initial growth rate we estimate the
parameter l in (3), which we average over 50 such trials.
Independently, by measuring the rotational relaxation of a single
rod, we infer a. In a separate simulation, we impose a nonzero
mean P by applying an orienting field on a collection of rods.
Measuring the saturation value of the resulting macroscopic
velocity yields a/G in (2). The damping G is readily estimated
from the relaxation of an imposed initial velocity. Figure 7b
shows the dependence of these key parameters on area fraction
r0. We comment in Methods on the parameter A, which has only
a minor role in our analysis.

We ignore density variations in (3) and (2), replacing r by its
mean value r0, which we treat as a parameter on which the
coefficients depend. Working with the spatial Fourier compo-
nents vq and Pq of the velocity and order parameter at wavevector
q, (2) then tells us that, on timescales long compared to r0/G,
vq-aPq/(Gþ Zq2). Substituting this value for v in (3) we obtain,
to order q2,

@tP ¼ �ð�aþ �Kq2ÞP ð4Þ
where a%¼ a� la/G and �K ¼ K þ laZ=G2. The mechanism for
spontaneous ordering now becomes clear. As l is an increasing
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in the ordered (labelled O) and disordered (D) phases. (b) and
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function of r0, a% can turn negative even if a is positive. The state
P¼ 0 is then linearly unstable, and a state with nonzero P
on macroscopic scales will set in. Let us now test our theory
using our simulation measurements of the parameters. First, for
the proposed mechanism to work, a% must be less than a, that
is, we predict la/G40. Our simulations show that a rod
drags beads in the direction of its own motion and that the flow

of beads rotates neighbouring rods to point in, and thus move in,
the direction of the flow. Thus a and l have the same sign,
confirming the prediction. Second, Fig. 7b shows that as FrþFb is
increased, a/G (for three values of Fr) increases and a/l decreases,
and the two quantities cross (that is, a% crosses zero) at a value of
FrþFb, which decreases with increasing Fr. Therefore the theory
predicts a phase transition to an ordered phase with increasing
area fraction, and negative slope to the phase boundary in the
Fr�Fb plane, both of which are borne out by experiment. The
intersection points in Fig. 7b, corresponding to the mean-field
estimate of the threshold area fraction, are, not surprisingly,
somewhat lower than the measured values in the simulation,
Fig. 3b.

Within our mean-field treatment ((4) or the parent equations
(3) and (2)) it is straightforward to see that the transition has a
continuous onset and a diverging correlation length �

ffiffiffiffiffiffiffiffiffi
�K=�a

p
.

Our limited observations in experiment and simulation show an
increasing correlation length upon approach to the transition.
Experience with standard flocking models would suggest27

instead a discontinuous transition, albeit with appreciable
pretransitional fluctuations. Larger-scale simulation studies
including finite-size scaling analyses, now in progress, will
determine the character and spatial structure of the onset of
order for our rod–bead flock. Note that orientability, motility and
coupling to flow, rather than specifics of shape, were the essential
ingredients of our theory. On symmetry grounds one cannot
therefore rule out the possibility that the self-propelled disks of
ref. 10, in a background of non-motile particles, could flock
through the mechanism reported here—provided flow can
reorient the disks in the manner required.

Discussion
Our work is of importance as a remarkable example of
cooperativity in active matter, with rods and beads giving rise
to an order that the former could not achieve at such low
concentration and the latter could not aspire to at all. It suggests
an original mechanism for creating a coherent motile composite
by introducing a small number of orientable motile particles into
a medium containing non-motile components, that transmit
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Figure 6 | Flowing beads reorient polar rods. A series of experimental images showing a stray polar rod brought into alignment with the rest of the flock

as a consequence of bead flow.
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Figure 7 | Weathercock effect and location of the phase transition.

(a) The direction in which the polar rod is rotated by a flow depends on its

natural pivot point. (b) a/G is seen to grow and a/l to decrease with

increasing Fb. Thus the flow velocity generated by a local polarization as well

as the aligning power of bead flow grow with increasing bead concentration.

The mean-field estimate of the flocking transition corresponds to the

intersection of the two curves, marked by stars, where a% in Equation (4)

changes sign from positive to negative as FrþFb is increased.
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motion more effectively as their concentration is increased.
A static image of the ordered state would give no clue as to why
the rods are lining up: the transmission of orientational
information takes place through a viscous interaction which can
be tuned through concentration. This works because our system
is a monolayer, not a confined three-dimensional fluid.
Momentum transfer in the vertical direction is governed by
friction with the bounding base and lid. Only the transmission of
momentum laterally in the plane of the system is governed by an
effective viscosity arising from tangential forces between the
beads with each other and with the rods. Our simulations show
that in-plane viscous effects, as measured by a or Z in (2), are
enhanced by increasing bead concentration, while the out-of-
plane damping G stays constant. It is this key feature that gives us
a system in which the flocking tendency can be tuned by varying
the concentration of the non-motile actors, the beads.

Empirically, the system displays a flocking transition even if the
bead medium is so concentrated that it crystallizes. Our simplified
theory is restricted to the case where the system as a whole is
fluid, not crystalline. How motile rods move through and
transmit their motion and orientation through a highly ordered
bead medium remains a major open problem.

The hydrodynamic theory we have presented is indifferent to
the precise origin of motility. It matters only that a polar, motile
object drags ambient inert particles, whose flow in turn reorients
neighbouring polar particles. There is a priori no reason why this
cannot be realized in a system in which the motility mechanism
does not require mechanical vibration or, for that matter, a
vertical electric field as in ref. 16. Could living matter take
advantage of such a general mechanism?

The reader should note that the flocking behaviour seen in our
system was not inevitable, but relied on favourable signs of the
parameters a (rods drag beads) and l (the weathercock effect). An
important direction that we are currently exploring is to design
polar rods with the ‘wrong’ relative sign of a and l. Indeed all the
parameters a, G, l and a can be manipulated at the scale of a
single particle. Increasing rotational noise, perhaps by roughening
particle surfaces or increasing the vibration amplitude, should
increase a. G could be changed by roughening the base and lid.
The tendency of a polar rod to point along the flow is quantified
by l. The shape and the mass distribution of the rod are the likely
properties governing this parameter. It seems to us that there are
two mechanisms behind the term aP in (2): dragging by
tangential forces at the sides of a rod, and the pushing of beads
at the head of a rod. A detailed exploration of the effects of shape
and surface friction would allows us to manipulate a.

Much remains to be explored about this granular flock. Deep in
the ordered phase, the character of excitations about the uniform
aligned state awaits study, as do the statistics of density and
orientational fluctuations. Just past the apparent onset of
order, does our system reproduce the banding instability of simple
flocks, and is the character of this granular flocking phase transition
discontinuous27? What is the nature of the competition between
kinetic arrest and flocking as concentrations are increased?

Before closing, we return to the colloidal flock of Bricard
et al.16, in which energy from a vertical electric field is transduced
into rolling motion in a horizontal plane. In that system too,
hydrodynamic coupling leads to a macroscopically aligned
state of particle velocities. The most important distinguishing
feature of our system is that the aligning interaction between the
motile polar rods can be tuned by changing the concentration of
the beads, which are themselves non-motile. Furthermore, the
suspending medium, namely, the fluid of beads, is compressible
(effects associated with overall incompressibility of grains plus
air should arise in an airtight container.), which rules out the
suppression of fluctuations found by Bricard et al.16; the rods

carry an intrinsic shape polarity; the single-rod motility is not
hydrodynamic in origin; the hydrodynamics at all scales in our
monolayer system is that of a two-dimensional fluid on a
dissipative substrate28; the flow field around a single polar rod
(Supplementary Fig. 7 and Supplementary Note 3) is simply a
screened monopole29.

To summarize: we have created a system of macroscopic motile
dry grains that flock spontaneously at low concentration,
transmitting information about their orientation over large
distances through the flow of an ambient medium of milli-
metre-sized beads. The beads, themselves non-motile, are cargo
and coupling: increasing their number promotes flocking and
enhances their own coherent transport. The simple and robust
mechanism underlying this nonequilibrium phase transition
prompts us to wonder about its possible wider relevance in
living matter and industry.

Methods
Experimental methods. Our experiments are conducted on a mixture of mac-
roscopic brass rods and aluminium beads. The rods18 are 4.5mm long, with
diameter tapered in steps from 1.1mm at the thick end or tail to 0.7mm at the thin
end or head, as shown in Fig. 2a. The beads are spheres of diameter 0.8mm. The
rod–bead mixture is confined to a monolayer in an experimental cell consisting of a
shallow circular well in an aluminium plate whose dimensions and shape are
shown in Fig. 2b. The plate is covered by a glass lid, and the distance w from plate
to lid is 1.2mm. The assembly is vibrated vertically by a magnetic shaker (LDS
V406-PA100E). All our experiments are carried out at oscillation amplitude
A¼ 0.04mm and frequency f¼ 200Hz, corresponding to a nondimensional
shaking strength (2pf)2A/g¼ 7.0 where g is the acceleration due to gravity. The
rods imitate self-propulsion by transducing the vertical vibration into fluctuating
but persistent motion in the plane, in the tail-to-head direction9,17–19 (the arrow in
Fig. 2a). We prevent accumulation of particles at the boundary, seen in
Supplementary Fig. 2b, by the use of a flower-shaped sample cell10. Images of the
collection of particles were acquired by high-speed camera (Basler acA2040-180 kc,
2,046� 2,046 pixels giving a spatial resolution of 0.05mm for our setup) at 40
frames per second and analysed in ImageJ (http://rsb.info.nih.gov/ij/).

Simulation methods. Our simulation is time-driven, as particle shapes and the
vibrating base and lid complicate the prediction of the next collision. All the
interactions in the simulations are based on the impulse-based rigid body collision
model30,31. Each tapered rod consists of equally spaced 13 overlapping spheres,
seven of 1.1mm diameter and three each of 0.88 and 0.72mm (Fig. 2f), with mass
density 8.7 g cm� 3 corresponding to brass. The beads are represented by spheres of
diameter 0.8mm and mass density 2.7 g cm� 3 of aluminium. The vertical positions
of the vibrating base and lid at time t are Acos 2pftþA and Acos 2pftþAþw,
respectively. All quantitative studies with periodic boundary conditions are all for a
system size of 55.1 rod lengths; some videos use a different size. The rods in the
experiment display rotational diffusion as a result of slight imperfections in the
shape or substrate roughness. Lacking such asperities, our numerical rods need to
be supplied with rotational noise: if a rod collides with the bed or the lid with
relative velocity urel of contact points normal to contact plane, an extra angular
velocity oz¼ eurelZ is supplied to the rods. Here Z¼±1 with equal probability.
The strength e is a control parameter. To closely match the experimentally
observed single-particle dynamics, we choose the friction and restitution
coefficients m and e to be 0.05 and 0.3 for particle–particle collisions, 0.01 and 0.3
for bead–wall (base, lid and lateral boundary) collisions, 0.03 and 0.1 for rod–
base(or rod–lid) collisions, 0.01 and 0.3 for rod–boundary collisions, respectively.
Between collisions the particles obey Newtonian rigid body dynamics. All
simulation movies and snapshots are generated using VMD software32.

Details of theoretical development. We construct here a hydrodynamic
description of the fluid of beads and motile polar rods on a substrate, keeping track
of the separately conserved numbers of beads and rods. We show that the flocking
transition mediated by the bead velocity is unaltered by the additional conservation
law. We demonstrate, in addition, that the presence of the dense fluid of beads
leaves unaffected the singular nature2 of number fluctuations in a flock. This is in
contrast to the case16 of active particles in a confined incompressible fluid medium.

Let r and s be the bead and rod concentration fields respectively, and let v be
the bead velocity field. Let us identify the polar-rod current with the polar order
parameter p as is frequently done in microscopic derivations of the flocking
equations33. Extending our arguments in the main body of the paper, the governing
equations of motion, a two-component extension of the Toner-Tu2 model, read

@tsþr � p ¼ 0; ð5Þ

@trþr � rv ¼ 0; ð6Þ
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expressing conservation of beads and polar rods, respectively,

r@tvþGvþOðrrvÞþ ::: ¼ ap� Err� Frs ð7Þ
which is Newton’s second law for the bead fluid, with damping G due to contact
with the substrate and lid, propulsion a, and moduli E and F giving rise to
pressure-like forces from bead and rod density gradients, and

@tpþwp � rpþ ::: ¼ �ðaþ bp � pÞpþðK1rr
� þK3r2Þpþ lv�Arr�Brs ð8Þ

describing the dynamics of the polar order parameter and introducing several
phenomenological coefficients. We have ignored two other terms with two factors
of p and a single r, which are unimportant to our analysis. The ellipsis in (7) and
(8) denotes terms such as rrp, higher orders in p, and2 order prp, as well as
terms obtained by substituting one or more factors of p in the preceding by v.
These include conventional viscous damping rrv. None of these has any
significant effect on our analysis.

On timescales 44r/G, (7) tells us that v relaxes to a value determined by the
remaining fields. Inserting this value in (6) and (8) yields effective equations of
motion for r and p, in which (8) retains its form but with a-a%¼ a� la/G,
A-Ā¼Aþ lE/G and B ! �B ¼ Bþ lF=G. For large la, a% turns negative leading
to a flock with mean order parameter p0, with magnitude p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� �a=b

p
and mean

bead velocity v¼ (a/G)p0. Let us denote the direction of mean orientation by || and
perpendicular directions as >. Expanding to linear order about this state,
p¼ p0þ dp>, v¼ v0þ dv> r¼r0þ dr, s¼ s0þ ds and defining

Y ¼ r � dp? ð9Þ
yields

ð@t þ u1@ jj �Kr2ÞY ¼ � �Ar2
?dr� �Br2

?ds ð10Þ
for the orientation, with u1¼wp0,

ð@t þ u0@ jj �
r0E
G

r2Þdrþ r0a
G

Y� r0F
G

r2
?ds ¼ 0 ð11Þ

for the concentration of beads, and

@tdsþr � dp ¼ 0 ð12Þ
for the rods. Fourier-transforming in space, and eliminating s in (10) and (11) via
(12) yields

@2
t drq �ð� iu0q jj þ

r0E
G

q2Þ@tdrq �
r0a
G

@tYq þ
r0F
G

q2Yq ð13Þ

and

@2
t Yq ¼ �Aq2@tdrq �ðiu1q jj þKq2Þ@tYq þ �Bq2Yq ð14Þ

for Fourier components at wavevector q. It is straightforward to see that the
eigenfrequencies of this problem are of order q. Using this fact in (13) tells us
that qdrqBYq to leading order in q. The term Āq2qtdrq is thus of the same order
as the last term �Bq2Yq . The presence of an additional conserved field, r, therefore
does not affect the power-counting properties of the equation for the orientational
order parameter. If we introduce a noise into (8), the resulting fluctuations in the
orientation will scale precisely as in the Toner-Tu flock2, and therefore the
fluctuations in the concentration of rods, via (12), will be singular.

A word on the parameter A: it appears plausible on packing grounds that it
should be negative, that is, the thick end of the rod is easier accommodated in low-
density regions. However, it proved numerically infeasible to detect density
variations on the length scale of a single rod; we defer further discussion of this
coefficient to later work as it does not have a significant role in our model.
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