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Crosstalk and the evolvability of intracellular
communication
Michael A. Rowland1,2, Joseph M. Greenbaum3 & Eric J. Deeds3,4,5

Metazoan signalling networks are complex, with extensive crosstalk between pathways. It is

unclear what pressures drove the evolution of this architecture. We explore the hypothesis

that crosstalk allows different cell types, each expressing a specific subset of signalling

proteins, to activate different outputs when faced with the same inputs, responding differently

to the same environment. We find that the pressure to generate diversity leads to the

evolution of networks with extensive crosstalk. Using available data, we find that human

tissues exhibit higher levels of diversity between cell types than networks with random

expression patterns or networks with no crosstalk. We also find that crosstalk and differential

expression can influence drug activity: no protein has the same impact on two tissues when

inhibited. In addition to providing a possible explanation for the evolution of crosstalk, our

work indicates that consideration of cellular context will likely be crucial for targeting sig-

nalling networks.
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S
ignalling networks allow cells to process information from
their environment and respond in appropriate ways to
input signals. These networks are generally constructed

from a set of interacting proteins; changes in the activity of these
proteins across the network transmits the signal from the cell
membrane to downstream elements, ultimately resulting (on
average) in a particular phenotypic response (for example,
proliferation, apoptosis or differentiation). Traditionally, these
networks have been organized into ‘canonical pathways’ corre-
sponding to sets of proteins that are involved in the transmission
of a specific signal1–8. For example, the human signalling network
includes pathways that are activated by insulin-like growth factor-
I (IGF-I), Wnt or apoptotic signals5–8. Although they are often
studied separately, these pathways can demonstrate a high degree
of ‘crosstalk,’ where proteins that are shared between two
pathways cause one pathway’s activity to be modulated by the
activity of another1,2,9–12.

The degree of crosstalk present in signalling networks varies
widely across evolution. For instance, bacterial two-component
signalling (TCS) networks possess little crosstalk, with most
histidine kinases (HKs) acting on a single target (Fig. 1a)13–15.
We recently demonstrated that this lack of crosstalk is likely a
result of the fact that the histidine kinases that make up these
networks are generally bifunctional, acting as both kinase and
phosphatase for their substrates16–18. In contrast, metazoan
networks display incredible levels of crosstalk (Fig. 1b): Kirouac
et al. recently showed that there are more connections between

canonical pathways than within them1,2,4,9–12. Crosstalk in
metazoan networks is thus so extreme that the individual
pathways generally can no longer be discerned once they are
combined into a single network (Fig. 1b).

While the kinases and phosphatases typical of metazoan
signalling clearly do not share the same enzymatic constraints as
bacterial TCS systems12–16, the fact that they can display crosstalk
does not explain why it is so extensive. In this work, we explore the
hypothesis that the crosstalk present in metazoan networks has
evolved, at least in part, due to the constraints multicellularity has
placed on intracellular communication. In particular, metazoans
have multiple different cell types, many of which need to react
differently to the same stimulus (Fig. 1c). For example, during
wound healing endothelial cells construct new blood vessels,
fibroblasts establish the new extracellular matrix, and epithelial
cells proliferate and migrate to close the skin19–21. If metazoan cells
contained TCS-like networks (that is, networks with essentially no
crosstalk, Fig. 1a), they would need to evolve a new signalling
molecule (for example, a new cytokine) and cognate receptor for
each combination of cell type/response they needed to control
separately. In organisms as complex as mammals, this approach
would likely require thousands of unique cytokines, each binding
specifically to one of thousands of unique receptors. A TCS-like
architecture would also present a major barrier to the evolution of
new cell types, since each new cell type would require the evolution
of a unique complement of signals and receptors for any novel map
between environment and phenotypic response that it needed to
exhibit (that is, a set of unique ‘signalling channels’).

We posited that the extensive crosstalk present in metazoan
networks, combined with differences in the expression of various
nodes in the network in different cell types, might allow those cell
types to all respond differently to precisely the same set of signals.
This would enable metazoans to encode a wide diversity of responses
using a relatively small number of cytokines and receptors. To test
this hypothesis, we first created a simple Boolean network with only
two inputs and two outputs, and evolved these networks to maximize
the number of unique input/output maps the network could exhibit.
We found that the evolved networks, which exhibited significant
crosstalk and complexity, could generate hundreds of unique input/
output maps with only two inputs and two outputs.

To test this idea in a more realistic biological system, we
generated a large-scale Boolean network model of the signalling
network inside human cells by combining 29 signalling pathways
curated in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database3. Using available data on protein expression22,
we found that the architecture of the signalling network changes
in different tissues. In the complete signalling network, every
input is able to signal to each of the transcription regulating
outputs. However, when nodes are removed based upon
expression data in various tissues, none of the inputs are able
to directly signal to every output. Despite this, the cell-specific
subnetworks retain a high degree of input-output
interconnectivity when compared to subnetworks in which
nodes are expressed at random, indicating that the expression
of the signalling proteins in different tissues have likely evolved to
maintain extensive crosstalk. As a result of this connectivity, the
cell-specific networks demonstrate a much greater diversity in
responses to stimuli than either cells with random protein
expression or cells with TCS-like networks that have no crosstalk.
Interestingly, we found that the tissue-specific networks generally
respond quite differently to the inhibition of individual proteins.
These results imply that the complex interplay between network
topology and gene expression that allows different cell types to
respond differently to precisely the same signals has important
consequences for the development of drugs that target signalling
processes23–25.
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Figure 1 | Bacterial TCS versus human signalling networks. (a) Diagram

of the bacterial TCS network. Blue nodes represent the inputs, sensor HKs,

and red nodes represent the outputs, Response Regulators (RRs). Note the

highly isolated nature of the TCS network: the majority of inputs only point

to one, or at most two RR’s. (b) Diagram of the human signalling network.

This representation draws from six of the 29 canonical pathways from the

KEGG pathways database3. Blue nodes are inputs, which are identified by

searching for the keyword ‘Receptor’ in the UniProt entries of the genes

associated with each node27. The red nodes are outputs, which are similarly

identified by searching for the keyword ‘Transcription regulation’. Note that

even with six canonical pathways the network is very interconnected and is

difficult to globally comprehend. (c) Two human cell populations from

different cell lines are exposed to the same input. However, while the

majority of Population A proliferates in response to the input, the majority

of Population B undergoes apoptosis.
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Results
Crosstalk and expression provide a diversity of responses. To
demonstrate how network complexity can regulate the cellular
decision-making process, we developed an evolvable Boolean net-
work model that begins with a simple network consisting of two
inputs that each activates a single, cognate output (Supplementary
Methods). At each evolutionary step, the model can perform one of
three possible modifications: (1) add an edge, (2) flip the sign of an
edge, or (3) add an intermediate node (Fig. 2a). New networks are
evaluated according to the number of unique input–output maps
they can generate, as described below; if that number increases, the
modified network is ‘kept’ by the algorithm and used for the next
set of modifications. If that number does not increase, the new
network is discarded and the algorithm attempts another random
modification of the previous topology.

To determine the variety of responses any given network can
produce, we first generated the set of possible ‘expression vectors’ for
that network. Each expression vector represents a unique pattern of
presence or absence for each of the intermediate notes in the
network; this is meant to represent all possible unique ‘cell types’
that could exist within this model, with each distinct cell type
expressing a different subset of signalling proteins. For example a
network with two intermediate nodes has a total of four different
expression vectors: ‘00’, in which both are absent, ‘01’ and ‘10’, in
which either is present, and ‘11’, in which both are present. In
principle, each different expression vector could generate a network
with a different response to the same input signals (for example,

Fig. 1c). For each expression vector, we ran a Boolean network
simulation with no inputs active, either input active, and both active,
and measured the activity of the outputs at steady state. Note that,
during these simulations, the nodes that are not expressed cannot
become active, since the network cannot activate a protein that is
not present within the cell. The activation state of all the expressed
nodes, however, can evolve freely during the simulation according to
a straightforward set of Boolean logic functions (see Methods and
Supplementary Methods). This simulation produces a steady-state
input/output (I/O) map for that expression vector, which is a string
of 8 binary digits that represents the activity of both outputs in
response to the four combinations of active inputs (that is, the input
activities 00-01-10-11 might produce the I/O map 01-10-11-00). By
applying these simulations to each unique expression vector, we can
determine the total number of unique I/O maps the network is able
to generate across all expression vectors.

We began this evolutionary algorithm with a TCS-like
network where each pathway includes an input activating an
intermediate node, which then activates an output. The TCS-
like network has only four unique expression vectors, each of
which produces a unique I/O map. However, as the model
evolves and includes additional intermediate nodes, the net-
work generates a larger number of I/O maps; networks with
only 15 intermediate nodes are able to produce over 200 I/O
maps (Fig. 2b). For example, the network diagrammed in
Fig. 2c generates 226 distinct I/O maps, depending upon the
expression of its intermediates.
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Figure 2 | Evolvable Boolean signalling networks. (a) Diagram of the three possible modifications to the network. When an edge is added, the new edge

connects one random node to another, and may be either activating or inhibitory. When an edge’s sign is flipped, a randomly chosen edge is switched from

being activating to being inhibitory or vice-versa. When an intermediate is added, the intermediate connects one random node to another. The sign of the

edges to and from the new node are chosen randomly. (b) The number (No.) of unique I/O maps as a function of the number of unique expression vectors.

A network has 2N unique expression vectors, where N is the number of intermediate nodes in the network. For networks with 2 inputs and 2 outputs, there

are a maximum of 256 unique I/O maps possible. Two sets of networks were evolved: one set included an evolutionary pressure to obtain as many unique

I/O maps as possible (black) while the other set was evolved randomly (red). (c) An example of an evolved signalling network with 15 intermediate nodes

(32,768 unique expression vectors) and 33 edges connected the two inputs to the two outputs. This network generates 226 unique I/O maps, depending

upon the expression of its intermediates. (d) The kernel density estimate of the average fraction of overlap (after compression, see Supplementary

Methods) of 300 evolved networks with pressure to maximize the number of unique I/O maps (black) and without such pressure (red). Note that the

average fractions of overlap were determined from fully evolved networks with 15 intermediate nodes.
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Although the increase in I/O map diversity in these
evolutionary simulations is striking, it is unclear if this is simply
due to the increase in the number of nodes and edges in the
network, or if it is a direct result of selection. To test this, we
created a version of our evolutionary algorithm without the
selection criteria; in this case, every randomly chosen alteration to
the existing network was accepted regardless of its impact on the
I/O maps. Using this altered algorithm, we produced a set of
randomly evolved networks with up to 15 intermediate nodes.
The lack of evolutionary pressure resulted in networks with
relatively little I/O map diversity, generating an average of 10
unique I/O maps, an order of magnitude less than networks
evolved with a pressure to diversify (Fig. 2b, red).

We found that networks evolved under the pressure to increase
diversity bear a fairly striking resemblance to the types of networks
found in metazoan cells (Fig. 2c versus Fig. 1b), exhibiting extensive
crosstalk and complexity. This architecture allows for a very diverse
array of responses depending on which nodes are present in the
network. To quantify both network complexity and crosstalk, we
employed a measure that we term the ‘average fraction of overlap.’
To do this, we first define all of the nodes downstream of any input
i as Di, and the nodes upstream of any output j as Uj. We then
define the ‘pathset’ between i and j as the intersection of these two
sets, Pij�Di-Uj. This allows us to collect the set of all nodes that
are in between input i and output j without restricting that set to
some preconceived linear pathway (Figs 1b and 2c). The overlap
between two distinct pathsets Pij and Pxy is defined as fraction of
nodes shared between them; the higher this number, the greater the
tendency for input i to use the same set of nodes to reach output j
that input x uses to reach output y. The average fraction of overlap
is then calculated by averaging this quantity across all unique ij–xy
pairs in the network. One concern with this method is that isolated
cascades in a network may lead to spurious values of the average
fraction overlap. To address this, we ran a compression algorithm
on the network to collapse such cascades into a single node before
we defined the pathsets and calculated the fractions of overlap (see
Supplementary Methods for further details).

We found that the mean average fraction of overlap for
networks evolved with a pressure to diversify was 0.61 while the
mean average fraction of overlap for randomly evolved networks
was significantly lower (0.12, Po2.2� 10� 16, Wilcoxon rank-
sum test; Fig. 2d). This suggests that the pressure to increase I/O
map diversity results in increase in crosstalk, though it is
important to note that the correlation between I/O map diversity
and average fraction overlap is not perfect (Supplementary
Methods). Nevertheless, even in this simple model, networks with
relatively high levels of crosstalk allow different cell types
expressing different nodes in the network to readily exhibit
widely different responses (or undertake different cell fate
decisions) based on the same two input signals26.

Expression patterns are selected for signalling diversity. In
order to characterize the interconnectedness of the human sig-
nalling network and understand how this architecture and dif-
ferential gene expression might affect responses to signals, we
compiled a large Boolean network model by combining the
contents of 29 signalling pathways from KEGG, resulting in a
network with 735 nodes and 2,211 edges (see Supplementary
Methods for details). Using UniProt we identified 76 input nodes
(keyword: ‘Receptor’) and 67 output nodes (keyword: ‘Tran-
scription regulation’)27. While KEGG provides information on
whether any given interaction in the network is stimulatory or
inhibitory, how those influences are integrated into the activity of
any given protein in the network is unclear. In order to make
construction and simulation of such a large network feasible, we

developed a straightforward Boolean logic function to update the
state of each node at each step, based on a set of fairly general
regulatory principles in cell signalling (see Methods and
Supplementary Methods for further details). While this is an
abstraction of the true human signalling network, it allows us to
focus on the impact of crosstalk and complexity on global input/
output behaviour.

To highlight the relative complexity of this human signalling
network, we drew a directed graph representing only a fraction of
the total network (Fig. 1b). The resulting diagram is quite
elaborate, with numerous edges connecting nodes from different
sections of the system. Within the complete network, about 78%
of the nodes are downstream of every single receptor, and every
output is also downstream of every receptor, revealing a relatively
high level of crosstalk between canonical pathways.

The complete network we compiled from KEGG, however,
does not represent the signalling networks present within
different cell types due to differences in expression of signalling
proteins. In order to account for these differences, we obtained
expression data for the network from the Human Protein Atlas22.
This dataset includes relative expression levels (‘High’, ‘Medium’,
‘Low’ and ‘Not Detected’) based upon immunohistochemistry
microarray assays for 344 of the 735 nodes in our network from
84 tissues. The remaining nodes either represent non-protein
signalling elements, such as ions or small molecules, or were not
included in the data set, usually due to experimental constraints
(for example, the lack of a specific antibody for that protein).
From the expression data we created 84 subnetworks where a
node and its associated edges were removed if the node is ‘not
detected’ in the respective tissue. The 391 nodes for which we
have no direct expression data are always expressed.

These subnetworks all exhibit structures that are quite different
from the complete network we originally compiled from KEGG:
while each input can directly affect all 67 output nodes in the
complete network, they can only reach about 50–64 outputs in
the expressed subnetworks (Fig. 3a). Thus, while the complete
network serves as a useful summary of the possible interactions
among proteins in the human signalling network, differences in
the presence or absence of various nodes clearly generates a
diverse set of network topologies in various tissues.

The average number of outputs each input can reach in an
expressed subnetwork strongly correlates with the fraction of
nodes present in the subnetwork (Spearman’s r¼ 0.88) (Fig. 3b,
blue). To better understand subnetwork topology, we compared
the human expressed subnetworks to a set of random subnet-
works of varying sizes (Fig. 3b, red). For any given fraction of
nodes expressed in these subnetworks, we chose the set of nodes
to be expressed at random with uniform probability. As with the
expressed subnetworks, any node not expressed in these random
subnetworks was removed, along with its associated edges. As a
result, these subnetworks are not randomizations of the network
architecture, but rather just randomizations of which nodes in the
graph are present or absent. For any given network size, it is clear
that the expressed subnetworks found in human tissues maintain
a significantly higher connectivity between inputs and outputs
than random expression vectors (minimum difference¼ 9.398,
P¼ 1.546� 10� 4). The expression of individual nodes in human
tissues does not depend upon their indegree, outdegree, or their
betweenness with regard to inputs to outputs, common properties
that are used to quantify the ‘topological centrality’ of nodes in a
network. This suggests that the non-random connectivity we
observe depends on global properties of the set of nodes
expressed in various human tissues (Supplementary Fig. 1).

We also found that the expressed subnetworks have less
overlap between pathsets than the complete network. The
complete network has an average fraction of overlap of about

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16009

4 NATURE COMMUNICATIONS | 8:16009 | DOI: 10.1038/ncomms16009 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


0.73, indicating that most of the intermediate nodes exist on some
path between any input to any output (Fig. 3c, black). The
expressed subnetworks have a mean overlap of about 0.37,
significantly lower than the overlap found in the complete
network (Fig. 3b, blue Po2.2� 10� 16, Student’s t-test). To
evaluate whether or not this difference was simply due to the fact
that the expressed subnetworks are smaller than the full network,
we performed a random control similar to that in Fig. 3b. In this
case, however, rather than varying the number of expressed nodes
from 0 to 1, we instead created a ‘random’ version of each human
tissue, where the random version has precisely the same number
of nodes expressed as the real tissue, but the specific nodes
expressed are chosen at random. We created 10 independent sets
of 84 tissues, and found that these random subnetworks exhibit
significantly less overlap than the expressed subnetworks (Fig. 3c,
red, meanE0, Po2.2� 10� 16, Wilcoxon rank-sum test).

We then performed a set of Boolean network simulations on
each subnetwork to evaluate whether their non-random archi-
tecture had an impact on their functional properties. For any
given subnetwork, we independently activated each input and ran
the model to steady state. To account for possible feedback loops,
the ‘output’ state of any node in this case is taken as its average
activity over the last 1,000 steps of the simulation. The I/O map
for any given tissue in this case is the matrix of steady-state
output values obtained across all possible inputs. We also defined
an I/O map distance for a pair of tissues as the number of
differences between the two I/O maps (see Supplementary
Methods). We normalized the I/O map distance by the total
number of input combinations possible, 76 choose n; by

normalizing in such a way we get an idea of the average number
of outputs whose activity are different between any two cell types.
The higher the I/O map difference between two networks, the less
similar their responses are across all possible inputs.

We determined the I/O map distances for all pairs of human
subnetworks with one active input (Fig. 3d). As in Fig. 3c, we
generated specific sets of 84 random subnetworks, with each
random subnetwork in the set having the same number of nodes
as one of the human networks. We generated ten sets of random
networks, obtained the I/O map for each, and calculated the
distances within each random set. The average normalized
distance between the human subnetworks was around 4.3, yet
the normalized distances for the random subnetworks was much
closer to 0.31, indicating that the human subnetworks are not
only more connected, but they also demonstrate a higher number
of outputs with differing activity in response to the same input
(Fig. 3d, Po10� 6, two-tailed permutation test). To compare the
human subnetworks to a TCS-like network consisting of truly
isolated pathways, we created a network where inputs are
connected to outputs through a linear succession of intermediate
nodes. We did this by randomly adding each node from the
KEGG network to one of the ‘pathways’ activated by one of
the input nodes; after all intermediate nodes were added to the
network, we terminated each pathway with an output node. This
resulted in a network that included all the nodes in the KEGG
network, but comprising 76 distinct pathways with absolutely no
crosstalk. ‘Tissue-specific’ subnetworks of this TCS-like network
were created using the expression data from the Human Protein
Atlas. The normalized I/O map distances of the TCS-like network
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Figure 3 | The structure and response diversity of the complete KEGG network. (a) The kernel density plot of the number of outputs that are

downstream of each of the inputs in the complete network (black) and each of the expressed subnetworks (blue). All 67 outputs are downstream of each

of the inputs in the complete network. However, most inputs have 50–64 of the outputs in their downstream connected component in the expressed

subnetworks. (b) The average number of outputs that are downstream of each of the inputs in a subnetwork versus the fraction of nodes expressed in the

subnetwork. The blue dots include the connectivity of the subnetworks constructed according to the expression data from the Human Protein Atlas22 while

the red lines show the mean and standard deviation of 10 subnetworks constructed through the random expression of the indicated fraction of nodes. Note

that the average number of outputs downstream of any input is much lower in the random subnetworks, indicating that these subnetworks demonstrate

less interconnectivity than those based upon human expression data (minimum difference¼ 9.398, P¼ 1.546� 10�4). (c) The kernel density plot of the

average fraction of overlap for the expressed subnetworks (red) and the subnetworks from random expression of nodes (blue), after compression (after

compression, see Supplementary Methods). The average fraction of overlap for the complete network is shown as a black vertical bar. (d) A kernel density

plot of the normalized I/O map distances of the human subnetworks (blue), random subnetworks (red), and the TCS-like networks (green) comparing the

output activities of the 84 subnetworks in response to a single active input.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16009 ARTICLE

NATURE COMMUNICATIONS | 8:16009 | DOI: 10.1038/ncomms16009 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


were even lower than those from the random subnetworks
(average¼ 0.13), indicating cells with isolated pathways show
very little diversity (Po10� 6 for the comparison with either the
actual human networks or the random subnetworks, two-tailed
permutation test).

Although the above analysis is informative, we only activated a
single input at a time, and it is unclear that the same patterns of
signalling diversity would be observed when multiple inputs are
activated. To test this, we tested all combinations of 2 or 3 active
inputs, resulting in 2,850 and 70,300 input combinations on the
human subnetworks, random subnetworks, and TCS-like subnet-
works. We found that the difference in normalized I/O distances
between the three types of networks (that is, actual human tissues,
random subnetworks and the TCS-like subnetworks) does not
appear to depend on the number of inputs activated (see
Supplementary Fig. 2, Po10� 6, two-tailed permutation test, for
the human networks having higher normalized distances than
either control and the random subnetworks having higher
distances than the TCS-like networks).

Our results indicate that the diversity of responses to input
depends both on the complexity of the network and the targeted
expression of particular sets of signalling proteins within various cell
types. Interestingly, signalling diversity does not seem to be
dependent only on the number of nodes in the network, since then
random subnetworks have the same size, but the human subnetworks
possess a higher average I/O map distance. Instead, diversity is
generated by the entire context of nodes expressed in each tissue.

Differential effects of inhibitors across cell types. An interesting
observation from our evolved Boolean networks (Fig. 2) is that,
despite the tens of thousands of possible expression vectors, these
subnetworks only produce an average of around 100 unique I/O
maps (Fig. 2b). This means that many subnetworks must produce
the same I/O map, and in most cases adding or removing any given
node has no effect on the ‘function’ of a particular expressed net-
work. The network topologies in this case were evolved purely
based on their ability to generate multiple I/O maps, so this relative
‘robustness’ emerges in the absence of any explicit evolutionary
pressure. Previous studies have found similar behaviors in complex
biological systems: for instance, many different ‘genotypes’ (for
example, RNA or amino acid sequences) may have the same
‘phenotype’ (for example, folded, three-dimensional structure).
Such systems often evolve structures that are robust to mutations,
even if considerations of robustness or evolvability are not used as
an explicit selection criterion28–34.

In the case of the human expressed subnetworks, this
robustness would imply that inhibiting a protein (for example,
using a small molecule or drug, or knocking it down through
RNAi) might have different effects in different tissues. We
explored this possibility by sequentially removing each node from
all of our 84 tissue-specific network; when any given node is
removed, this represents its complete inhibition in that tissue
(Fig. 4a). We then obtained the I/O maps for every inhibited
system, which we compared to the wild-type I/O map for the
respective expressed subnetwork. From this comparison we
obtained an inhibitor map, where a ‘1’ represents an increase in
the average activity for an output, a ‘� 1’ represents a decrease in
average activity, and a ‘0’ signifies no change in average activity.
We found that every single node has an effect on the I/O map of
at least one tissue when inhibited, so none of the nodes are
completely dispensable. Also, every node had at least one tissue
where inhibition of the node had no effect. On average, inhibiting
any node in the network alters the output response in about 17 of
the 84 human expressed subnetworks (Supplementary Fig. 3).

The inhibitor maps for each targeted node across all pairs of
expressed subnetworks were then analyzed to characterize the
effects of inhibiting the respective node on each tissue. Of the subset
of nodes whose inhibition had an effect on the I/O map of either
subnetwork across all pairs, the inhibition of about 88% of the
targets affected only one of the subnetworks (Fig. 4b, red). This
could be because the node is not expressed in the other subnetwork,
so the inhibitor had nothing to target, or because the other
subnetwork possesses redundancy in its structure so that removal of
that node has no effect. Inhibiting the remaining 12% of the targets
affected both of the subnetworks, yet resulted in a different effect in
each (Fig. 4b, blue). We found no cases where the inhibition of a
single node had the same impact in two subnetworks.

These results may help explain previous experimental findings
for drugs and inhibitors targeted against signalling proteins. For
instance, Fallahi-Sichani, et al.35, recently tested the efficacy of
various anticancer drugs against a panel of breast cell lines; drugs
targeting signalling proteins generally exhibited a higher variation in
efficacy against different cell lines compared to those targeting more
ubiquitous targets such as the proteasome or DNA. Although all of
the cell lines in this case derive from the same tissue, variations in
expression levels of signalling proteins may well influence how
inhibition of those proteins effects cellular decisions such as division
or apoptosis. The massive amount of crosstalk in the human
signalling network may also underlie the ability of certain cancer
cells to compensate for drug effects36. Nutlin-3, for example, was
designed to be a competitive inhibitor of the p53-MDM2
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interaction in order to induce apoptosis or senescence23. However,
nutlin-3 only results in reversible cell cycle arrest in most cell
lines expressing wild-type p53; the induction of apoptosis or
senescence is dependent upon the overexpression of MDM2
(refs 23,37–39). Tissue selectivity may have consequences for the
use of inhibitors and gene silencing in future signalling studies:
these perturbations could have unexpectedly different effects in
various cell lines. Care must be taken to consider the tissue-specific
context of the signalling network to inform the interpretation of
inhibitor or silencing experiments.

Discussion
Although individual cells that belong to the same cell type can
exhibit significant variation, the average protein levels within the
signalling network of those cells ultimately leads to a particular
average response within a population40–42. In this work, we
demonstrated that these different expression patterns likely have
large impacts on the function of the signalling networks within
these cells. In particular, we found that subnetworks specific to
various human tissues are highly complex, yet the global topology
of the network exhibits significant differences across different
tissues. Moreover, the expression of particular nodes does not
seem to be random, nor is it dependent upon classic individual
properties of the node such as degree or betweenness. The set of
expressed nodes have instead likely evolved to maintain crosstalk
between inputs and outputs and to produce a diversity of
responses to stimuli (Fig. 3). While our ‘average fraction overlap’
measure provides some insight into the relationship between
network topology and I/O map diversity (Figs 2 and 3),
considerable future work will be necessary to understand the
specific structural features of the network, or the expressed
subnetworks, that underlie functional diversity.

A consequence of the variable architecture of the human
signalling network across tissues is that perturbations to the
network, such as small molecule inhibition, may affect those
tissues or cell types in different ways. The local context of a
targeted protein may be very different in different cells based on
the expression state of its signalling neighbours. We find that
targeting any node for inhibition in the network can potentially
change the response of a cell to stimuli in some, but not all,
tissues. However, the phenotypic consequences of the inhibitor
vary between the different cell types it affects. In our models, we
found no examples of an inhibitor that would have the same
effect in two or more tissues in our subnetwork, revealing the
importance of tissue-specific context in considering drug targets.

These findings may also provide an explanation for the variety
of mutations that are associated with cancers and other diseases.
Protein affecting mutations (PAMs) can perturb signalling
networks by changing the activity or expression of a particular
protein. It has been found that a PAM may not have the same
phenotypic effect in different tissues, similar to how inhibitors
have different effects in our tissue-specific subnetworks. For
instance, mutations affecting p53 and PIK3CA, both high-
confidence drivers (HCDs) of carcinogenesis, have been found
in just over 10% of cancer samples. In fact, mutations in several
HCDs have been discovered in only a single tumor type43. Our
results suggest that mutations to a protein in some cell types and
tissues might have no effect on the signalling properties of those
cells, while in other cell types that same mutation might lead to
aberrant (that is, carcinogenic or pathogenic) signalling changes.

Overall, our work indicates that the highly interconnected
architecture of metazoan signalling networks has likely evolved
based on the need for multiple cell types and tissues to respond
differently to the same environmental conditions. Understanding
the consequences of this constraint for network topology, target

selection and pathogenic mutations represents a major challenge
for systems biology and pharmacology.

Methods
Evolvable Boolean networks. A given Boolean network was randomly altered
through one of three possible modifications: (1) adding an edge, (2) flipping an edge
from activating to inhibiting or vice versa, or (3) adding an intermediate nodes to
randomly connect two existing nodes. Following a modification, the network was
simulated with one, both, or neither of the inputs active using a custom synchronous
Boolean simulator for 100 steps. We then combined the final activity of the outputs to
form an 8 digit binary string (that is, ‘00101101’), which we term the ‘I/O map’. If the
network has one or more intermediates, we then run the set of simulations to obtain an
I/O map for every possible expression vector; for instance, a network with two inter-
mediate nodes has four expression vectors: both expressed, one expressed, the other
expressed, and neither expressed. Acceptance of a modification depends upon the
number of unique I/O maps across all expression vectors (Supplementary Methods).

The KEGG network. The complete KEGG signalling network was constructed
from KGML files from 29 canonical pathways3. These pathways were initially
expanded so that each gene or compound in an entry existed as its own node. This
also expanded the number of edges from each pathway so that each node from an
entry had its own set of edges. For example, if entry 2, which includes two genes,
activates entry 3, which includes four genes, then this edge was expanded to include
8 different gene pairs. Once the full network was built from the different pathways,
nodes that are involved in the same set of edges were collapsed into a single node.

Boolean simulations. While the KEGG database provides information on whether
an interaction between two proteins is activating or inhibiting, it does not provide
Boolean functions describing how these influences are integrated into the ultimate
activation state of any given node in the network. Considering the size of the
network, and the potential complexity of the evolvable Boolean networks, we
generated a basic ansatz for the Boolean update functions used in our simulations.
We made the simplifying assumption that each activator for a node acted in the
same manner (for example, multiple kinases phosphorylating the same set of sites).
As such, having any number of functionally active activators would ‘turn on’ that
node. The only exception to this would be nodes that have no activators that act
upon them; these are considered to be self-activating. On the other hand, we
assumed that repressors resulted in the wholesale deactivation of the node no
matter the state of the node’s activators. This is due to the fact that many inhibitors
lead to irreversible degradation of a protein; An example would be the serine/
threonine phosphorylation of the insulin receptor substrate-1 (IRS-1) by S6K1,
among other serine kinases, which leads to ubiquitylation and degradation of IRS-1
(refs 44,45). As such, if any of the activators of a node at step i of the simulation, or
if the node has no activators, and none of the repressors are active, then the node
will be active at step iþ 1. If none of the activators, if there are any for the node, are
active at step i, or if any of the repressors are active at step i, then the node will be
inactive at step iþ 1. A more formal description of this logic function can be found
in the Supplementary Methods.

Tissue-specific subnetwork simulations. We obtained the expression of each of
the genes in the network in 84 tissue types from the Human Protein Atlas22. The
expression of any particular node is dependent upon the expression of each of its
associated genes: if any gene included in the node is expressed at any level within a
tissue, then the node is expressed in that tissue. The expression state for each of the
genes in the network for any of the 84 tissue types represents a single expression
vector. When an expression vector is applied to the complete KEGG network,
nodes that are not expressed in the tissue are removed from the network, resulting
in a tissue-specific subnetwork.

To obtain an I/O map distance between two subnetworks for a particular set of
active input vectors, we ran each subnetwork for 10,000 steps in a custom
synchronous Boolean simulator. The I/O map in this case is the set of the average
activity of each output in the last 1,000 steps of the simulation for each active input
vector. The result is a matrix where each row contains 67 values from 0 to 1 for the
average activity of each output in response to the activation of a set of inputs. The
individual elements from the matrices of the two subnetworks were then compared
to obtain the distance: if the elements did not match, the distance was increased by
1 (see Supplementary Methods for more information).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.

References
1. Danielpour, D. & Song, K. Cross-talk between IGF-I and TGF-b signaling

pathways. Cytokine Growth Factor Rev. 17, 59–74 (2006).
2. Junttila, M. R., Li, S. P. & Westermarck, J. Phosphatase-mediated crosstalk

between MAPK signalling pathways in the regulation of cell survival. FASEB J.
22, 954–965 (2008).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16009 ARTICLE

NATURE COMMUNICATIONS | 8:16009 | DOI: 10.1038/ncomms16009 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


3. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG
resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004).

4. Kirouac, D. C. et al. Creating and analyzing pathway and protein interaction
compendia for modelling signal transduction networks. BMC Syst. Biol. 6, 29 (2012).

5. Komiya, Y. & Habas, R. Wnt signal transduction pathways. Organogenesis 4,
68–75 (2008).

6. Jin, Z. & El-Deiry, W. S. Overview of cell death signaling pathways. Cancer Biol.
Ther. 4, 139–163 (2005).

7. Laviola, L., Natalicchio, A. & Giorgino, F. The IGF-I Signalling Pathway. Curr.
Pharm. Des. 13, 663–669 (2007).

8. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological
signaling pathways. Science 283, 381–387 (1999).

9. Hill, S. M. Receptor crosstalk: communication through cell signaling pathway.
Anat. Rec. 253, 42–48 (1998).

10. Javelaud, D. & Mauviel, A. Crosstalk mechanisms between the mitogen-
activated protein kinase pathways and Smad signaling downstream of TGF-b:
implications for carcinogenesis. Oncogene 24, 5742–5750 (2005).

11. McClean, M. N., Mody, A., Broach, J. R. & Ramanathan, S. Cross-talk and
decision making in MAP kinase pathways. Nat. Genet. 39, 409–414 (2007).

12. Rowland, M. A., Fontana, W. & Deeds, E. J. Crosstalk and Competition in
Signalling Networks. Biophys. J. 103, 2389–2398 (2012).

13. Laub, M. T. & Goulian, M. Specificity in two-component signal transduction
pathways. Annu. Rev. Genet. 41, 121–145 (2007).

14. Skerker, J. M. et al. Rewiring the specificity of two-component signal
transduction systems. Cell 133, 1043–1054 (2008).

15. Skerker, J. M. et al. Two-component signal transduction pathways regulating
growth and cell cycle progression in a bacterium: a system-level analysis. PLoS
Biol. 3, e334 (2005).

16. Rowland, M. A. & Deeds, E. J. Crosstalk and the evolution of specificity in two-
component signaling. Proc. Natl Acad. Sci. USA 111, 5550–5555 (2014).

17. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal
transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

18. Batchelor, E. & Goulian, M. Robustness and the cycle of phosphorylation and
dephosphorylation in a two-component regulatory system. Proc. Natl Acad. Sci.
USA 100, 691–696 (2003).

19. Chang, H. Y. et al. Gene expression signature of fibroblast serum response
predicts human cancer progression: similarities between tumors and wounds.
PLoS Biol. 2, E7 (2004).

20. Garg, H.G., Warren, C.D. & Siebert, J. W. in Chemistry of Scarring. (eds Garg,
H.G. & Longaker, M.T.) 1–22 (Marcel Dekker, New York, NY, 2000).

21. Midwood, K. S., Williams, L. V. & Schwarzbauer, J. E. Tissue repair and the
dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1031–1037 (2004).

22. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat.
Biotechnol. 28, 1248–1250 (2010).

23. Arva, N. C. et al. Disruption of the p53-Mdm2 complex by Nutlin-3 reveals
different cancer cell phenotypes. Ethnicity Dis. 18, S2–1–S2–8 (2008).

24. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

25. Garnett, M. J. et al. Systematic identification of genomic markers of drug
sensitivity in cancer cells. Nature 483, 570–575 (2012).

26. Chen, J. Y., Lin, J. R., Cimprich, K. A. & Meyer, T. A two-dimensional ERK-AKT
signaling code for an NGF-triggered cell-fate decision. Mol. Cell 45, 196–209 (2012).

27. The UniProt Consortium. Update on activities at the Universal Protein
Resource (UniProt) in 2013. Nucleic Acids Res. 41, D43–D47 (2013).

28. Siegal, M. L. & Bergman, A. Waddington’s canalization revisited: developmental
stability and evolution. Proc. Natl Acad. Sci. USA 99, 10528–10532 (2002).

29. Raman, K. & Wagner, A. Evolvability and robustness in a complex signalling
circuit. Mol. BioSyst. 7, 1081–1092 (2011).

30. Raman, K. & Wagner, A. The evolvability of programmable hardware. J. R. Soc.
Interf. R. Soc. 8, 269–281 (2011).

31. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95,
8420–8427 (1998).

32. Ancel, L. W. & Fontana, W. Plasticity, evolvability, and modularity in RNA. J
Exp. Zool. 288, 242–283 (2000).

33. Fontana, W. Modelling ‘Evo-devo’ with RNA. Bioessays 24, 1164–1177 (2002).
34. Deeds, E. J. & Shakhnovich, E. I. A structure-centric view of protein evolution,

design, and adaptation. Adv. Enzymol. Relat. Areas Mol. Biol. 75, 133–191 (2007).
35. Fallahi-Sichani, M., Honarnejad, S., Heiser, L. M., Gray, J. W. & Sorger, P. K.

Metrics other than potency reveal systematic variation in responses to cancer
drugs. Nat. Chem. Biol. 9, 708–714 (2013).

36. Logue, J. S. & Morrison, D. K. Complexity in the signaling network: insights from
the use of targeted inhibitors in cancer therapy. Genes Dev. 26, 641–650 (2012).

37. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53
signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA 103,
1888–1893 (2006).

38. Huang, B., Deo, D., Xia, M. & Vassilev, L. T. Pharmacologic p53 activation
blocks cell cycle progression but fails to induce senescence in epithelial cancer
cells. Mol. Cancer Res. 7, 1497–1509 (2009).

39. Paris, R., Henry, R. E., Stephens, S. J., McBryde, M. & Espinosa, J. M. Multiple
p53-independent gene silencing mechanisms define the cellular response to p53
activation. Cell Cycle 7, 2427–2433 (2008).

40. Blake, W. J., Balazsi, G., Kohanski, M. A. & Isaacs, F. J. Phenotypic consequences
of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

41. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature
467, 167–173 (2010).

42. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic
origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459,
428–432 (2009).

43. Tamborero, D. et al. Comprehensive identification of mutational cancer driver
genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).

44. Pederson, T. M., Kramer, D. L. & Rondinone, C. M. Serine/threonine
phosphorylation of IRS-1 triggers its degradation: possible regulation by
tyrosine phosphorylation. Diabetes 50, 24–31 (2001).

45. Draznin, B. Molecular mechanisms of insulin resistance: serine
phosphorylation of insulin receptor substrate-1 and increased expression of
p85a. Diabetes 55, 2392–2397 (2006).

Acknowledgements
We thank T. Kolokotrones, W. Fontana, R. Suderman and M. Mayo for many helpful
conversations regarding this work. The opinions, interpretations, conclusions, and
recommendations are those of the author(s) and are not necessarily endorsed by the US
Army.

Author contributions
M.A.R. and E.J.D. designed the simulations and analyses. M.A.R. and J.M.G. performed
data collection, simulations, and analyses. M.A.R., and E.J.D. prepared the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Rowland, M. A. et al. Crosstalk and the evolvability of intra-
cellular communication. Nat. Commun. 8, 16009 doi: 10.1038/ncomms16009 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16009

8 NATURE COMMUNICATIONS | 8:16009 | DOI: 10.1038/ncomms16009 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Crosstalk and the evolvability of intracellular communication
	Introduction
	Results
	Crosstalk and expression provide a diversity of responses
	Expression patterns are selected for signalling diversity
	Differential effects of inhibitors across cell types

	Discussion
	Methods
	Evolvable Boolean networks
	The KEGG network
	Boolean simulations
	Tissue-specific subnetwork simulations
	Data availability

	Additional information
	Acknowledgements
	References




