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Transplantation of enteric nervous system stem
cells rescues nitric oxide synthase deficient
mouse colon
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Enteric nervous system neuropathy causes a wide range of severe gut motility disorders. Cell

replacement of lost neurons using enteric neural stem cells (ENSC) is a possible therapy for

these life-limiting disorders. Here we show rescue of gut motility after ENSC transplantation

in a mouse model of human enteric neuropathy, the neuronal nitric oxide synthase

(nNOS� /� ) deficient mouse model, which displays slow transit in the colon. We further

show that transplantation of ENSC into the colon rescues impaired colonic motility with

formation of extensive networks of transplanted cells, including the development of nNOSþ

neurons and subsequent restoration of nitrergic responses. Moreover, post-transplantation

non-cell-autonomous mechanisms restore the numbers of interstitial cells of Cajal that are

reduced in the nNOS� /� colon. These results provide the first direct evidence that ENSC

transplantation can modulate the enteric neuromuscular syncytium to restore function, at the

organ level, in a dysmotile gastrointestinal disease model.

DOI: 10.1038/ncomms15937 OPEN

1 Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK. 2 Department of Clinical
Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands. Correspondence and requests for materials should be addressed to N.T.
(email: n.thapar@ucl.ac.uk).

NATURE COMMUNICATIONS | 8:15937 | DOI: 10.1038/ncomms15937 | www.nature.com/naturecommunications 1

mailto:n.thapar@ucl.ac.uk
http://www.nature.com/naturecommunications


N
europathological loss within the enteric nervous system
(ENS) has been implicated in a wide range of severe gut
motility disorders, such as achalasia1–3, gastroparesis4,5,

slow transit constipation6–8 and Hirschsprung’s disease
(aganglionic megacolon)9,10, as well as being associated with a
number of central nervous system disorders11–13. Potential
replacement of lost neurons using stem cell replacement is an
attractive therapy for such life-limiting disorders. Enteric neural
stem cells (ENSC), which exist in both embryonic and adult gut,
have been suggested as potential cell source for such
treatments14,15. We and others have previously demonstrated
the potential of both mouse16,17 and human18 ENSC to integrate
within wild-type ganglionated mouse colon. Yet a limiting factor
in the advancement of ENSC therapies for human application has
been the failure to demonstrate functional rescue of motility in
pathological disease models. Recent studies have demonstrated
the successful integration of murine and human ENSC within
aganglionic colon both in vivo16,19 and ex vivo20,21; however, the
severity of the gut phenotype and poor survival of homozygote
mice has limited their in vivo use for investigating the potential
functional rescue, at the organ level, of ENSC-based therapies.

Other models of neuronal loss are, therefore, essential to
test the viability of cell-based transplantation techniques
to restore functional deficits resulting from neuropathology.
The loss of neuronal nitric oxide synthase (nNOS) has been
implicated in a range of human enteric neuropathies22, including
oesophageal achalasia23, infantile hypertrophic pyloric stenosis24,
gastroparesis (idiopathic and diabetic)25, colonic dysfunction26

and Hirschsprung’s disease27,28. Notably, nNOS� /� mice
recapitulate the clinical phenotype of a number of human
diseases displaying both delayed gastric emptying29–31, and slow
transit in the colon32 hence providing an ideal model to establish
if ENSC can restore function after in vivo transplantation.
Here we show rescue of motility, after transplantation of ENSC,
within the nNOS� /� mouse colon. We further demonstrate
robust restoration of nitrergic responses coincident with the
development of nNOSþ neurons in an nNOS-deficient
microenvironment. In addition, we show concurrent rescue
of interstitial cells of Cajal (ICC) within the nNOS� /� colon
after ENSC transplantation. Thus, we propose that ENSC
can modulate the neuromuscular syncytium via both
cell-autonomous and non-cell-autonomous mechanisms to
restore function, at the organ level, and ultimately rescue motility.

Results
Transplanted ENSC extensively integrate in nNOS� /� colon.
To isolate ENSC, we used donor Wnt1cre/þ ;R26RYFP/YFP mice
(P2–P7), in which neural crest cells and their enteric
derivatives express endogenous yellow fluorescent protein (YFP).
This endogenous expression allowed for isolation and fate-map-
ping of labelled donor ENSC. Selected YFPþ cells maintained
expression and formed characteristic neurospheres within 1
month in culture (Supplementary Fig. 1). To assess the compo-
sition of neurospheres, immunohistochemistry and qRT–PCR
were performed to establish the presence of typical ENS cell types.
Such neurospheres were found to express ENS markers such as
the pan-neuronal marker TuJ1 (Supplementary Fig. 1a), the
neural crest progenitor marker SOX10 (Supplementary Fig. 1b)
and the glial marker S100 (Supplementary Fig. 1c). Notably,
in addition to multipotent neural crest progenitors, neuronal
markers, including NOSþ neurons (Supplementary Fig. 1e–g),
were observed within neurospheres in vitro. Hence, we sought
to establish the ability of such neurospheres to colonize and
populate nNOS� /� colon in vivo. As opposed to wild-type
colon, which contains nNOSþ cell bodies and fibres (Fig. 1a),

nNOS� /� mice display complete loss of nNOSþ neurons in the
colon (Fig. 1b).

We transplanted three YFPþ neurospheres (B6� 104 cells in
total) into the distal colon of nNOS� /� mice at P14–P17 via
laparotomy. Live imaging analysis, 4 weeks after transplantation,
revealed the presence of extensive anastomosing networks of
transplanted YFPþ cells colonizing, on average, 5.46±0.5 mm2

(n¼ 10) of distal colon at the site of transplantation (Fig. 1c).
Subsequent immunohistochemistry revealed more extensive
networks of GFPþ cells (Supplementary Figs 2 and 3). GFPþ

filamentous networks could be observed extending in both
oral and aboral directions from the site of transplantation
(Supplementary Fig. 2 and Supplementary Movie 1) including
integration within the proximal colon. Post-acquisition mapping
of transplanted cells revealed the largest continuous GFPþ

network extending 10.79 mm (Supplementary Fig. 2b). Along
the length of the colon GFPþ cells were found to co-express the
neuronal marker TuJ1 (Fig. 1d–f) and project fibres (Fig. 1d,
arrowheads), which contacted the endogenous neuronal network
at the level of the myenteric plexus. GFPþ cells were also
identified within endogenous myenteric ganglia (Fig. 1g–i), where
fine GFPþ fibres and varicosities were observed encompassing
and tracing the path of endogenous neuronal fibre tracts (Fig. 1g,
arrowheads). Confocal imaging of the entire colon also revealed
GFPþ cells co-expressing TuJ1 integrated within ganglia along
the length of the colon (Supplementary Fig. 3 and Supplementary
Movie 2) up to a maximum of 42.4 mm from the site of
transplantation thus confirming the ability of transplanted cells
to migrate within the tunica muscularis. Transplanted cells
displayed enteric neuronal characteristics including integration
of bipolar (Supplementary Fig. 4a–d) and multipolar GFPþ cells
(Supplementary Fig. 4e,f) phenocopying the morphology of
enteric interneurons and motor neurons, respectively.

Transplanted ENSC regenerate nNOSþ neurons. To determine
if transplanted ENSC have the capacity to develop an NOSþ

phenotype in vivo similar to in vitro cultures, immunohis-
tochemistry and RT–PCR were performed. Within the distal
colon, transplanted YFPþ cells co-expressed both the neuronal
marker TuJ1 and the neuronal nitric oxide synthase marker
nNOS (Fig. 2a–d). nNOSþ neurons were identified within
ganglia-like structures (Fig. 2c,d, arrowheads) extending multiple
nNOSþ projections (Fig. 2c,d, arrows) within the network of
transplanted cells. The presence of nNOSþ neurons was further
confirmed with PCR analysis demonstrating the specific expres-
sion of the nNOS transcript within transplanted colon compared
with the complete absence of transcript in non-transplanted
tissues (Fig. 2e).

To assess the proliferative capacity of transplanted cells, BrdU
was applied 24 h post surgery and incorporation was assessed at 4
weeks. Incorporation of BrdU was observed within transplanted
cells co-expressing TuJ1 (Fig. 2f–i, arrows) or nNOS (Fig. 2j–m,
arrows) suggesting that transplanted ENSC have the ability to
proliferate at early post-transplantation stages and subsequently
differentiate to form mature neurons including nNOSþ neurons
within an nNOS-deficient microenvironment.

Restoration of nitrergic responses in the nNOS� /� colon.
Having demonstrated the ability of ENSC to form nNOSþ

neurons in vivo, we assessed whether this integration could
restore nitrergic responses in the nNOS� /� distal colon.
On electrical field stimulation (EFS), C57BL/6J distal colon
displayed large EFS-induced relaxations of � 1.98±0.15 g s;
n¼ 5 (Fig. 3a,e). By contrast loss of nNOS within nNOS� /�

mice resulted in significant loss of this relaxatory response
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(� 0.31±0.08 g s; n¼ 5, Po0.0001, Student’s t-test; Fig. 3b,e).
Sham-operated nNOS� /� distal colon displayed similarly
abrogated EFS-induced responses (� 0.296±0.05 g s; n¼ 5;
Fig. 3c,e) to control nNOS� /� distal colon (P¼ 0.8376, Student’s
t-test). Interestingly, after ENSC transplantation there were
statistically significant differences in mean values between control
nNOS� /� , sham-operated and transplanted nNOS� /� groups
as determined by one-way analysis of variance (ANOVA)
(F(2,12)¼ 20.78, Pr0.001) with transplanted nNOS� /� distal
colon displaying significant increases in EFS-induced relaxation
(� 1.13±0.16 g s; n¼ 5; Fig. 3d,e) compared to sham-operated
nNOS� /� mice (P¼ 0.0012, Student’s t-test). There was,
however, a statistical difference between C57BL/6J distal colon
and that of transplanted nNOS� /� mice (P¼ 0.0034, Student’s
t-test). On EFS, C57BL/6J distal colon also displayed post-
stimulation rebound contractions with a mean amplitude
of 0.326±0.04 g; n¼ 5 (Fig. 3a,f). Similarly, nNOS� /� mice

displayed these post-stimulation rebound contractions
(0.22±0.06 g; n¼ 5, P¼ 0.1586, Student’s t-test; Fig. 3b,f). Sham-
operated nNOS� /� distal colon displayed similar responses
(0.315±0.04 g; n¼ 5; Fig. 3c,f) to nNOS� /� mice (P¼ 0.2083,
Student’s t-test). Interestingly, after ENSC transplantation, there
were statistically significant differences in mean values between
control nNOS� /� , sham-operated and transplanted nNOS� /�

groups by one-way ANOVA (F(2,12)¼ 7.61, P¼ 0.007) with
transplanted nNOS� /� distal colon displaying significant
increases in rebound contraction amplitude (0.708±0.15 g; n¼ 5;
Fig. 3d,f) compared to sham-operated nNOS� /� mice
(P¼ 0.032, Student’s t-test) and C57BL/6J distal colon
(P¼ 0.0354, Student’s t-test).

To establish if the restored relaxatory response was due to the
presence of transplanted nNOSþ neurons, EFS-induced
responses observed in non-adrenergic non-cholinergic conditions
were analysed in the presence and absence of the nitric oxide
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Figure 1 | Transplanted ENSC extensively colonize and integrate within the nNOS� /� mouse colon. (a) Representative image of NADPH diaphorase

staining in wild-type C57BL/6J. nNOSþ cell bodies (arrows), within enteric ganglia, and nNOSþ fibres (arrowheads) are indicated. (b) Representative

image of NADPH diaphorase staining of nNOS� /� mouse colon demonstrating loss of nitrergic innervation with the absence of NADPH diaphorase

staining. (c) Representative stereoscopic montage image of transplanted YFPþ cells within the nNOS� /� distal colon at 4 weeks. Transplanted cells form

large anastomosing networks comprising cell bodies (arrows) and fibres (arrowheads), including ganglia-like structures (asterisk). Scale bar, 500mm.

(d) Example confocal image demonstrating co-expression of the neuronal marker TuJ1 within YFPþ -transplanted cells. YFPþ cell bodies (arrow) project

fibres (arrowheads) towards the endogenous neuronal network at the level of the myenteric plexus. (e,f) Individual channels showing GFP and TuJ1 staining

from d. (g) Representative confocal image demonstrating the presence and integration of transplanted cells within endogenous ganglia. At the level of the

myenteric plexus, fine GFPþ fibres and varicosities encompass and trace endogenous neuronal fibre tracts (arrowheads). GFPþ cells were also identified

within ganglia (arrow). (h,i) Individual channels taken from g showing GFP and TuJ1 staining at the level of the myenteric plexus. Scale bar, 50mm (d–i).
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synthase blocker L-NAME. L-NAME significantly reduced this
EFS-induced relaxation (� 0.74±0.17 g s versus � 0.12±0.16 g s;
n¼ 4; P¼ 0.0389, Student’s t-test) in transplanted nNOS� /�

colon (Fig. 3g–i). Taken together, these results indicate that
transplantation of ENSC and development of nNOSþ neurons in
the nNOS� /� distal colon results in partial restoration of
nitrergic responses.

ENSC transplantation increases basal contractile properties.
Organ bath physiology also revealed large amplitude basal
contractions in transplanted nNOS� /� distal colonic segments
(Fig. 3d). To investigate these responses, basal contractile
patterns were recorded in both the distal and proximal colonic
segments in control conditions (Krebs solution), and after
the addition of individual neurotransmitter antagonists or
tetrodotoxin (TTX).

Wild-type C57BL/6J distal colon displayed significantly larger
amplitude basal contractions (0.10±0.01 g; n¼ 5) compared to
nNOS� /� mice (0.05±0.01 g; n¼ 5; P¼ 0.0029, Student’s t-test;
Fig. 4a,b,i). The distal colon of sham-operated nNOS� /� mice
was found to display similar contractions (0.09±0.02 g; n¼ 5;
Fig. 4c,i) to that of control nNOS� /� mice (P¼ 0.0592, Student’s
t-test). One-way ANOVA analysis suggested that there were
statistically significant differences in basal contractile amplitude
(F(2,12)¼ 14.43, P¼ 0.001) between control nNOS� /� ,
sham-operated and transplanted nNOS� /� mice with significant
increases in the average contractile amplitude in transplanted
nNOS� /� distal colon (0.30±0.06 g, n¼ 5) compared with
sham-operated nNOS� /� (P¼ 0.0096, Student’s t-test;
Fig. 4c,d,i). Contractile frequency, however, did not appear to
be affected as determined by one-way ANOVA (F(2,12)¼ 2.96,
P¼ 0.090, Fig. 4j). In addition, these increased basal contractile
properties were not significantly affected by addition of individual
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Figure 2 | Transplanted ENSC form nNOSþ neurons within the nNOS� /� distal colon. (a–c) Representative confocal z-stack images demonstrating

individual channels for GFP (a), TuJ1 (b) and nNOS (c) within a transplanted cell network present in the nNOS� /� distal colon. (d) Merged image of individual

channels shown in (a–c) demonstrating triple labelling of transplanted YFPþ cells (green) co-expressing the neuronal marker TuJ1 (red) and the neuronal nitric

oxide synthase marker nNOS (grey). Individual transplanted nNOSþ neuronal cell bodies (arrowheads) extend multiple nNOSþ projections (arrows) to form

an anastomosing network of transplanted cells. Scale bar, 50mm. (e) Representative PCR gel demonstrating specific nNOS expression within transplanted

nNOS� /� colon. (f–m) Example confocal images of BrdU incorporation within transplanted cells 4 weeks after application. Triple labelled transplanted cells

(green, f,j) co-express either TuJ1 (red, g) or nNOS (red, k) having incorporated BrdU (grey, h,l) after administration 24 h post surgery. Scale bar, 20mm.
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neural antagonists or TTX (Fig. 4e–h and Supplementary Fig. 6)
suggesting that transplantation of ENSC can lead to potential
changes in underlying myogenic motility patterns.

To establish if ENSC transplantation can alter motility patterns
beyond the transplanted distal colonic region, proximal colonic
segments were investigated for changes in basal contractile
patterns. Similar to the distal colon, wild-type C57BL/6J proximal
colon displayed significantly larger amplitude contractions
(0.34±0.04 g; n¼ 3) compared to control nNOS� /� mice
(0.10±0.02 g; n¼ 3; P¼ 0.0044, Student’s t-test; Supplementary
Fig. 5a,b,i). Contractile amplitude in the proximal colon of sham-
operated nNOS� /� mice was similar (0.10±0.03 g, n¼ 3;
P¼ 0.9931, Student’s t-test) to that of nNOS� /� mice
(Supplementary Fig. 5b,c,i). One-way ANOVA analysis suggested
that there were statistically significant differences in basal
contractile amplitude (F(2,6)¼ 7.38, P¼ 0.024) between control
nNOS� /� , sham-operated and transplanted nNOS� /� group
means with transplanted nNOS� /� proximal colon displaying
contractile events with significantly increased amplitude
(0.32±0.07 g; n¼ 3) compared with sham-operated nNOS� /�

mice (P¼ 0.0412, Student’s t-test; Supplementary Fig. 5c,d,i).
Contractile frequency, however, did not appear to be affected as
determined by one-way ANOVA (F(2,12)¼ 1.21, P¼ 0.362;
Supplementary Fig. 5j). Thus, we conclude that ENSC transplan-
tation to the distal colon results in changes in colonic motor
patterns at sites distant from the transplanted region. Again,
similar to the distal colon, these increased basal contractions
were not affected by TTX (Supplementary Fig. 5e–h and
Supplementary Fig. 6). The failure of TTX to attenuate these
large amplitude colonic contractions in both the distal and
proximal colon suggests that non-cell-autonomous changes in the
neuromusculature occur post transplant.

Transplantation decreases total intestinal transit time. Previous
studies have identified motility issues, including slow transit, in
the colon of nNOS� /� mice. To assess the impact of ENSC
transplantation, including the effect restored nitrergic responses
and increased basal contractile properties would have on
motility, total gastrointestinal (GI) transit time was measured.
Control nNOS� /� mice displayed significantly prolonged transit
time (177±8.15 min; n¼ 5) compared to C57BL/6J mice
(117.4±2.64 min; n¼ 5; P¼ 0.0001, Student’s t-test; Fig. 5a).
Sham-operated nNOS� /� mice displayed similar transit time
(185.2±14.08 min; n¼ 5) to non-transplanted nNOS� /�

controls (P¼ 0.63, Student’s t-test). Notably, there were
significant differences between control nNOS� /� , sham-oper-
ated and transplanted nNOS� /� group means as determined
by one-way ANOVA (F(2,12)¼ 16.02, Po0.0001). Moreover,
total GI transit time in transplanted nNOS� /� mice was
significantly decreased (114.8±3.60 min; n¼ 5; P¼ 0.0001,
Student’s t-test) compared with sham-operated nNOS� /� mice,
reducing transit time towards levels observed in C57BL/6J mice
(P¼ 0.5761, Student’s t-test) suggesting rescue of motility
(Fig. 5a).

Analysis of faecal output revealed a significant reduction
in output in nNOS� /� mice (21.61±3.71 mg h� 1; n¼ 5)
compared with C57BL/6J mice (35.97±2.63 mg h� 1; n¼ 5;
P¼ 0.0134, Student’s t-test; Fig. 5b). In addition, sham-operated
nNOS� /� displayed similar faecal output (24.41±2.41 mg h� 1;
n¼ 5) to that of nNOS� /� controls (P¼ 0.544, Student’s t-test).
Interestingly, there were statistically significant differences in
faecal output between control nNOS� /� , sham-operated and
transplanted nNOS� /� group means as determined by one-way
ANOVA (F(2,12)¼ 11.51, P¼ 0.002) with transplantation of
ENSC resulting in significant increases in faecal output in
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Figure 3 | ENSC transplantation restores nitrergic responses in

nNOS� /� distal colon. (a–d) Representative traces of organ bath

contractility in the presence of NANC demonstrating the response, in distal

colonic segments, to EFS. (a) In response to EFS C57BL/6J distal colon

demonstrates nitrergic relaxation, seen as relaxation below basal tension

(dotted line). (b,c) nNOS� /� non-transplanted and sham-operated

animals display a loss of this response. (d) Transplanted nNOS� /� mice

display a partial restoration of the response at 4 weeks post transplantation.

(e,f) Quantification of EFS-induced relaxation (area under curve, e) and

rebound contraction (f) in C57BL/6J (blue bars, n¼ 5), nNOS� /� (red

bars, n¼ 5), sham-operated nNOS� /� (grey bars, n¼ 5) and transplanted

nNOS� /� (green bars, n¼ 5) distal colon. ****Pr0.0001, **Pr0.01,

*Pr0.05, by Student’s t-test. (g–i) Representative traces of organ bath

contractility in transplanted nNOS� /� colon in the absence or presence of

the nitric oxide synthase antagonist L-NAME. (i) Summary data of the

effect of L-NAME on the EFS-induced nitrergic response in transplanted

nNOS� /� distal colon (n¼4). *Pr0.05 by Student’s t-test. Error bars

represent mean±s.e.m. in all panels.
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transplanted nNOS� /� mice (44.95±4.77 mg h� 1; n¼ 5)
compared with sham-operated nNOS� /� mice (P¼ 0.0049,
Student’s t-test), restoring faecal output to levels comparable to
C57BL/6J mice (P¼ 0.1378, Student’s t-test).

Upper GI transit is not affected by ENSC transplantation. As
nNOS� /� mice display pan-enteric deficits in nNOS signalling
and have been shown to have delayed gastric emptying, we sought
to assess if transplantation to the distal colon could affect
intestinal transit parameters outside of the colonic region.
Using fluorescent in vivo imaging, liquid stomach emptying at
30 min (Fig. 5c,d) was significantly delayed in nNOS� /�

mice (32.9±5.9%, n¼ 3) compared to C57BL/6J mice
(56.4±4.6%; n¼ 3; P¼ 0.0316, Student’s t-test) similar to pre-
viously described studies. Notably, no difference was observed in
liquid stomach emptying between control nNOS� /� ,
sham-operated and transplanted nNOS� /� group means as
determined by one-way ANOVA (F(2,6)¼ 1.00, P¼ 0.421;
Fig. 5c,d).

To assess partial intestinal transit, mice were killed 90 min after
gavage of a fluorescent dye. Fluorescent imaging was performed
ex vivo and the distance the dye had transited was calculated as a

percentage of total intestinal length (Fig. 5e,f). nNOS� /� mice
displayed reduced intestinal transit (79.9±2.1%, n¼ 3) compared
to C57BL/6J mice (89.1±1.1%, n¼ 3; P¼ 0.0176, Student’s
t-test). Again, there was no difference between control
nNOS� /� , sham-operated and transplanted nNOS� /� transit
distance at 90 min as determined by one-way ANOVA
(F(2,6)¼ 0.56, P¼ 0.6). We conclude that as both stomach
emptying and partial intestinal transit time are unaffected by
transplantation, the overall improvement in total intestinal transit
time in transplanted nNOS� /� mice is due to substantial
increases in colonic transit.

ENSC transplantation restores ICC numbers. We next
sought to ensure that the changes in GI function following
transplantation were not secondary to other phenomena such as
inflammation. On initial dissection, and after careful analysis, no
significant changes in the gross anatomy of the colon or evidence
of inflammatory responses were observed (Supplementary
Fig. 7a). In addition, no inflammation was observed on histolo-
gical examination (Supplementary Fig. 7b). Histological analysis
also revealed that there were no differences in either colonic
diameter (P40.05; Supplementary Fig. 7c,e) or muscle thickness
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Figure 4 | ENSC transplantation alters basal contractile patterns in nNOS� /� distal colon. (a–d) Representative organ bath contractility traces

demonstrating basal contractile properties of C57BL/6J, nNOS� /� , sham-operated nNOS� /� and transplanted nNOS� /� distal colon in control

conditions. (e–h) Representative organ bath contractility traces demonstrating basal contractile properties of C57BL/6J, nNOS� /� , sham-operated
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(P40.05; Supplementary Fig. 7d,f) when comparing both
the proximal and distal colon in nNOS� /� , sham-operated
nNOS� /� and transplanted nNOS� /� animals by one-way
ANOVA.

To assess if ENSC transplantation may alter other cells
involved in neuromuscular signalling and excitation–
contraction coupling, the numbers of ICC were quantified in
both the distal (Fig. 6a–e) and proximal (Fig. 6f and
Supplementary Fig. 8) colon. Notably, ICC were reduced in both
distal (48±5; n¼ 3; Fig. 6e) and proximal (87±5; n¼ 3; Fig. 6f)
nNOS� /� colonic segments compared to C57BL/6J distal
(78±6; n¼ 3; P¼ 0.0158, Student’s t-test) or proximal colon
(115±8; n¼ 3; P¼ 0.0410, Student’s t-test). No difference was
found between ICC numbers in either the distal (34±3; n¼ 3;
P¼ 0.0743, Student’s t-test) and proximal colon (81±4; n¼ 3;
P¼ 0.4504, Student’s t-test) in sham-operated nNOS� /�

compared to control nNOS� /� mice (Fig. 6e,f). By contrast,
one-way ANOVA analysis determined that there were statistically
significant differences in ICC numbers in both the distal
(F(2,6)¼ 6.47, P¼ 0.032) and proximal (F(2,6)¼ 26.29,
P¼ 0.001) colon when comparing non-transplanted nNOS� /� ,
sham-operated nNOS� /� and transplanted nNOS� /� mice. Of
interest, increased ICC numbers were observed in transplanted
nNOS� /� mice both in the distal (77±3; n¼ 3) and proximal
colon (130±11; n¼ 3) compared to sham-operated nNOS� /�

distal (P¼ 0.0006, Student’s t-test; Fig. 6e) and proximal
(P¼ 0.0135, Student’s t-test; Fig. 6f) colon, respectively. This
increase in ICC numbers associated with ENSC transplantation
suggests indirect modulation of cells that contribute to the
neuromuscular syncytium, alongside the integration of trans-
planted neural crest-derived cells. To further assess this indirect
modulation, we investigated if ENSC express trophic factors that
may influence ICC development. PCR analysis demonstrated the
expression of the stem cell factor (SCF) ligand within ENSC
neurospheres in vitro (Fig. 6g) providing a possible mechanism by
which transplanted cells could alter ICC development and
maintenance after transplantation.

Discussion
Recent studies have demonstrated the functional integration of
both mouse and human ENSC-derived neurons in wild-type
mouse colon after in vivo transplantation16–18. Functional
analysis in these animals that lack a neuropathological
phenotype is restricted to individual or groups of transplanted
neurons rather than assessment of colonic physiology. We now
report that transplantation of a population of selected enteric
neural crest-derived cells has a clear and positive functional
impact, rescuing motility in a pathophysiological mouse
model that recapitulates the phenotype of several clinically
relevant human disorders. We demonstrate that this rescue is
achieved through both cell-autonomous restoration of nitrergic
responses that were absent, and non-cell-autonomous rescue
of ICC numbers, which were also found to be deficient in the
nNOS� /� colon.

The ability to form nitrergic neurons is a critical step in the
development of ‘normal’ enteric circuitry and many enteric
disorders would likely benefit from the transplantation and
engraftment of nNOSþ cells. In clearly demonstrating the
potential to restore nNOS neurons after ENSC transplantation,
which to our knowledge is the first study to show functional
effects at the organ level, we believe ENSC therapies could impact
widely at the clinical level. Interestingly, transplantation of ENSC
led to restoration of nitrergic responses and increases in
post-stimulation ‘rebound’ contraction. Previous studies have
suggested that this post-stimulation contraction is mediated via
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nitric oxide33 or through a generalized inhibitory response via
eicosanoids rather than linked to a distinct inhibitory
transmitter34. The finding that transplantation of ENSC cells
restored nitrergic inhibitory responses and altered post-stimulus
responses suggests adaptation of neuromuscular signalling
mechanisms at multiple levels. Of note, there are differences in
the methodology of our study and that of these earlier studies,
hence further investigation is required to assess the functional
interaction of transplanted ENSC at the cellular level.
Furthermore, the novel finding that ENSC transplantation
rescues ICC numbers in the nNOS� /� colon in a non-cell-
autonomous fashion raises interesting questions regarding the
interaction of transplanted ENSC with associated cells within
intestinal tissues. Intestinal excitation–contraction coupling is
extremely complex, with GI smooth muscle receiving inputs
from multiple excitable cells. ICC exist within extensive
networks throughout the intestinal tract35 exhibiting pacemaker
activity36–38 and transducing neural signals to the smooth
muscle39,40. Recent studies show that ICC are innervated by
nitrergic nerves41 and express nitric oxide sensitive guanylate
cyclase in both guinea pig42 and mouse colon43 and
that disruptions in nNOS signalling can result in loss of ICC in
the stomach25,44. The findings of similar disruptions in ICC
networks, in the present study, along the length of the nNOS� /�

colon further emphasize the link between NOS signalling and
ICC development. Our previous work has demonstrated that the
selection of ENSC, as in this study, excludes incorporation of
mesenchyme-derived ICC45. Notably, previous studies have
suggested that enteric neurons are the dominant source of SCF,
the natural ligand for c-Kit46, and that 60% of nNOSþ enteric
neurons express SCF47 possibly providing a direct signalling link
between enteric neurons and ICC. The finding that ENSC-derived
neurospheres express SCF ligand in line with these earlier
reports provides a possible mechanism whereby ICC modification
post transplantation is likely through SCF signalling from
transplanted neurons.

One of the challenges for cell replenishment therapies is scaling
up for potential human application. It remains possible that
significant cell numbers will be required to facilitate functional
outcomes in human patients. A recent study has demonstrated
derivation of enteric neural crest from human pluripotent stem
cells and potential rescue of a Hirschsprung phenotype48.
As opposed to our study, this investigation transplanted up to 4
million cells to Ednrbs� l/s� l (SSL/LEJ) colon. While trans-
plantation led to survival of mice, no mechanism was presented
of the graft-mediated host rescue. The findings of our study suggest
that in addition to engraftment of neural crest cells, non-cell-
autonomous modification of the neuromuscular apparatus may be
responsible for this rescue. Our study thus highlights the potential
to apply a limited number of cells, to a particular area, which
subsequently could impact on function throughout the organ and
have significant clinical benefits. In addition, we demonstrate the
potential for collecting postnatal tissue for use in transplantation
studies and the ability of cells from this source to restore function.
This caveat has significant therapeutic benefits as ENSC could be
collected autologously or from matched donors to limit the
potential for immunological rejection. Moreover, previous long-
term safety studies using identical postnatal ENSC have
demonstrated long-term survival of ENSC-derived cells restricted
only to the region of transplantation16, which may provide a
substantial benefit over the potential therapeutic application of cells
derived from pluripotent sources.

We conclude that this study provides the first evidence that
ENSC can rescue GI motility within a neuropathic model and
may provide the basis for development of targeted cellular
therapies for enteric neuropathies.

Methods
Animals. Male and female Wnt1cre/þ ;R26RYFP/YFP mice, in which neural crest
cells express YFP, were used as donors to obtain YFPþ ENSC. Heterozygote nNOS
(B6.129S4-Nos1tm1Plh/J) mice were obtained from The Jackson Laboratory
(Bar Harbor, MN, USA). Male and female homozygote nNOS knockout
(nNOS� /� ) mice were bred and maintained for use as recipients. Four–5-week-
old C57BL/6J mice were obtained from The Jackson Laboratory (Bar Harbor,
MN, USA) and killed as age-matched controls at 6 weeks. Animals used for these
studies were maintained, and the experiments performed, in accordance with the
UK Animals (Scientific Procedures) Act 1986 and approved by the University
College London Biological Services Ethical Review Process. Animal husbandry at
UCL Biological Services was in accordance with the UK Home Office Certificate of
Designation.

Cell isolation and enrichment. The entire small intestine and colon was
obtained from early postnatal (P2–P7) Wnt1cre/þ ;R26RYFP/YFP mice after cervical
dislocation, and removed to sterile PBS for further dissection. Jejunum, ileum and
colon muscle strips were obtained following removal of the mucosa via fine
dissection. Intestinal cells were dissociated and YFPþ cells isolated using
fluorescence-activated cell sorting with a MoFloXDP cell sorter (Beckman Coulter,
UK). YFP positive (YFPþ ) cells were selected using a 530/40 filter set. Gating
parameters were set using cells from wild-type gut and applied to increase
specificity of selection of YFPþ cells.

Neurosphere culture. YFPþ cells were plated on fibronectin-coated six-well
dishes in ‘neurosphere medium’ (NSM; DMEM F12 supplemented with B27
(Invitrogen, UK), N2 (Invitrogen, UK), 20 ng ml� 1 EGF (Peprotech, UK),
20 ng ml� 1 FGF (Peprotech, UK) and Primocin antibiotic (InvivoGen, UK)
and maintained in culture for up to 4 weeks. Typically such cultures from early
postnatal (P2–P7) intestine formed ‘neurospheres’ at B1 week in culture.

In vivo ENSC transplantation. YFP-expressing neurospheres derived from
Wnt1cre/þ ;R26RYFP/YFP mice were transplanted into the distal colon of P14–P17
nNOS� /� , via laparotomy under isoflurane anaesthetic. Briefly, the distal colon
was exposed and a small pocket was created in the tunica muscularis with the bevel
of a 30G needle. A neurosphere, containing B2� 104 YFPþ cells, was subse-
quently transplanted to this site by mouth pipette using a pulled glass micropipette.
Each transplanted tissue typically received three neurospheres (B6� 104 YFPþ

cells in total). Transplanted nNOS� /� mice were typically maintained for 4 weeks
post transplantation before killing and removal of the colon for analysis. ‘Sham’
operations were performed as controls in which the intestine was manipulated in
an identical fashion without the addition of YFPþ cells.

RT–PCR. Total RNA was isolated from C57BL/6J, nNOS� /� or transplanted
nNOS� /� brain, stomach and colon using TRIzol reagent (Life Technologies Ltd,
Paisley, UK) and treated with DNase I (Qiagen, Manchester, UK). First-strand
cDNA was amplified from 1 mg RNA using SuperScript VILO cDNA Synthesis Kit
(Life Technologies Ltd, Paisley, UK). PCR was performed using region-specific
primers for nNOS (Supplementary Table 1) using HotStarTaq DNA Polymerase
(Qiagen, Manchester, UK). PCR reactions were performed in a PTC-200 Peltier
Thermal Cycler (MJ Research Inc. Waltham, MA, USA). The amplification profile
was 95 �C for 3 min, 35 cycles of 94 �C for 30 s, 60 �C for 60 s and 72 �C for 30 s,
followed by a final step of 72 �C for 2 min. RT–PCR amplification fragments were
analysed on a 2% agarose gel alongside a Hyperladder 25 bp marker (Bioline,
London, UK).

qRT–PCR. Total RNA was isolated from three pooled neurospheres at the time of
surgery using an RNeasy Micro Kit (Qiagen, Hilden, Germany), according to the
manufacturer’s instructions. First-strand cDNA was amplified from 100 ng RNA
using SuperScript VILO cDNA Synthesis Kit (Life Technologies Ltd, Paisley, UK).
RT quantitative PCR was performed with an ABI Prism 7500 sequence
detection system (Applied Biosystems) using the Quantitect SYBR Green PCR kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
qRT–PCR was performed in triplicate using region-specific primers for GAPDH,
TuJ1, SOX10 and S100 (Supplementary Table 1). Gene expression data were
expressed as a proportion of GAPDH housekeeping gene, as a reference, using
a 1/DCt calculation.

Immunohistochemistry. Neurosphere immunohistochemistry was performed
following paraformaldehyde fixation (4% w/v in 0.1 mol l� 1 PBS for 45 min at
22 �C). After fixation, neurospheres were washed for 1 h in PBS (0.01 mol l� 1,
pH 7.2 at 4 �C). Neurospheres were blocked for 1 h (0.1 mol l� 1 PBS containing
1% Triton X-100, 1% BSA and 0.15% glycine) at 22 �C. The primary antibodies
used in the study are listed in Supplementary Table 2. Intact neurospheres were
incubated in primary antibody (diluted in 0.1 mol l� 1 PBS containing 1% Triton
X-100, 1% BSA and 0.15% glycine) overnight at 4 �C and immunoreactivity was
detected using secondary antibodies (1:500 in 0.1 mol l� 1 PBS, 1 h at room
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temperature, Supplementary Table 3). Before mounting, neurospheres were washed
thoroughly in PBS (0.1 mol l� 1 PBS for 1 h at 22 �C).

Whole-mount immunohistochemistry was performed on transplanted colonic
segments after excision and removal of the mucosa by sharp dissection. Tissues
were fixed in paraformaldehyde (4% w/v in 0.1 mol l� 1 PBS for 45 min at 22 �C).
After fixation, tissues were washed for 24 h in PBS (0.01 mol l� 1, pH 7.2 at 4 �C).
Tissues were blocked for 1 h (0.1 mol l� 1 PBS containing 1% Triton X-100, 10%
sheep serum). Tissues were incubated in primary antibody (diluted in 0.1 mol l� 1

PBS containing 1% Triton X-100, 10% sheep serum, Supplementary Table 2) for
48 h at 4 �C and immunoreactivity was detected using the secondary antibodies
listed in Supplementary Table 3 (1:500 in 0.1 mol l� 1 PBS, 1 h at room
temperature). Before mounting, tissues were washed thoroughly in PBS
(0.1 mol l� 1 PBS for 2 h at 22 �C). Control tissues were prepared by omitting
primary or secondary antibodies. Tissues and neurospheres were examined using a
LSM710 meta confocal microscope (Zeiss, Germany). Confocal micrographs
were digital composites of the Z-series of scans (0.5 mm optical sections). For
cell-counting experiments, five Z-series scans (21� 1 mm optical sections including
longitudinal muscle, myenteric plexus and circular muscle layers) were obtained in
each region per animal. Z-series files were blinded before counting. Individual cells
were identified with DAPI co-labelling and cell counts performed across each
individual z-scan using the cell counter plugin (FIJI). Each Z-series count
(21 sections) was summed and average cell number was calculated as a mean of five
Z-series scans per region in each animal. For confocal montage experiments, tissues
were examined using a LSM880 multiphoton microscope (Zeiss, Germany).
Confocal micrographs of whole mounts were digital composites of the Z-series of
scans stitched using Zen software (Zeiss, Germany). Final images were constructed
using FIJI software49 after applying a post-acquisition Gaussian filter with a s of 2.

For NADPH diaphorase staining, colonic tissues were prepared, fixed and
washed as above. NADPH diaphorase activity was detected by incubating tissues
in 0.1 mol l� 1 PBS containing 0.05% Triton X-100, 1 mg ml� 1 b-NADPH
(Sigma, UK) and 0.5 mg ml� 1 nitrobluetetrazolium (Sigma, UK) for 20 min at
37 �C. After staining, the tissues were washed thoroughly in PBS (0.1 mol l� 1)
before mounting.

Haemeotoxylin and eosin colonic cryostat sections (20 mm) were obtained from
frozen gelatin-embedded samples using a Leica CM1900 UV Cryostat (Leica
Microsystems, UK) and processed for haemeotoxylin and eosin. Briefly, frozen
colonic sections were post fixed in PFA (4% w/v in 0.1 mol l� 1 PBS for 45 min at
22 �C), washed thoroughly and haemeotoxylin solution (Harris modified; Sigma,
UK) applied for 7 min at 22 �C. After washing, slides were immersed in acid alcohol
(1% HCl in 70% EtOH) for 10 s and washed before application of 1% eosin Y
(Fisher Scientific, UK) for 5 min at 22 �C. Samples were subsequently washed,
dehydrated and cleared in Histoclear (2� 1 min at 4 �C; National Diagnostics, UK)
before mounting.

In vivo transit analysis. To test GI transit, either 100 ml Gastrosense 750
(Perkin Elmer, USA) or 100 ml Brilliant Blue FCT (E122) solution (Langdales, UK)
was administered to the stomach via gavage at 6 weeks (4 weeks post transplan-
tation). Total GI transit time was calculated from time of administration to the first
visualization of dye in the stool. Stool output in 1 h was calculated as: total number
of stool in 1 h� stool weight. To assess stomach emptying and partial transit time,
Gastrosense 750 fluorescence was imaged using an IVIS Lumina III In Vivo
Imaging System (Perkin Elmer, USA). At 30 min, in vivo images were obtained and
percentage stomach emptying calculated as: 1� Stomach fluorescence

Total flourescence

� �� �
�100:

To assess partial intestinal transit, the GI tract (stomach to terminal colon) was
removed 90 min after Gastrosense 750 administration. Flourescence images were
obtained of the GI tract and percentage intestinal transit calculated as:
Dye transit distance

Total intestinal length�100:

Contractility. Longitudinal colonic muscle strips were isolated and the mucosa
removed by sharp dissection in oxygenated Krebs solution. Longitudinal muscle
strips were mounted in tissue baths (10 ml, SI-MB4; World Precision Instruments
Ltd, UK) connected via suture to force transducers (SI-KG20, World Precision
Instruments Ltd, UK) under an initial tension of 0.5 g. Tissues were maintained
at 37 �C with perfusion of oxygenated Krebs solution. Following a 60 min
equilibration period, activity was recorded using a Lab-Trax-4 data acquisition
system (World Precision Instruments Ltd, UK) in the absence and presence of
non-adrenergic non-cholinergic conditions (Atropine; 1 mM, Phentolamine
hydrochloride; 1 mM, Propranolol hydrochloride; 1 mM). Nerves were stimulated
for 30 s (5 Hz; 40 V; 0.3 ms pulse duration) via EFS via platinum electrode loops
placed at each end of the muscle strip using a MultiStim System (D330, World
Precision Instruments Ltd, UK). Addition of L-NAME (100 mM) or TTX (1 mM) to
the bath solution was used to assess the nitrergic and neurally mediated responses,
respectively. EFS gave rise to neural responses that were sensitive to TTX.
Data were collected, stored and analysed by computer using a data acquisition
programme (Labscribe 2-1, World Precision Instruments Ltd, UK).

Statistical analysis. Data are expressed as mean±s.e.m. Differences in the data
were evaluated between nNOS� /� control, sham-operated and transplanted
groups using one-way ANOVA and subsequent intergroup differences were

determined by unpaired Student’s t-test. P values o0.05 were taken as statistically
significant. The ‘n values’ reported refer to the number of mice or colonic segments
used for each protocol. Each muscle was taken from a separate animal.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author on reasonable request.

References
1. Goldblum, J. R., Rice, T. W. & Richter, J. E. Histopathologic features in

esophagomyotomy specimens from patients with achalasia. Gastroenterology
111, 648–654 (1996).

2. Knowles, C. H. et al. New perspectives in the diagnosis and management of
enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol. 10, 206–218 (2013).

3. Csendes, A. et al. Histological studies of Auerbach’s plexuses of the oesophagus,
stomach, jejunum, and colon in patients with achalasia of the oesophagus:
correlation with gastric acid secretion, presence of parietal cells and gastric
emptying of solids. Gut 33, 150–154 (1992).

4. Hasler, W. L. Gastroparesis: pathogenesis, diagnosis and management.
Nat. Rev. Gastroenterol. Hepatol. 8, 438–453 (2011).

5. Harberson, J. et al. Gastric neuromuscular pathology in gastroparesis: analysis
of full-thickness antral biopsies. Dig. Dis. Sci. 55, 359–370 (2010).

6. Giorgio, V. et al. High-resolution colonic manometry accurately predicts
colonic neuromuscular pathological phenotype in pediatric slow transit
constipation. Neurogastroenterol. Motil. 25, 70–8.e8–9 (2013).

7. Rao, S. S., Rattanakovit, K. & Patcharatrakul, T. Diagnosis and management of
chronic constipation in adults. Nat. Rev. Gastroenterol. Hepatol. 13, 295–305
(2016).

8. Bassotti, G. et al. Enteric neuropathology of the terminal ileum in patients with
intractable slow-transit constipation. Hum. Pathol. 37, 1252–1258 (2006).

9. Heanue, T. A. & Pachnis, V. Enteric nervous system development and
Hirschsprung’s disease: advances in genetic and stem cell studies. Nat. Rev.
Neurosci. 8, 466–479 (2007).

10. Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: a
review. J. Med. Genet. 45, 1–14 (2008).

11. Rao, M. & Gershon, M. D. The bowel and beyond: the enteric nervous system
in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528 (2016).

12. Anderson, G. et al. Loss of enteric dopaminergic neurons and associated
changes in colon motility in an MPTP mouse model of Parkinson’s disease.
Exp. Neurol. 207, 4–12 (2007).

13. Joachim, C. L., Mori, H. & Selkoe, D. J. Amyloid beta-protein deposition in
tissues other than brain in Alzheimer’s disease. Nature 341, 226–230 (1989).

14. Burns, A. J. & Thapar, N. Neural stem cell therapies for enteric nervous system
disorders. Nat. Rev. Gastroenterol. Hepatol. 11, 317–328 (2014).

15. Bondurand, N. et al. Neuron and glia generating progenitors of the mammalian
enteric nervous system isolated from foetal and postnatal gut cultures.
Development 130, 6387–6400 (2003).

16. Cooper, J. E. et al. In vivo transplantation of enteric neural crest cells into
mouse gut; engraftment, functional integration and long-term safety.
PLoS ONE 11, e0147989 (2016).

17. Hotta, R. et al. Transplanted progenitors generate functional enteric neurons in
the postnatal colon. J. Clin. Invest. 123, 1182–1191 (2013).

18. Cooper, J. E. et al. In vivo transplantation of fetal human gut-derived enteric
neural crest cells. Neurogastroenterol. Motil. 29, e12900 (2017).

19. Hetz, S. et al. In vivo transplantation of neurosphere-like bodies derived from
the human postnatal and adult enteric nervous system: a pilot study. PLoS ONE
9, e93605 (2014).

20. Nishikawa, R. et al. Migration and differentiation of transplanted enteric neural
crest-derived cells in murine model of Hirschsprung’s disease. Cytotechnology
67, 661–670 (2015).

21. Metzger, M. et al. Enteric nervous system stem cells derived from human gut
mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136,
2214–25 e1-3 (2009).

22. Rivera, L. R. et al. The involvement of nitric oxide synthase neurons in enteric
neuropathies. Neurogastroenterol. Motil. 23, 980–988 (2011).

23. De Giorgio, R. et al. Esophageal and gastric nitric oxide synthesizing
innervation in primary achalasia. Am. J. Gastroenterol. 94, 2357–2362 (1999).

24. Vanderwinden, J. M. et al. Nitric oxide synthase activity in infantile
hypertrophic pyloric stenosis. N. Engl J. Med. 327, 511–515 (1992).

25. Grover, M. et al. Cellular changes in diabetic and idiopathic gastroparesis.
Gastroenterology 140, 1575–85 e8 (2011).

26. Chandrasekharan, B. & Srinivasan, S. Diabetes and the enteric nervous system.
Neurogastroenterol. Motil. 19, 951–960 (2007).

27. Kusafuka, T. & Puri, P. Altered mRNA expression of the neuronal nitric oxide
synthase gene in Hirschsprung’s disease. J. Pediatr. Surg. 32, 1054–1058 (1997).

28. Vanderwinden, J. M. et al. Nitric oxide synthase distribution in the enteric
nervous system of Hirschsprung’s disease. Gastroenterology 105, 969–973
(1993).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15937

10 NATURE COMMUNICATIONS | 8:15937 | DOI: 10.1038/ncomms15937 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


29. Mashimo, H., Kjellin, A. & Goyal, R. K. Gastric stasis in neuronal
nitric oxide synthase-deficient knockout mice. Gastroenterology 119, 766–773
(2000).

30. Micci, M. A. et al. Neural stem cell transplantation in the stomach rescues
gastric function in neuronal nitric oxide synthase-deficient mice.
Gastroenterology 129, 1817–1824 (2005).

31. Huang, P. L. et al. Targeted disruption of the neuronal nitric oxide synthase
gene. Cell 75, 1273–1286 (1993).

32. Dickson, E. J. et al. The mechanisms underlying the generation of the
colonic migrating motor complex in both wild-type and nNOS knockout mice.
Am. J. Physiol. Gastrointest. Liver Physiol. 298, G222–G232 (2010).

33. Ward, S. M. et al. Nonadrenergic, noncholinergic inhibition and rebound
excitation in canine colon depend on nitric oxide. Am. J. Physiol. 262,
G237–G243 (1992).

34. Franck, H. et al. Rebound excitation and alternating slow wave patterns depend
upon eicosanoid production in canine proximal colon. J. Physiol. 520(Pt 3):
885–895 (1999).

35. Sanders, K. M. et al. Development and plasticity of interstitial cells of Cajal.
Neurogastroenterol. Motil. 11, 311–338 (1999).

36. Ward, S. M. et al. Mutation of the proto-oncogene c-kit blocks development
of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol.
480(Pt 1): 91–97 (1994).

37. Huizinga, J. D. et al. W/kit gene required for interstitial cells of Cajal and for
intestinal pacemaker activity. Nature 373, 347–349 (1995).

38. Hennig, G. W. et al. ICC-MY coordinate smooth muscle electrical and
mechanical activity in the murine small intestine. Neurogastroenterol. Motil. 22,
e138–e151 (2010).

39. Burns, A. J. et al. Interstitial cells of Cajal mediate inhibitory neurotransmission
in the stomach. Proc. Natl Acad. Sci. USA 93, 12008–12013 (1996).

40. Ward, S. M. et al. Interstitial cells of Cajal mediate cholinergic
neurotransmission from enteric motor neurons. J. Neurosci. 20, 1393–1403
(2000).

41. Klein, S. et al. Interstitial cells of Cajal integrate excitatory and inhibitory
neurotransmission with intestinal slow-wave activity. Nat. Commun. 4, 1630
(2013).

42. Iino, S., Horiguchi, K. & Nojyo, Y. Interstitial cells of Cajal are innervated by
nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the
guinea-pig gastrointestinal tract. Neuroscience 152, 437–448 (2008).

43. Lies, B. et al. Nitrergic signalling via interstitial cells of Cajal regulates motor
activity in murine colon. J. Physiol. 593, 4589–4601 (2015).

44. Choi, K. M. et al. Regulation of interstitial cells of Cajal in the mouse
gastric body by neuronal nitric oxide. Neurogastroenterol. Motil. 19, 585–595
(2007).

45. Binder, E. et al. Enteric neurospheres are not specific to neural crest
cultures: implications for neural stem cell therapies. PLoS ONE 10, e0119467
(2015).

46. Torihashi, S. et al. Enteric neurons express steel factor-lacZ transgene in the
murine gastrointestinal tract. Brain Res. 738, 323–328 (1996).

47. Young, H. M. et al. Identification of neurons that express stem cell factor in the
mouse small intestine. Gastroenterology 115, 898–908 (1998).

48. Fattahi, F. et al. Deriving human ENS lineages for cell therapy and drug
discovery in Hirschsprung disease. Nature 531, 105–109 (2016).

49. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9, 676–682 (2012).

Acknowledgements
The authors thank Dr Ayad Eddaoudi, Ms Stephanie Canning (UCL Great Ormond
Street Institute of Child Health Flow Cytometry Facility) and Dr Dale Moulding
(UCL Great Ormond Street Institute of Child Health Imaging Facility) for technical
support. The authors also gratefully acknowledge use of the In Vivo Imaging services at
the UCL Great Ormond Street Institute of Child Health, funded by The Alternative Hair
Charitable Foundation. All research at Great Ormond Street Hospital NHS Foundation
Trust and UCL Great Ormond Street Institute of Child Health are made possible by the
NIHR Great Ormond Street Hospital Biomedical Research Centre. The views expressed
are those of the author(s) and not necessarily those of the NHS, the NIHR or the
Department of Health. This project has received some funding from the European
Union’s Horizon 2020 research and innovation programme ‘INtestinal Tissue
Engineering Solution’ under grant No 668294. N.T. is supported by Great Ormond Street
Hospital Children’s Charity (GOSHCC—V1258). C.J.M., J.E.C. and D.N. were funded
through a GOSHCC grant (W1018C) awarded to N.T. (Principal Investigator) and A.J.B.
(Co-Investigator). J.E.C. was part-funded by a grant from the Medical Research Council
(G0800973) awarded to N.T. (Principal Investigator) and A.J.B. (Co-Investigator).

Author contributions
C.J.M., J.E.C., D.N., B.J. and L.E.B. acquired and interpreted data. A.J.B. and N.T.
interpreted data and obtained funding. C.J.M., A.J.B. and N.T. contributed to study
concept and design, and drafted and critically revised the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: McCann, C. J. et al. Transplantation of enteric nervous system
stem cells rescues nitric oxide synthase deficient mouse colon. Nat. Commun. 8, 15937
doi: 10.1038/ncomms15937 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15937 ARTICLE

NATURE COMMUNICATIONS | 8:15937 | DOI: 10.1038/ncomms15937 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon
	Introduction
	Results
	Transplanted ENSC extensively integrate in nNOS−/− colon
	Transplanted ENSC regenerate nNOS+ neurons
	Restoration of nitrergic responses in the nNOS−/− colon
	ENSC transplantation increases basal contractile properties
	Transplantation decreases total intestinal transit time
	Upper GI transit is not affected by ENSC transplantation
	ENSC transplantation restores ICC numbers

	Discussion
	Methods
	Animals
	Cell isolation and enrichment
	Neurosphere culture
	In vivo ENSC transplantation
	RT–PCR
	qRT–PCR
	Immunohistochemistry
	In vivo transit analysis
	Contractility
	Statistical analysis
	Data availability

	Additional information
	Acknowledgements
	References




