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Refinement of learned skilled movement
representation in motor cortex deep output layer
Qian Li1,*,w, Ho Ko2,3,4,5,*, Zhong-Ming Qian6, Leo Y.C. Yan1,4, Danny C.W. Chan1,4, Gordon Arbuthnott7,

Ya Ke1,4,5 & Wing-Ho Yung1,4,5

The mechanisms underlying the emergence of learned motor skill representation in primary

motor cortex (M1) are not well understood. Specifically, how motor representation in the

deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats

undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that

not only become more movement-encoding, but their activities are also more structured and

temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds.

Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that

parallels motor performance. Intracortical dopamine denervation impairs motor learning, and

disrupts the LTP profile as well as the emergent neurodynamical properties of

task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal

ensembles via synaptic reorganization may allow the motor cortex to generate more

temporally structured, movement-encoding output signal from M1 to downstream circuitry

that drives increased uniformity and precision of movement during motor learning.
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T
he capability to learn novel, complex motor skills is a
remarkable ability of human and many other mammals.
Although multiple extracortical brain areas, notably

the cerebellum and the basal ganglia, contribute to motor
learning1, it has been argued that the primary motor cortex
(M1) is ideally suited not only for the execution of movement
but also the acquisition and storage of motor memory2. Recent
finding also highlights the essential role of the motor cortex
in tutoring subcortical motor circuits in acquiring motor skills3.
M1 neurons are known to comprise a functionally heterogeneous
population, encoding distinct motor parameters such as direction,
velocity, position and muscle activity4–10, while jointly they
may constitute a pattern generator to encode for the large
diversity of possible movements11. The motor representations
of individual neurons and neuronal ensembles in M1 are not
static, exhibiting adaptation to task requirements, as well as
improved coding and predictability of behavioural outcomes
with motor learning12–17.

M1 circuitry exhibits interlaminar specificity. Layer 2/3 (L2/3)
provides excitatory input to layer 5a (L5a) and layer 5b
(L5b), while L5a also relays feedforward excitatory drive to L5b
(refs 18–21). Functional imaging in animals undergoing motor
training demonstrated that M1 L2/3 neurons consist of functionally
distinct types with different sensory, motor and decision correlates
during motor task which are modulated by learning22,23. In the
forelimb area of M1, after repeated lever-manipulation task L2/3
neurons exhibit more reproducible population activity in relation to
motor execution24. Interestingly, L2/3 neurons retain similar
predictability of motor outcome during training of lever-press
task, while L5a neurons become progressively recruited for the task
and a substantial proportion of neurons become more predictive of
lever trajectory after motor training25. However, it remains
unknown, how these learning induced reorganizations of
neuronal coding in L2/3 and L5a are eventually conveyed to and
reflected in the motor representation of the output layer L5b, which
is beyond the reach of optical functional imaging techniques
(for example, two-photon microscopy) due to its depth. Previous
studies showed that M1 neurons encode movement parameters
with temporal leads or lags on the order of tens to hundreds of
milliseconds5,8,9,26,27; however, how these temporal dynamics in
motor representation in M1 change with learning remains virtually
unknown.

It has been suggested that reorganization of both the
interlaminar and intrinsic horizontal connections in M1 underlies
learning-induced plasticity of motor representation. Great insight
has been provided by recent in vivo imaging studies of the motor
cortex, which revealed rapid changes in spine dynamics on the
apical dendrites of L5 neurons within the first few hours28–30.
These findings suggest a crucial role of long lasting synapse
remodelling and connectivity reorganization in the formation as
well as consolidation of motor memory. Electrophysiological
studies, on the other hand, have revealed that motor skill training
could strengthen horizontal connections in the superficial layers
1–3 of the motor cortex, manifested as an increase in local field
potentials (FPs) evoked in cortical slices studied in vitro31,32.
However, up to now, physiologically induced long-term
potentiation (LTP) during motor skill learning has not been
demonstrated convincingly and tracked in vivo in the motor cortex.

To probe the process of motor learning and the refinement of
motor representation by L5b, we performed a longitudinal study
by chronic recording of single-unit activities from M1 in rats
performing repetitive motor skill task up to 7 days. We elucidated
the fine-scale temporal dynamics of single neuron and population
activities from ensembles of L5b neurons, as well as the
maintenance of training-induced synaptic plasticity in vivo. We
also interrogated the process by examining the effect of depleting

dopamine, the neuromodulator that has been consistently
implicated in different types of cortical plasticity and learning33–35.

Results
In vivo recordings in L5b during forelimb-reaching training.
To investigate the temporal dynamics of single-neuron and
population activities in L5b during motor learning, food-restric-
ted rats (n¼ 9) were trained with a forelimb reaching and
grasping task for 7 consecutive days (Fig. 1a, Supplementary
Movies 1 and 2, left panel), with simultaneous multi-channel
single-unit recordings at L5b of the forelimb territory in M1
(Supplementary Fig. 1a). To acquire the largest possible samples
of neurons per animal, we employed 16-channel microwire array
for recording from neuronal ensembles. Data were included for
analyses only if correct targeting of electrodes at L5b was verified
by post-mortem histological reconstruction of the recording sites,
based on that L5b is distinct from neighbouring L5a and layer 6
(L6) with a denser VGlut2 immunoreactivity and larger neuronal
soma size36–38 (Supplementary Fig. 1a,b; see Supplementary
Fig. 1c for all reconstructed recording sites from one animal).
Furthermore, to provide enough single-unit data from the same
animal for neuronal population analyses, we only included rats
from which more than 20 single-units were recorded in L5b
(see Supplementary Fig. 1d,e for the locations of all the recording
sites included for analyses).

Each animal received six 10-min training sessions per day, with
5-min rest intervals between sessions. The reaching attempts
involved a coordinated motor sequence consisting of different
phases: orienting, advancing, extending, grasping, retracting and
completion (Fig. 1b, see Methods for definition of each phase),
resulting in trackable forepaw trajectories (Fig. 1c). Over days of
training, the extension time, grasp time and retraction time of
individual first reach success trials (defined as trials during which
the animal completed the reaching attempt and consumed the
food pellet successfully on the first reaching attempt) exhibited
progressive decrease and became less variable from trial to trial,
especially over the first 2 days of training and then became steady
(Fig. 1d). In addition, rats responded to the provision of food with
progressively shorter and less variable delays in first reach success
trials (Fig. 1e). We also observed the largest increase in the
proportion of first reach success trials during the first 3 days, both
within and across days, which levelled off from day 4 (Fig. 1f,
mean±s.e.m. of first reach success rate: day 1 session 1:
8.7±3.0% versus session 6: 28.2±2.8%, P¼ 2.03� 10� 4; day 2
session 1: 27.3±3.4% versus session 6: 36.4±1.8%, P¼ 0.020; day
3 session 1: 35.7±3.1% versus session 6: 42.9±1.2%, P¼ 0.037;
day 4 session 1: 42.1±2.9% versus session 6: 41.8±4.0%,
P¼ 0.913; day 7 session 1: 45.6±2.1% versus session 6:
46.6±1.1%, P¼ 0.659; one-way repeated measures ANOVA,
9 rats). Notably, the acquired motor skill memory was retained
overnight. Improved skillfulness was also reflected in increased
spatial uniformity of forepaw movement trajectory, especially
during first reach success trials in the first 2 days of training, as
both the average and variance of deviation from the reference
expert trajectory (computed from the average of 50 randomly
selected first success trials from day 7 session 6, see Fig. 1c and
Methods) decreased significantly (Fig. 1g).

Long-term stability of chronic single-unit recordings in L5b.
To study the properties of motor skill representation during the
7-day training process, it was critical that only well-separated
units that exhibited long-term stability were included for further
analyses. We validated the stability of single-unit tracking by
comparison against standard tetrode recordings. The quality of
single-unit isolation was assessed by computing quantitative
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measures of cluster quality, from both 16-channel microwire
array and tetrodes. Specifically, the criteria for single-unit
are: signal-to-noise ratio44, isolation distance (ID)39

Z 15,
L-ratior0.2 (refs 40,41–43), and a clear refractory period
revealed by both inter-spike interval (ISI) distribution and auto-
correlograms with 99.5% of events with ISI42 ms (microwire
array: Fig. 2a–c, Supplementary Fig. 2a–c; tetrode: Supplementary
Fig. 2d–f, see Methods).

To determine whether a unit was stable and represented
correct tracking of the same neuron over consecutive days,
we computed four criterion scores: maximum time-shifted
linear correlation coefficient of spike waveform (Max r,
Fig. 2d), normalized spike peak-to-peak amplitude difference
(DPamp), dissimilarity score for inter-spike interval histogram
(ISIH), and dissimilarity score for autocorrelation histogram44–47

(see Methods). We fitted Gaussian mixture model to distributions
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Figure 1 | Forelimb reaching for food training and simultaneous recording from L5b neurons in M1. (a) Schematics of experimental paradigm. Neural

activities in L5b were recorded during forelimb food-reaching task training over 7 days by multi-channel recording electrode array (Rec.). FL and HL:

forelimb and hindlimb territories of M1; S1: primary somatosensory cortex; V1: primary visual cortex. (b) Six phases of a first reach success trial captured by

camera and the forelimb trajectory tracked automatically (see Methods). (c) The evolution of more uniform forelimb trajectories (pink) in first reach

success trials. The reference expert trajectory is shown in blue colour. Red asterisk denotes the position of food pellet. (d) The duration of forelimb

extension (upper panel), grasping (middle panel) and retraction (lower panel) in first reach success trials. The timing of reaching action shortened

significantly in day 1 and exhibited further decrease in day 2 and 3, and remained steady thereafter. Mean±s.d. *Po0.05; **Po0.01; ***Po0.001, one-way

repeated measures ANOVA, n¼9. (e) Left, delay in first reach attempt quantified by the time interval between food provision and the ‘orient’ position of

forelimb on days 1 and 7 (120 consecutive trials each from a single representative rat). Right, learning associated shortening in the delay in first reach

success attempt. Mean±s.d. of delay in first reach success trials: day 1: 3.44±0.37 s; day 7: 0.96±0.14 s, P¼ 2.51� 10� 6; *Po0.05; **Po0.01;

***Po0.001, all compared with day 1; one-way ANOVA, 9 rats; first reach failure trials: day 1: 2.31±1.55 s; day 7: 1.45±1.20 s, P¼0.012; one-way ANOVA,

9 rats. (f) Training-dependent improvement in first reach success rate (see text). (g) Evaluation of forelimb trajectory spatial variance as the averaged

distance integrated over time between the actual trajectories in first reach success trials (pink) and the reference expert trajectory (blue) shown in d. Mean

cumulative Euclidean distance±s.d., day 1 session 1: 0.375±0.061 cm; day 1 session 6: 0.265±0.042 cm, P¼0.0173; day 2 session 1: 0.252±0.041 cm,

P¼0.0052; day 2 session 6: 0.205±0.026 cm, P¼ 7.85� 10�4; *Po0.05; **Po0.01; ***Po0.001, all compared to day 1 session 1, one-way repeated

measures ANOVA, n¼ 9.
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of combinations of the criteria and employed quadratic
discriminant analysis to obtain optimal decision boundary for
classification of recordings that correspond to the same or distinct
neuron (Fig. 2e, Supplementary Fig. 2g,h; see Methods for

details). We chose the Max r–ISIH dissimilarity score joint
distribution as the optimal discrimination model because these
were the two most informative features that gave the lowest
Bayesian information criterion (BIC) and Akaike information
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criterion (AIC) (see Methods). We classified 158 single units
as stable tracking of the same cells through 7 days
(see Supplementary Fig. 2i for estimated cumulative false
positive and negative rates; also see Methods). 47 units from
microwire array recording and 16 units from tetrode recordings
disappeared into background or occurred in transit thus failed to
be tracked over 7 days. Sorting quality (microwire array, Fig. 2f;
tetrodes, Supplementary Fig. 2j) and tracking stability (microwire
array, Fig. 2g; tetrodes, Supplementary Fig. 2k) for all included
single-units remained stable throughout the 7 training days. We
therefore concluded that, in our experiments, the single-unit
tracking performance of microwire array recordings was
comparable to that of tetrode recordings.

Diversity in single neuron dynamics in L5b during learning.
The 158 L5b neurons, collected from 61 channels on microwire
arrays from five out of nine rats included for analyses, were
classified putatively as either pyramidal neurons (PNs, 131/158)
or interneurons (INs, 27/158) based on their electrophysiological
properties (Supplementary Fig. 3a–c). On the first day of
experiments, we invariably observed a spectrum of activities of
these neurons, with some clearly showing firing correlated with
forelimb displacement and velocity and others that were less
correlated. Analysis of single neuron dynamics revealed that
10.7% (14/131) of PNs exhibited reaching-correlated firing as
shown in their peri-event time histograms (PETH) (Fig. 3a,b,
neuron A) which were temporally aligned to the ‘orient’ position
(see Methods and Fig. 1b). This reaching-correlated firing
property did not change with training (see Supplementary
Fig. 4a,b for further examples). On the other hand, 44.3%
(58/131) PNs’ activities initially had no or little correlation with
reaching execution, but with learning, their activities also became
temporally aligned to forelimb movement with either increase
(37/58, Fig. 3a,b, neuron B, also see Supplementary Fig. 4c,d for
further examples) or decrease in firing (21/58, Supplementary
Fig. 4e,f for further examples). There were also 45.0% (59/131) of
PNs whose peri-event firing changes did not reach statistical
significance despite training (Fig. 3a,b, neuron C). These results
suggest that the firing characteristics of a subpopulation of L5b
neurons are not static, but progressively change with motor
learning.

Fine-temporal scale refinement of skilled movement encoding.
Previous studies demonstrated increased information content of
M1 neuronal firing about motor output in monkeys15 as well as
M1 L5a neurons in rodents25 with motor learning, while the time

scale at which firing–motor output relationship may be altered
remains elusive. Having observed L5b PNs with diverse
behavioural correlates, we next investigated the modulation of
peri-task execution firing and information content by motor
learning in these individual L5b PNs, as well as the time scale of
the changes. We computed the mutual information between
single-unit instantaneous firing rate and forelimb instantaneous
velocity as a function of different time lags (t, ranging from
� 500 to þ 500 ms, with t40 meaning firing precedes
instantaneous movement, Supplementary Fig. 5a), and obtained
the optimal time lag (topt.) for each neuron, defined as the value
of t at which the mutual information attains maximum (IM).

Hierarchical clustering of single neuron over the 7 days (Fig. 3c
for PNs; Fig. 3d for INs) and analyses of the associated changes in
topt. (Fig. 3e) confirmed sub-groups of PNs that responded
differently to training. Of all 131 PNs analysed, one subgroup
(named Type 1 neurons, including neuron A in Fig. 3a,b, 14/131 or
10.7% of PNs from five rats) showed robust IM regardless of the day
of training (Fig. 3c, Type 1, see Supplementary Fig. 5b for neurons
from one representative rat) and had constant topt. (Fig. 3e, left
panel). For these type 1 neurons, a rapid increase in IM and
relatively constant topt. was already apparent on the first training
day (Supplementary Fig. 5c, neuron A and ex. 2; Supplementary
Fig. 5d,e, Type 1). Thus, they carried robust information about
forelimb movement velocity right from the beginning of, and
throughout motor training. In contrast, another subgroup of PNs
(named Type 2 neurons, including neuron B in Fig. 3a,b, 61/131 or
46.6% of PNs from five rats) exhibited progressive increase in IM of
different degrees (Fig. 3c, Type 2; see Supplementary Fig. 5b for
neurons from one rat), and interestingly, was always associated with
a reduction in topt. after the first training day (59/61 of type 2 PNs
exhibited reduction in topt. on day 7 versus day 1; mean change of
topt.±s.d.¼ � 84.2±70.5 ms, or 37.3% reduction, Po10� 5,
paired t-test, Fig. 3e, middle panel). During the first training day,
increase in IM for Type 2 neurons was already evident and topt.

emerged from random to exhibiting consistent values (Supple-
mentary Fig. 5c, neuron B, Supplementary Fig. 5d,e, Type 2). The
remaining PNs (named Type 3 neurons, including neuron C in
Fig. 3a,b, 56/131 or 42.7% of PNs from five rats) had insignificant
IM (Fig. 3c, Type 3; see Supplementary Fig. 5b for neurons from
one rat) and scattered topt. throughout training (Fig. 3e, right panel).
Consistent with these observations, analysis of single neuron
activity revealed that, after training, type 2 PNs exhibited earlier
changes in PETH, demonstrated by a shortening in time until
divergence (mean±s.d. of time until divergence, day 1 session 6:
265.12±85.58 ms, day 7 session 6: 173.13±71.98 ms, Po10� 5,
paired t-test, Supplementary Fig. 5f, see Methods). Statistical

Figure 2 | Spike sorting and assessment of long-term stability of single-unit recordings by single microwire array over 7 days. (a) Example of spike

sorting from single microwire array in 7 days, showing the superimposed spike waveforms (upper panel) and the inter-spike-interval histogram (ISIH, lower

panel), and the corresponding identified clusters in the PCs space (far right panel). Clear isolation of units from a given recording channel is indicated by

high, F statistic of MANOVA (F), J3, Dunn validity (Dn) and low Davis-Bouldin (DB) index (see Methods). Note the excluded unit in red, whose spike

waveforms changed cross days, and had shifted ISI histogram and cluster location in PCs. (b) Long-term stability of identified single-units shown in a over 7

days. The unit shown in red with drifting of cluster was excluded. (c) Autocorrelograms of the three isolated units and their cross-correlogram (white). The

presence of refractory periods in the auto-correlograms and absence of refractoriness in the cross-correlogram indicated spikes with clusters marked in

yellow, green and blue were generated by three distinct neurons. The short latency sharp peak in the cross-correlogram (arrow) between the putative

pyramidal neuron (yellow, reference of the cross-correlogram) and the interneuron (green) may indicate mono-synaptic activation. (d) Example of units

exhibiting stable (top, unit 1 in a) or unstable (bottom, unit 4 in a) spike waveform are shown in d. (e) Gaussian mixture distributions fitted to combinations

of the four similarity scores (see Methods) computed from spikes recorded from same neuron (black dots, representing true positive values computed

using recording acquired in difference sessions on the same day, see Methods) or distinct ones (grey dots, computed from recordings from different

channels simultaneously) on the same day corresponding contours: 50% (red), 95% (blue), 99.9% (orange), 99.97% (black) of the distribution. Red and

blues crosses represented recordings classified as stably corresponding to the same or arising from distinct neurons respectively, based on combining the

use of multiple similarity scores with quadratic classifiers (green lines). (f) Cross-day stability of single-unit isolation quality assessed by L-ratio and

isolation distance (n¼ 158 included units shown in red in e). (g) Cross-day stability of four cluster similarity scores (n¼ 158 included units shown in

red in e, day 1 session 1 recordings were used as reference).
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Figure 3 | Fine-temporal scale refinement of firing-motor output relationship in a subpopulation of L5b PNs. (a) Three examples of L5b PNs’ peri-event

time histograms, aligned by the ‘orient’ position (time ‘0’, white dots). Fifty-six consecutive first reach success and 80 consecutive first reach failure trials

are stacked. White arrows indicate the time when food pellets were provided. The correspondent forelimb velocity, are shown overlaid on the top. Neural

activities were normalized and expressed as Z score. Neuron A’s firing highly correlated with forelimb action but remained unchanged with training. Neuron

B’s firing became correlated with forelimb action after training. Neuron C’s firing did not correlate with forelimb reaching action irrespective of training.

(b) Averaged neural activities of the three L5b PNs shown in a during first reach success (red, mean±s.e.m.) and first reach failure (blue, mean±s.e.m.)

trials on days 1 and 7. Arrows indicate the time when the neural activity began to diverge (TUD, time until divergence, see Methods). (c) Hierarchical

clustering of 131 L5b PNs (recorded from five rats) based on single neuron IM during motor learning. The dendrogram (upper half) depicts Euclidean

distance of single PN IM vectors across 7 training days, with major subgroups indicated by different colours in the dendrogram. (d) Twenty-seven L5b INs

(recorded from five rats) were classified into subgroups by applying the same method of hierarchical clustering of single neuron IM as shown in c.

(e) Summary of training-dependent changes of the optimal time lag of IM (topt. for the three major types of L5b PNs (recorded from five rats) classified by
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of type 2 neurons exhibit a decrease in topt., which are distributed below the dashed line with unit slope.
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significance of single neuron IM over 7 days was estimated by
bootstrap resampling (Supplementary Fig. 5g, see Methods).

To account for the confounding factor of reduction of motor
execution time causing possible apparent shortening of topt., we
performed additional analyses whereby the variability of duration
of the attempts was eliminated by mapping the forepaw trajectory

of individual attempts to the reference expert trajectory by
dynamic time warping (DTW), which finds the optimal mapping
for each individual forelimb trajectories to the reference
trajectory. The mapping found was then applied to the time
series data of neural activities and the forelimb instantaneous
velocity, and topt was then re-calculated. After controlling for the
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variation in timing of individual reaching attempts, type 1
neurons still exhibited consistent topt. (Supplementary Fig. 5h),
whereas a shortening of topt. was still observed specifically for
type 2 neurons (Supplementary Fig. 5i).

L5b neurons predict motor outcome with increasing accuracy.
Given an increase in mutual information between single-unit firing
and motor parameters among PNs recruited for the task, we then
determined how well motor behaviour variables could be decoded
from type 2 neuronal ensemble activities in comparison to type 1
neurons, and if decoding performance from different neuronal
subpopulations changes with learning. We employed support
vector regression (SVR) to perform time series forecasting of
forelimb instantaneous velocity (Fig. 4a) and forelimb displacement
(Supplementary Fig. 6a–c) (see Methods). For each neuron, we
performed single neuron SVR decoding using activities within a
time window preceding velocity and found that the optimal
window size that enabled the highest prediction accuracy (tSVR)
was invariably greater than or equal to topt. (Supplementary Fig. 6d;
also see Methods). To maximize prediction accuracy, we used
preceding population activities within a time window covered by
the maximum tSVR among the neuronal population for prediction
of instantaneous velocity. Decoding accuracy was quantified by
Pearson’s correlation coefficient (r2) and mean squared deviation
between the actual and decoded forelimb velocities (Fig. 4b–d) and
displacements (Supplementary Fig. 6a–c). Type 1 neurons activity
predicted forelimb velocity with the highest fidelity throughout
training (Fig. 4d, left panel). Decoding accuracy from type 2 neuron
activities, in contrast, was training-dependent, whereby significant
and progressive improved decoding of forelimb velocity from these
neurons could be obtained throughout the 7 training days (Fig. 4d,
middle panel). Consistent with a lack of change in information
about motor parameters over the 7 days of motor learning, type 3
neurons remained non-informative about forelimb velocity
(Fig. 4d, right panel).

To assay tuning stability of the different types of neurons, we
used SVR trained on the data of each day for prediction of
movement velocity on the previous day. For type 1 neuron
ensembles, SVR trained on each day had similar prediction
accuracies for same-day and previous-day velocity prediction
(Supplementary Fig. 6e,f, Type 1). Interestingly, for type 2 neuron
ensembles, SVR model trained on data from each day had slightly
higher prediction accuracies for previous-day velocity than same-
day data (Supplementary Fig. 6e,f, Type 2). These results indicate
that both type 1 and type 2 neurons exhibited information and
tuning stability, and suggest ongoing consolidation of coding by
type 2 neurons during motor training.

Learning induces task-specific correlation structures in L5b. As
learning-induced changes in neuronal correlation and population
activity pattern in M1 upstream layers that provide excitatory
drive to L5b have previously been reported22,24, we next
investigated how joint-neuronal firing statistics in L5b may be
shaped by learning. To exclude the possibility that the cross-trial
variability of neuronal activities reflects merely the changes in
forelimb kinematics, we controlled for the forelimb trajectory
variability by selecting first reach success trials with actual
trajectories closely approximating the reference expert trajectory
from each individual day (criteria: 30 randomly selected first
reach success trials with trajectory deviation within mean±s.d. of
cumulative Euclidean distance after DTW, see Methods) and
restricted the pairwise cross-correlation analysis only to the
period from the time of ‘food provided’ to ‘complete’ state. We
observed that type 1 neurons exhibited clear correlated activities
on day 1 of training and the correlation structure was robustly
maintained throughout the 7 days (mean±s.e.m. of correlation
coefficient in day 1 session 1: r2¼ 0.257±0.051; day 1 session 6:
r2¼ 0.268±0.061, P¼ 0.886; day 3 session 6: r2¼ 0.258±0.067,
P¼ 0.986; day 7 session 6: r2¼ 0.263±0.057, P¼ 0.632; all
compared to day 1 session 1, one-way repeated measures
ANOVA, 14 pairs of type 1 neurons from five rats, see Fig. 5a
for six pairs of type 1 PNs from one representative rat). In
contrast, among type 2 neurons which were originally weakly
correlated, clusters of neurons with correlated activities emerged
in the first day of motor learning and the correlation structure
was further strengthened during later phase of training
(mean±s.e.m. of correlation coefficient in day 1 session 1:
r2¼ 0.037±0.009; day 1 session 6: r2¼ 0.047±0.007, P¼ 0.164;
day 3 session 6: r2¼ 0.128±0.018, P¼ 0.006; day 7 session 6:
r2¼ 0.154±0.016, P¼ 8.45� 10� 4; all compared to day 1
session 1, one-way repeated measures ANOVA, 348 pairs of
type 2 neurons from five rats; see Fig. 5a for 66 pairs of type 2
PNs from one rat). On the other hand, type 3 neurons did not
show robust structured activity correlation throughout the
training period. Assessment of the overall similarity of
correlation matrix across 7 training days of the type 1 and type
2 PNs (Fig. 5b) and INs (Supplementary Fig. 7a,b) from all rats
suggested the emergence of task-specific neural engram among
these neurons.

We also computed correlations for type 1 and type 2 neurons
using spontaneous activities recorded when the animal was not
executing the task, and found that only the similarity of
correlation matrix for type 2 neurons was slightly strengthened
towards the later period of training (type 1: day 1 session 1:
r2¼ 0.045±0.015 versus day 7 session 6: r2¼ 0.055±0.011,
P¼ 0.364; 14 pairs of type 1 neurons from five rats; type 2: day 1

Figure 4 | Learning-dependent changes of population prediction accuracy for forelimb instantaneous velocity. (a) SVR decoding of forelimb velocity

from neural population activities. For each neuron, the firing histogram (bin size: 12.5 ms, left) was aligned to the behavioural event (27 units from an

example animal), and the values was linearly normalized to 0–1 range. The actual forelimb instantaneous velocity (top right) was predicted using SVR by

the corresponding population spike events. (b) Representative traces of actual forelimb instantaneous velocity (black) and the SVR model predicted

forelimb velocity (red) by three types of neurons classified (type 1 neuron: n¼4; type 2 neuron: n¼ 12; type 3 neuron: n¼ 11, from an example animal),

illustrating the changes in population decoding accuracy during early (day 1) and late (day 7) training sessions. (c) Least squares regression analyses

between actual forelimb instantaneous velocity and the SVR model predicted forelimb velocity based on three types of L5b PNs shown in a during early and

late training sessions. The Pearson’s correlation coefficient (r2) and mean squared deviation (MSD) for each regression are shown. Each data point

represents the instantaneous velocity of the forelimb trajectory predicted from neural population activity versus the actual velocity of displacement

calculated from high-speed camera recording (in 12.5 ms bins). (d) Summarized result of r2 and MSD of predicted and actual forelimb instantaneous velocity by

three types of PNs (n¼ 131) recorded from five rats. Upper left panel, day 1: r2¼0.513±0.013, day 3: r2¼0.505±0.010, P¼0.098; day 7: r2¼0.520±0.013,

P¼0.492; bottom left panel, day 1: MSD¼0.0069±0.00043, day 3: MSD¼0.0073±0.00028, P¼0.370; day 7: MSD¼0.0072±0.00033, P¼0.448. Top

middle panel, day 1: r2¼0.067±0.007, day 3: r2¼0.211±0.014, P¼0.006; day 7: r2¼0.483±0.016, P¼ 1.23� 10�4; Bottom middle panel, day 1:

MSD¼0.0161±0.00048, day 3: SD¼0.0130±0.00034, P¼0.008; day 7: MSD¼0.0081±0.00035, P¼0.002. Top right panel, day 1: r2¼0.061±0.006,

day 3: r2¼0.066±0.015, P¼0.587; day 7: r2¼0.073±0.008, P¼0.312. Bottom right panel, day 1: MSD¼0.0169±0.00047, day 3: MSD¼0.0171±0.00051,

P¼0.282; day 7: MSD¼0.0167±0.00055, P¼0.781, all compared to day 1, one-way repeated measures ANOVA, n¼ 5.
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session 1: r2¼ 0.039±0.009; day 7 session 6: r2¼ 0.067±0.013,
P¼ 0.037; 348 pairs of type 2 neurons from five rats; see
Supplementary Fig. 7c for 6 pairs of type 1 and 66 pairs of type 2
PNs from the same rat as shown in Fig. 5a; see Supplementary
Fig. 7d for overall similarity of correlation matrices across 7 days).

To verify the task-specificity of the correlated activities of the
type 2 neurons, after 7 days of training, we switched the animal to
another motor skill learning task, the rotarod test, and continued
the recordings from the same single-units for 3 more days
(Fig. 5c). The rotarod test also requires the participation of
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Figure 5 | Emergence of correlation structure of L5b PNs during motor learning. (a) Pairwise cross-correlation matrix of 27 L5b PNs across 7 training days,

recorded from one representative rat during first reach success attempts (controlled for trajectory variance, see Methods). Neurons are ordered (PN #)

according to the sequence of hierarchical clustering shown in Supplementary Fig. 5b. The squares from top to bottom segregate type 1 to type 3 L5b PNs

identified. Increased correlation is evident only among the groups of neurons that show increased IM and decrease of topt., that is, type 2 neurons. (b) Summary

of the preserved overall similarity of cross-day correlation matrix among type1 and type 2 PNs. Each colour-coded element represented the averaged similarity

index of cross-day correlation matrices from five rats. (c) Paradigm of rotarod running. Rats were trained to run on the rotarod accelerating from 4 to 40

revolutions per minute over 300 s. Each trial ended when the rat fell off or when 300 s was reached. Each animal received six training sessions every day, and

each lasted 10 min with 5-min rest intervals. (d) Latency to fall off the rotarod during training. Animals showed fast improvement in performance on the first

two days and maintained throughout the third day (mean±s.e.m. of latency to fall in day 1 session 1: 62.0±19.1 s, day 1 session 6: 133.0±33.4 s, P¼0.051; day

2 session 1: 132.1±21.7 s, day 2 session 6: 249.0±34.6 s, P¼0.007; day 3 session 1: 255.2±25.7 s, day 3 session 6: 269.5±20.3 s, P¼0.681, all compared to

day 1 session 1, one-way repeated measures ANONA, 4 rats). (e) Pairwise cross-correlation matrix among the 27 L5b PNs shown in a, but re-ordered for

clustering with high correlation coefficient near the diagonal during 3 days’ rotarod training (day 8 to day 10).
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forelimb muscles but in a different context. Gauged by the latency
to fall from the rotarod, the animals showed quick improvement
on the first two days (Fig. 5d,e). The pattern of activity correlation
emerged during forelimb reaching test was not observed when the
animal performed the rotarod test, and a different pattern of
correlation was apparent during the test (Fig. 5e, 27 PNs from the
same neuronal populations in Fig. 5a, ordered for clustering of
high correlation coefficient near the diagonal). Our results suggest
that the recruitment of a subpopulation of PNs for a task may
involve the selection and strengthening of horizontal recurrent

excitatory inputs or shared long range inputs from other areas to
L5b PNs that are involved in specific task execution.

Emergence of reproducible spatiotemporal activities in L5b.
Previous data suggest the emergence of more uniform neurody-
namics of type 2 neurons during motor training. To elucidate the
basal firing activities of type 1 and type 2 neurons and their
modulation by motor training, we analysed the spontaneous
firing rates of type 1 and type 2 neurons, and quantified neural
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variance by mean-matched Fano factor (FF)48. Type 1 neurons
had in general higher spontaneous firing rate than type 2 neurons
(Supplementary Fig. 7e, mean firing rate±s.d., type 1:
9.2±3.5 Hz; type 2: 5.9±4.0 Hz, t-test, P¼ 0.0054), which
suggest that type 1 neurons may more likely be corticope-
duncular neurons, while type 2 neurons may more likely
correspond to corticostriatal neurons49. Apart from a steady
IM and topt., for type 1 neurons a significant decrease in
firing variance within a time window near forelimb grasping
was already evident during day 1 session 1 (Supplementary
Fig. 8a, day 1 session 1, mean-matched FF±s.e.m., pre-grasp:
2.189±0.133, during grasp: 1.706±0.114, P¼ 0.021; post-grasp:
2.161±0.125, P¼ 0.717; all compared to pre-grasp; one-way
ANOVA, n¼ 14). This relationship strengthened rapidly within
the first training day and persisted throughout the training period
(Supplementary Fig. 8a, day 1 session 6 and day 7 session 6).
For type 2 neurons, emergence of significant reduction of
mean-matched FF occurred within the first day of motor
training and persisted throughout the training period (Suppleme-
ntary Fig. 8b).

To further probe whether motor learning is associated with the
emergence of reproducible population activity of L5b neurons
during task execution, we applied the Gaussian-process factor
analysis algorithm (GPFA)50, a dimensionality reduction
algorithm, to extract smooth single-trial neural trajectories from
PN population activities during individual reaching attempts
(Fig. 6a). The neural trajectories were embedded in a three-
dimensional space composed by the top three-orthonormalized
latent dimensions, which together accounted for 89.4±3.9%
(mean±s.d., five rats) of the total variance. To control for the
potential contribution of increased uniformity of forelimb
trajectory to any changes in neural variance observed, we
selected first reach success trials with forelimb trajectories
closely approximating the reference expert trajectory from each
individual day (criteria: 30 randomly selected first reach success
trials with trajectory deviation within mean±s.d. of cumulative
Euclidean distance after DTW, see Methods) and extracted neural
population activity trajectories from these trials. As training
progressed, the neural trajectories progressively exhibited
reduction in variance (see Methods) during first reach success
trials over the entire 7-day training period (Fig. 6b,c, data from
one typical rat, and Supplementary Fig. 9a–d, data from two more
rats), despite that the variance of task execution time and
forelimb trajectories as well as proportion of first reach success
trials reached steady levels (see Fig. 1e,g), but not during first
reach failure trials (Fig. 6d,e, 30 randomly selected first reach
failure trials on each day). We also computed neural trajectories
separately for type 1 and type 2 neurons, and observed that the
decreased variance of neural trajectories with training could be
attributed to type 2 neurons only (Supplementary Fig. 9e,f, Type
1; Supplementary Fig. 9g,h, Type 2). Therefore, a reduction in
neural trajectory variance was not a mere reflection of reduced
forelimb trajectory variance, but represents reorganization of L5b
population PNs neural activities with motor learning especially
during successful execution of desirable movement, a
phenomenon largely attributable to more reproducible activities
of type 2 neurons.

Physiologically induced synaptic plasticity in L5b. We
speculated that the mechanism by which the motor representa-
tion is altered in M1 involves the induction and maintenance of
experience dependent synaptic plasticity, as hinted by previous
studies documenting highly dynamic spine remodelling processes
in M1 during motor learning29,30. However, it is unknown
whether these remodelling processes were associated with

changes in the strengths of synaptic connections. We therefore
examined the properties of motor training-induced synaptic
plasticity occurring at the output layer neurons, by tracking the
changes of FPs evoked and recorded at L5b (Fig. 7a, upper panel).
We applied one-dimensional current source density (CSD)
analysis to confirm the location of the current source
underlying the FPs recorded (Fig. 7a, bottom panel). Locations
of current sinks revealed that stimulation at L5b activated
synaptic inputs mainly confined to the same layer, which is
consistent with synaptic transmission occurring at the basal
dendrites of L5b neurons.

Forelimb reaching motor training (days 1–7) was associated
with a rapid and long-lasting potentiation of the evoked FPs in
the first few days (Fig. 7b). The ceiling of this physiologically
induced LTP was reached typically after day 4. Thus, the profile
highly paralleled that of the behavioural learning curve of
increasing first success rates (cf. Fig. 1f). When the animal
switched to the rotarod running task from days 8 to 10, the
evoked FPs were further potentiated (Fig. 7b, mean±s.e.m of
potentiation on day 7: 125.8±1.3%, day 8: 128.2±1.7%,
P¼ 0.013; day 9: 129.9±1.5%, P¼ 0.004; day 10: 130.3±1.0%,
P¼ 0.003, paired t-test, all compared to day 7, five rats). These
results are consistent with the observation of an overall and
persistent increase in basal dendritic spine density of L5 neurons
with motor learning51 and strengthening of horizontal
connections among them.

To explore potential relationship between single-unit activity
and evoked FP, we performed spike sorting for recordings
obtained from FP experiments (Supplementary Fig. 10a). As the
FP experiments were carried out in animals with only linear
electrodes implanted (Fig. 7a, top panel), we therefore only had a
limited number of neurons available for this analysis (a total of 3
type 1 neurons and 11 type 2 neurons from 5 rats with sufficiently
stable recordings as measured by high-quality spike sorting,
highly preserved spike waveform and ISIH). Interestingly, for
type 1 neurons, we identified a phase locking relationship whereas
type 1 neurons exhibited a peak in peristimulus time histogram,
and this phenomenon was apparent already in day 1 and
persisted throughout 7 days of training (Supplementary Fig. 10b,
upper panels). In contrast, type 2 neurons initially did not have a
peak in their PSTH, but after training, they also exhibited locking
of firing to FP (Supplementary Fig. 10b, lower panels). These
findings suggest that there may be selective strengthening of
recurrent connections among type 2 neurons.

Critical role of dopamine in M1 for motor memory formation.
Dopamine is known to be critical in synaptic plasticity33 and
recent studies imply that the mesocortical dopaminergic
innervation to M1 is essential for the acquisition of motor
skills34,35. Thus, to further probe the mechanism of motor
memory formation, we investigated the effect of dopamine
denervation in M1 on both motor learning-induced LTP and
changes in motor representation in our animals. Local dopamine
depletion was achieved by 6-hydroxydopamine (6-OHDA)
injection into M1 while noradrenergic terminals were spared by
desipramine co-injection. The level and specificity of dopamine
terminals depletion was verified immunohistochemically
(Supplementary Fig. 11a–d).

Under local dopamine depletion, there was still learning-
associated shortening of delay in first attempt during the 7 days of
training. However, in contrast to sham-operated animals, for
which the delay of first reach success trials was significantly
shortened from day 3 onwards (Fig. 7c), significant shortening
of response delay of lesioned animals was only observed from
day 5 onwards (Fig. 7c), suggesting a degradation in learning
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performance after local cortical DA depletion. More strikingly,
the first reach success rate achieved after training in a single
day was not well maintained overnight, and led to repeated

re-learning of the task in the next day (Fig. 7d). As such, the
eventual first reach success rate after 7 days of training was
substantially lower than that achieved by the sham control
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Figure 7 | Local dopamine depletion impaired training-induced LTP of synaptic inputs. (a) Top, averaged traces of field potentials (FPs) evoked in vivo at

multiple sites from L1 to L6 of M1, recorded via 20 recording contacts in a linear microprobe (Rec.). The stimulating electrode (Stim.) was placed at L5, which

could activate synaptic inputs to the basal dendrites. Arrows indicated typical FPs recorded at target deep layer 5. Bottom, current source density profiles

corresponding to the laminar FPs evoked by stimulating at L5. By activating inputs targeting basal dendrites, the early, negative FP recorded in L5 was generated

by direct inward current (that is, the sink, yellow/red). This feature was highly consistent among different animal subjects. (b) Top, FPs were recorded from rats

undergoing 7 days of forelimb reaching task, followed by 3 days of rotarod running task. Bottom, potentiation of stimulation evoked-FPs slope when activating

basal dendritic inputs in L5. Representative traces of the FPs on days 1 and 7 (pre- and post-training) are shown. All bars represent the mean±s.e.m (five rats).

(c) Learning-associated shortening in delay of first reach attempt in sham-operated (black, five rats) and 6-OHDA lesioned animals (blue, five rats). Sham

group: mean±s.d. of delay on day 1: 4.416±0.783 s, day 3: 3.362±0.588 s, P¼0.038; day 7: 1.118±0.216 s, P¼0.006, all compared to day 1, one-way

repeated measures ANOVA, 5 rats; Lesioned group: mean±s.d. of delay on day 1: 3.663±0.676 s, day 4: 2.631±0.849 s, P¼0.065; day 5: 2.376±0.778 s,

P¼0.048; day 7: 1.587±0.463 s, P¼0.019, all compared to day 1, one-way repeated measures ANOVA, 5 rats. (d) Comparison of motor skill performance

between sham-operated (black, five rats) and 6-OHDA lesioned (blue, five rats) animals. Data are represented as mean±s.e.m. In contrast to the sham group,

the first reach success rate achieved after each day’s training by the lesioned animals was not well maintained in the next day. (e) Comparing to sham-operated

group (black, five rats), with local dopamine depletion restricted to M1 (blue, five rats), learning-induced potentiation of FPs could not be maintained. Data are

represented as mean±s.e.m.
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(mean±s.d. of first success rate in day 7 session 6: sham:
47.85±4.54%, five rats; lesioned: 38.3±6.48%, P¼ 0.028,
one-way ANOVA, five rats, Fig. 7d). Restoration of dopaminergic
tone by administration of levodopa partially prevented degraded
motor learning (Supplementary Fig. 11e, mean±s.d. of first
success rate on day 7: 6-OHDAþ vehicle: 34.8±4.2%, n¼ 3 rats,
6-OHDAþ L-DOPA: 41.9±2.9%, n¼ 3 rats, P¼ 0.035; sham:
48.1±2.2%, n¼ 4 rats, P¼ 0.021; all compared to 6-OHDAþ
vehicle group, Kruskal–Wallis H test), while M1 6-OHDA
injection after completion of 7-day motor training did not impair
further motor performance (Supplementary Fig. 11f), indicating
that 6-OHDA injection did not exert its effects via impairing
motor control per se. In parallel to these findings, we found that
under dopamine depletion, the profile of motor training-induced
LTP was severely disrupted. Despite that the training cohort still
led to the potentiation of evoked FPs every day, significant

depotentiation occurred overnight, resulting in the repeated
cycles of potentiation/de-potentiation throughout the whole
training period (Fig. 7e). These observations demonstrate an
essential role of dopamine in consolidating newly potentiated
synapses in L5b PNs.

If dopamine-mediated consolidation of synaptic plasticity is
critical to motor memory formation, one would expect that the
emergence of the task-related activities at the single neuron level
as well as population level would be affected under dopamine
depletion. Indeed, in these animals, while hierarchical clustering
of the L5b PNs and INs based on IM still succeeded in classifying
sub-groups of neuronal clusters (95 PNs and 19 INs, Fig. 8a–c,
four rats), the emergence of neurons with increase in IM and
shortening in topt., classified as type 2 neurons, was much less
distinct (Fig. 8c, middle panel, mean±s.d. of topt.¼ � 23.4±74.2
ms, corresponding to an average of 11.4% reduction in 45/95
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Figure 8 | Neural dynamics of L5b PNs after dopamine depletion. (a) and (b) 95 PNs (a) and 19 INs (b) in L5b recorded from four rats with local

dopamine depletion in L5 of M1 forelimb territory, were classified into subgroups by hierarchical clustering of single neuron IM during motor learning,

following the same method as shown in Fig. 3c. (c) Summary of training-dependent changes of the optimal time lag of IM (topt.) in three types of L5b PNs

after dopamine depletion. Statistical quantification indicated that throughout 7 days’ training, there was less consistent change and only a slight reduction

of averaged topt. in type 2 PNs (type 1: P¼0.681, n¼ 11; type 2: P¼0.042, n¼45; type 3: P¼0.852, n¼ 39; paired t-test, 4 rats) compared with intact

animals. (d) The pairwise cross-correlation matrix of 27 L5b PNs recorded from the same example rat shows that there was no emergence of consistent

functional clusters after 7 days’ motor training (cf. Fig. 5a). The averaged correlation values from the PNs of four lesioned rats from day 1 session 1(D1S1) to

day 7 session 6 (D7S6) are shown on the right. (e) Top, single-trial neural trajectories of randomly selected first reach success trials (randomly selected

50 trials per day) performed by dopamine-depleted rat (27 L5b PNs recorded from a representative animal). The flow of time series is colour gradient

coded, from blue (start) to red (end). Bottom, the same neural trajectories shown in three individual latent dimensional space (LD1-3). Arrow indicates

‘orient’ position. Compared with intact animals, reproducible neuronal trajectories did not emerge during training, even in first reach success attempts (cf.
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confirmed the lack of training-dependent reduction in variance even in first reach success trials at day 7 (cf. Fig. 6c).
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PNs). Analysis of pairwise correlation structure pattern revealed
that while type 1 neurons maintained their structure of correlated
activity throughout the training, the remaining neurons failed to
form stable functional clusters (Fig. 8d). Furthermore, reprodu-
cible population dynamics failed to emerge under dopamine
depletion, even during first reach success trials (Fig. 8e), as
variance of neuronal trajectories remained unchanged throughout
training (Fig. 8f and Supplementary Movie 3).

Discussion
The M1 comprises neuronal populations distributed in different
cortical layers. It was only until recent years that the neuronal
layer-specific effects of learning, which are critical for under-
standing the neuronal circuitry underlying motor learning of M1,
has started to be uncovered. However, due to its depth and
therefore inaccessibility to optical functional imaging methods,
the role of the output layer in M1 in the process of motor learning
remains elusive. In this study, by making chronic extracellular
recordings capturing the firing activities of L5b neurons over the
entire training period, we have uncovered that these neurons
could represent an adaptive, and also the ultimate, cortical
sub-network critical for the generation of faster, more precise and
consistent movements characteristics of learned skills.

Recording high-quality and reliable signals from large numbers
of neurons is a prerequisite for investigating the temporal
dynamics of neuronal populations. We compared two electrode
designs, 16-channel microwire array and 4 tetrodes by tracking
the signal reliability of recorded neural population over time.
The stringent statistical quantifications demonstrated the
viable chronic recording of both designs. We opted to employ
single-channel recording, which allowed probing more samples of
neurons simultaneously. This strategy was also suggested in other
studies, which demonstrated that microwire array recording in
region of moderate cell density, like the cortex and thalamus,
maintained high neuronal yield from weeks to months52–54. It
further justified the use of single-channel mode as an efficient way
for chronic neuronal ensemble recordings55,56.

Over days of training, a substantial proportion of L5b neurons
progressively changed from being non-informative about
forelimb velocity and trajectory to possessing similar mutual
information about motor behavioural outputs as neurons that
exhibited clear movement encoding firing at the beginning of
training. The decreased variance of these neurons during motor
task execution with motor training also suggest that they become
engaged in circuitry encoding the forelimb reaching task only
after learning. This increase in proportion of L5b neurons, which
are more informative of forelimb movement parameters, is
similar to what has been shown recently for M1 L5a neurons25.
Importantly, we have also identified the fine temporal scale
of the refinement of motor coding, demonstrating a progressive
shortening of the temporal lag on an order of tens of milliseconds
with respect to when the instantaneous firing rate of single
neuron is most informative of instantaneously forelimb velocity,
and that this effect observed was not due to a shortening or
reduced variance of motor task execution time with training.
Therefore, apart from becoming more movement-encoding,
task-recruited L5b neurons also become more time-locked to
motor execution with a shorter time lag. These changes
were accompanied by an increase in the collective predictive
power of motor output by recruited L5b neurons, as forelimb
movement velocity and trajectory could be decoded from the
population activity of these neurons almost as accurately as from
neurons that exhibited clear movement correlated firing early on
in training, signifying their improved encoding of motor
movement. Interestingly, we found that SVR decoding model

trained on task-recruited neuronal population firing-motor data
for a given day predicts previous day data with even higher
accuracy than same day data. This may be due to increased
tuning of task-recruited neurons, causing the optimized model on
later day to be more informative and possess better noise
tolerance, thereby allowing better generalization of SVR decoding
model. It is difficult to be certain the exact projection type of these
task-recruited PNs, but they are more likely corticostriatal
neurons, while those PNs that were highly movement-encoding
right at the beginning and exhibited higher spontaneous firing
rates may correspond to corticopeduncular neurons49.

Motor learning-induced changes were not only reflected in the
reduced firing variance and increased information content of
single neurons during motor task execution, but also in the joint
neuronal firing statistics, as a task-specific, stable correlation
structure emerged and persisted among recruited L5b neurons
during training. This observation shares similarity with M1
tongue area neurons, where neurons of similar response types
became more correlated during training of a lick/no-lick task22.
It is also consistent with the possibility that motor learning has
led to the strengthening of task-relevant common inputs or
horizontal connections among these L5b neurons. Overall, the
neuronal population activity became less variable, as reflected in
the more reproducible embedded three-dimensional neural
activity trajectory during execution of forelimb reaching,
especially during trials with successful reaching and grasping of
food pellet on the first attempt, an effect that can be largely
attributed to reduced firing variance of task-recruited neurons.
Our data therefore suggest that characteristics of motor learning
induced changes previously documented in both L2/3 and L5a of
M1 (refs 22,24,25), the main input layers providing local
excitatory drive18–21, are conveyed to, and therefore drive the
reorganization of neural representations in the output layer L5b.
Compared to L5b neurons that are highly movement encoding
right at the beginning of motor training, task-recruited L5b
neurons may represent those receiving more drive from L2/3 and
L5a neurons whose firing have previously been shown to become
more reproducible and exhibit increased motor outcome
predictability19,25.

Altogether, the emergence of a larger pool of task specific,
movement encoding L5b neurons that exhibit more correlated,
less variable firing, with shorter and less variable time lead
preceding motor execution, as well as more reproducible
population activity, may be the neural substrate underlying
enhanced precision of forelimb movement, as they may help to
generate more temporally synchronous or amplified output signal
from M1 to downstream circuitry for more precise motor control
and execution.

What then underlies the motor representation plasticity
observed in L5b? We attempted to provide direct evidence for
the involvement of synaptic reorganization in L5b neurons. We
revealed that evoked FPs in L5b were potentiated in vivo during
the process of motor training. Although one cannot be certain of
the exact pathways excited that resulted in the observed FPs, CSD
analyses revealed the source of synaptic inputs being highly
localized at L5b. Therefore, the most plausible explanation is that
the current sinks correspond to trans-membrane synaptic
currents in the basal dendrites of these neurons. The similarity
between training-induced LTP and the performance of the animal
in the motor task strongly implicates that the potentiation of
synaptic inputs to L5b neurons contribute to the emergence of the
motor memory, possibly among task-recruited neurons whose
firing became phase-locked to evoked FP. Although spine
remodelling at the basal dendrites of L5 neurons during motor
learning is still uninvestigated, a recent Golgi staining study
suggests that spine density on the basal dendrites of L2/3 neurons
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is increased during motor learning and maintained51, similar to
the profile of training-induced LTP in the deep layer that we
found. Our findings are also in line with observation that
dopamine depletion in M1 impairs learning-induced spine
formation and elimination57. However, our data do not exclude
the possibility that PNs in other layers, for example, L2/3 and L6,
contributed to the FPs recorded and the potentiation observed.
On the other hand, our observation is at variance with imaging
studies that demonstrated clustered spine formation on the apical
dendrites of L5 neurons within the first few hours and days of
motor skill training28,29, which is followed by elimination of old
spines thus maintaining the overall spine density28,30. Thus, an
important question remains to be determined is how changes in
different functional inputs, as a result of spine remodelling,
ultimately shapes the firing characteristics of L5b neurons.

Involvement of synaptic plasticity is further accentuated by the
fact that in the absence of dopamine, LTP of FPs could not be
maintained across days, suggesting resolving of newly potentiated
synapses and therefore necessitating LTP to be established again
in subsequent training sessions. Behaviourally, this manifests as
repeated de-learning and re-learning of the motor task across
days. An intact dopamine tone, however, does not appear to be
necessary for the motor execution. Dopaminergic innervation
from the midbrain ventral tegmental area58,59 to M1 may
therefore be essential in consolidating potentiated synapses in
the output layer of M1 and thereby motor memory.

Methods
Animals. Adult male Sprague Dawley rats weighing 280–300 g were housed under
standard laboratory conditions (12-h light/dark cycle, and lights on at 7: 00) with
water provided ad libitum and food restricted throughout the whole experiment
period (at 85% of their ad libitum body weight). Experiments were performed with
strict compliance to the university guidelines, with approval by the Animal
Experimentation Ethics Committee of the Chinese University of Hong Kong.

Functional mapping of the forelimb territory in M1. Intracortical micro-
stimulation was applied to determine the functional map of the motor cortex
contralateral to the trained forelimb. Rats were anaesthetized with chloral hydrate
(400 mg kg� 1, i.p.) and secured on stereotaxic apparatus (Narashige, Tokyo,
Japan). After a linear incision in the scalp, the cerebral cortex was exposed by a
unilateral craniotomy (8 mm anterior-posterior, and 0–5 mm lateral from the
midline), keeping the dura intact. The intracortical microstimulation pattern was
adapted from previous reports60. A low-impedance stimulating electrode
penetrating the dura was positioned serially at 200mm intervals, covering the entire
exposed cerebral cortex. At each penetration site, the electrode was lowered deep
into the M1 (1.5 mm dorsal-ventral). Electrical stimulation consisted of a train of
ten 200 ms cathodal pulses delivered at 200 Hz from a constant current isolated
stimulator (Model DS3, Digitimer Ltd, UK). At each site, pulse trains were
delivered 2 s apart and the stimulating current was gradually increased (o100 mA)
until evoked muscle contractions were observed and in a consistent manner while
the animal was kept in the prone position. Sites with no muscle contraction evoked
by the protocol were defined as nonresponsive. Areas with either distal (wrist/digit)
or proximal (elbow) motor representations were regarded as the forelimb territory.

Single-pellet forelimb reaching task. The rats performed single-pellet forelimb
reaching which was adapted from Whishaw and others61. We designed an operant
reaching chamber (35� 30� 25 cm), with a 1 cm wide slot in the middle of the
front wall. Rats were allowed to reach a platform (4 cm high) through the slot and
retrieve food pellets placed 1.5 cm away from the slot in the contralateral
indentation (two indentations were spaced with 1.5 cm).

The animals were food-restricted to 85% of free-feeding body weight levels,
which was maintained for the whole training period. One day before surgery
(1-h pre-training habituation), animals were permitted to use either forelimb to
retrieve centrally placed pellet. Once the animal made eight out of ten reaches with
the same forelimb, this limb was defined as the animal’s preferred limb62,63. After
recovery from surgery, animals received 7 consecutive days of training on the
preferred forelimb. Single food pellets of uniform size and shape were placed in the
indentation contralateral to the preferred forelimb and animals were permitted to
make reaching and grasping attempts. Rats received six training sessions every day,
each session lasted 10 min with 5-min resting intervals. The whole training period
lasted for 7 days. We set one high-speed video camera (80 fps) mounted above the
platform to track forepaw trajectories for each reaching attempt and another video
camera with lower frame rate (30 fps) heading upwards from chamber

undersurface to track the forepaw position during inter attempt intervals. For each
reaching attempt, forepaw trajectories were tracked automatically using the
CinePlex behavioural research system (Plexon Inc.), which performed contour
detection, image segmentation of forepaw and calculated the center of gravity for
the forepaw as the positional measure. For accurate tracking, an arena of interest
over the video image was drawn to reduce false object detections and exclude
reflections outside the arena. The forelimb contour was tracked by applying
background subtraction to compute the colour difference of the object with
background frame by frame (see Fig. 1b, blue shaded area). The tracking window
was repositioned automatically and a history of forepaw movement was used to
predict its next position. To ensure quality of centre of gravity tracking, we visually
verified the accuracies of forepaw outline tracing for individual videos and frames.
During inter-trial intervals, animals almost stayed static holding food pellet. We
performed manual tracking of forepaw trajectory frame by frame, and performed
cubic spline interpolation to preserve forepaw tracking frequency for the whole
recording session at 80 Hz.

An adaptation of the Whishaw reaching movement rating scale64 was used to
assess forelimb reaching behaviour. A complete reaching attempt in general can be
decomposed into six movement components: (1) ‘orient’: the forelimb is lifted from
the floor, reaching the slit opening of the chamber; (2) ‘advance’: the forelimb
moves forward towards the pellet; (3) ‘extend’: the forelimb extends further, and
the forepaw pronates over the target with the digits opened; (4) ‘grasp’: the forepaw
reaches the pellet and the digits close to grasp; (5) ‘retract’: the forelimb is
withdrawn through the slot, holding the pellet if successful; (6) ‘complete’:
termination of one reach attempt and, if successful, the food pellet is released for
consumption. After consuming each pellet, a new food pellet would be provided
once the rat reset its stance. A ‘first reach success’ trial was defined as trials during
which the animal completed the reaching attempt and consumed the food pellet
successfully on the first reaching attempt, and a ‘first reach failure’ trial was defined
as the trial in which animal advanced the forelimb through the slot but missed the
pellet on the first attempt, failed to grasp it, knocked it away or dropped it upon
retraction. Behaviour improvement was quantified by: (1) delay of first attempt,
defined as the time between provision of food pellet and the moment the forelimb
reached the slit opening of the chamber; (2) first reach success rate, defined as the
percentage of first reach success trials out of total number of reaching attempts.
The temporal variability of movement execution was evaluated by: duration of
extension (time from orient to extension), grasp (time from extension to grasp) and
retraction (time from retraction to complete).

To quantify temporal evolution of trajectory variation with training, we
performed DTW analysis to find the optimal mapping for individual reach
trajectory to the reference expert trajectory, computed from the average of
movement trajectories of 50 random first reach success trials from day 7 session 6,
and then quantified the cumulative Euclidean distance deviation of individual
trajectories from reference expert trajectory. Given two time sequences, the DTW
algorithm first calculated the Euclidean distance between each point of two vectors
and then searched for an optimal warping path with the smallest sum of distances
between two vectors. The result was in arbitrary units, with higher distance values
indicated greater deviation from the reference trajectory.

Rotarod running task. After 7 days of forelimb reaching task, four rats
were trained with an additional motor learning task on a rotarod treadmill
(Rotaod ENV-576, Med Associates Inc., St Albans, VT, USA). The rotarod was
set to accelerate with rotation speed increasing from 4 to 40 revolutions per minute
over 300 s. Each trial ended when the rat fell off the rotarod or when 300 s was
reached. The animal was then remounted on the rotarod for the next trial. Training
lasted for 3 days. Each animal received six training sessions every day, and
each session lasted for 10 min with 5-min resting intervals. The maximum time
that the rat stayed on the rotarod, termed ‘latency to fall’ (up to 300 s), was
evaluated for each trial.

Stimulating and recording electrodes implantation. Rats were anesthetized
with chloral hydrate (400 mg kg� 1, i.p.) and secured on stereotaxic apparatus
(Narashige, Tokyo, Japan). For animals undergoing extracellular recording, two
different electrode designs were used: (1) 16 single-ended microwires spaced
250 mm apart (Teflon coated stainless steel wire, 30 mm in diameter, arranged in a
4� 4 array, Plexon Inc, Dallas, TX, USA); (2) four tetrodes spaced 250 mm apart
(Teflon coated nichrome wire, 25 mm in diameter, California Fine Wire). Four
wires were manually spun together in a braid and then insulated further with a
polymide guide tube (80 mm inner diameter). Electrodes were implanted into L5b
of the M1 forelimb territory (anterior-posterior (AP): 1.5 mm, medial-lateral
(ML):±3.0 mm, dorsal-ventral (DV): 1.5 mm, Paxinos and Watson, 1986). To
evoke FPs, a stimulating electrode targeting the same layer was implanted, and
located 500–800mm from the recording electrodes. To perform multi-laminar FP
recording, 20-channel linear microprobe with 100-mm inter-site spacing
(MicroProbes, MD, USA) was inserted orthogonal to the surface of the M1
forelimb territory (DV: from 0.2 to 2.1 mm). Three stainless steel screws firmly
attached to the skull were employed for electrode anchoring, and one additional
reference electrode was soldered to a screw attached to the skull at the lambda. The
whole assembly was secured with dental cement.
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Focal denervation of meso-cortical dopamine projection. Rats were anesthe-
tized with chloral hydrate (400 mg kg� 1, i.p.). Thirty minutes before surgery, rats
received an i.p. injection of desipramine hydrochloride (25 mg kg� 1; Sigma) in
order to prevent noradrenergic terminals from taking up 6-OHDA65. To selectively
deplete meso-cortical dopamine innervation to the M1, 8 mg of 6-OHDA (Sigma,
St Louis, MO, USA) dissolved in 2 ml of sterile 0.9% saline and 0.02% ascorbic acid
(or 2 ml of 0.9% saline for sham injection) was injected into bilateral M1 forelimb
territory at a rate of 1 ml min� 1 respectively. The micro-syringe for injection stayed
in the brain for 15 min in order to prevent backflow of solution. For levodopa
(L-DOPA)-treated group, 6-OHDA lesioned or sham-operated animals received
intraperitoneal injection of L-DOPA (Sigma) 30 min before behaviour training.
L-DOPA was given at a dose of 15 mg kg� 1 dissolved in vehicle solution
(saline with 0.1% ascorbic acid), combined with the peripheral decarboxylase
inhibitor benserazide-HCl (Sigma) at a dose of 15 mg kg� 1.

In vivo electrophysiological data acquisition. Extracellular FPs and multi-unit
activities in M1 were recorded simultaneously by the OmniPlex Neural Data
Acquisition System (Plexon Inc., Dallas, TX, USA), which were synchronized with
the CinePlex Behavioral Research System (Plexon Inc., Dallas, TX, USA) that
captured the forelimb movement trajectory via a high-speed camera mounted
above the front wall of the operant chamber. Electrical stimuli were delivered by a
constant current isolated stimulator (Model DS3, Digitimer Ltd). FPs were
amplified (� 4,000), band-pass filtered (0.5–200 Hz, 4-pole Bessel) and sampled at
1 kHz. Continuous spike signals were amplified (� 4,000), band-pass filtered
(300 Hz to 5 kHz, 4-pole Bessel) and sampled at 40 kHz. Spiking sorting was
performed off-line to obtain single-unit neuronal activities.

Single-unit spike sorting. Spike sorting was conducted by using the OFSS V3
software (Plexon Inc., Dallas, TX, USA), and based on a combination of automatic
and manual sorting techniques as previously described55,56,66–68. In brief, after
spike detection with a threshold set at three standard deviations above baseline
signal, the K-means clustering algorithm and the valley seeking method was
applied to produce an initial separation of waveforms into individual clusters. Each
cluster was then checked manually to ensure that the cluster boundaries were well
separated and spike waveforms were repeatable. Spikes generated by the same
neuron formed a discrete, isolated cluster in principal component (PC) space
distinct from each other, and each discrete cluster was termed a ‘unit’. To
objectively quantify the overall separation among multiple clusters in a given
recording channel, four statistical parameters were calculated for clusters in the
first two dimensions of PC space, which included the parametric F statistic of
MANOVA (-logarithm), the J3 statistics (dividing by number of units), the
Davis-Bouldin (-DB value) validity index and Dunn validity metric55. The null
hypothesis in the MANOVA is that all clusters share the same underlying statistical
distribution in PC space. A small P value indicates that each of the unit clusters has
a statistically different location in PC space, and thus the clusters are statistically
well separated. J3 is a measure of the ratio of between-cluster to within-cluster
scatter; DB accesses the ratio of the sum of within-cluster scatter to between cluster
separations; the Dunn index depicts the ratio of between-cluster distance to
diameter of cluster. Low value of DB and high value of F, J3 and Dunn index would
define well-separated clusters.

The signal-to noise ratio for a channel was calculated as the ratio of the single-
unit waveform amplitude to the average noise amplitude. To quantify single-unit
isolation quality, we employed multiple quantitative measures, including ID,
L-ratio39,40, and refractory period reflected in ISI histograms. For units recorded by
microwire array, energy, peak, valley, and the first three PCA coefficient were
calculated for each unit spikes (six feature quantities); for units recorded by
tetrode, energy and the first PCA coefficient were calculated for each unit spikes
(eight feature quantities). The multi-feature quantities defined each spike as a point
in a high dimensional space. Both ID and L-ratio employ the Mahalanobis distance
for quantifying the location of spikes with respect to the centre of the
corresponding cluster. ID was defined as the radius of the smallest ellipsoid from
the cluster centre containing all the cluster spikes and an equal number of noise
spikes. Thus ID estimated how distant the cluster spikes are from the other spikes
recorded on the same electrode. L-ratio measured the amount of noise spikes
observed in the vicinity of a given cluster; thus a low value indicates that the cluster
was well separated from other spikes recorded on the same electrode. Units with
signal-to noise ratio44, IDZ15, L-ratior0.2 and 99.5% events with ISI42 ms
were considered putative single-units (cf. acceptable values of ID and L-ratio
reported in previous studies41–43). No systematic differences in these measures
existed between the three types of neurons reported in the study (mean±s.d. of
averaged ID for type 1 neurons: 49.03±17.31, n¼ 14, type 2 neurons:
47.85±17.68, type 3 neurons: 49.61±19.39, P¼ 0.847, one-way ANOVA; L-ratio
for type 1 neurons: 0.0307±0.0249, type 2 neurons: 0.0332±0.0261, type 3
neurons: 0.0351±0.0282, P¼ 0.723, one-way ANOVA). Units recorded on
different channels of microwire array were considered distinct neurons as the
spacing between neighbouring channels was 250 mm. We further inspected
unit pairs, aided by auto-correlogram and cross-correlogram as additional
separation tools.

Tracking of neurons over multiple days. The first two dimensions of each
single-unit in PCs space obtained from recordings of each day were rendered as
ellipsoids centred around cluster mean with three standard deviations around and
stacked into cylinders with time as the third dimension. Straight cylinders indicated
that single-unit isolation remained stable and there was no significant variation of
clustering in PCs throughout recording sessions over the training period. We
employed four measures to evaluate conservation of single-unit spike waveform
and firing characteristics for classifying whether a given single-unit cluster
correspond to stable tracking of the same neuron over the training period. The
similarity of spike waveform shape was quantified as the maximum time-shifted
linear correlation coefficient (Max r) between averaged spike waveform on a given
day and day 1, and the resulting coefficient was Fisher-transformed to make it
more normally distributed. The normalized peak-to-peak amplitude difference
(DPamp) was computed as the ratio of spike amplitude change on a given day
relative to day 1. To characterize single-unit firing property, we computed log-
scaled ISIH from 0.5 to 105 ms (in 100 bins) and log-scaled autocorrelogram
(±100 ms in 100 bins), and then calculated the Kullback–Leibler (KL) divergence
between pairs of normalized ISIHs or autocorrelograms which were log-trans-
formed to approximate Gaussian distributions. Based on the dataset recorded
within 30 min (two sequential 10-min recording session separated by a 5-min
interval), we then calculated a set of synthetic ‘true positive’ values from recordings
that were presumably stably corresponding to the same neuron (microwire array:
247 units from five rats; tetrodes: 63 units from five rats), and a set of ‘true negative’
values from recordings on different electrode channels on microwire array
(as neighbouring electrodes on microwire array were separated by 250 mm and we
assumed even adjacent electrodes would not record spikes from the same neurons),
or distinct tetrodes (microwire array: 2,801 true-negative values from 247 units
from distinct electrodes with neighbouring electrodes at 250 mm space apart, five
rats; tetrode: 140 true-negatives values computed from 63 units from distinct
tetrodes, five rats). Pairs of the four scores were combined and fitted with
two-dimensional Gaussian mixture distribution and quadratic discriminant
analysis was applied to determine the optimal quadratic decision boundary
between true positive and true negative clusters. For each Gaussian mixture
distribution, we employed criteria as described in a previous study69 and calibrated
the decision boundary of quadratic classifier to produce a 5% error rate in the
known ‘true negatives’ cluster. Considering the ‘true-positives’ dataset likely
underestimate the natural variability of stable units over days, we controlled the
maximum allowable false positive rate and set the conservative separation
threshold as the mean plus 3s.d. of the true-negative score. Recordings of a single-
unit were classified as stably corresponding to the same neuron only if the joint
distribution of the criteria falls out of 3 s.d. from mean of distinct units and not
classified as from distinct units by QDA throughout the 7 days. The Max
r–ISIH dissimilarity score joint distribution as the optimal discrimination model
because these were the two most informative features that gave the lowest BIC and
AIC (microwire array, AIC: 4.84� 10� 3, BIC: 4.90� 10� 3; tetrode: AIC:
4.84� 10� 3, BIC: 5.13� 10� 3). For each day’s data, we estimated the false
positive rate as the percentage of single-unit recordings from distinct neurons
deemed to be stable tracking of the same neuron, and false negative rate as the
percentage of single-unit recordings from same neuron deemed to be distinct. As
each electrode recorded from different units, we used the percentage of units from
distinct electrodes that satisfy the stability criterion as an estimate of the chance of
falsely positives. We assumed unit recorded in two continuously sessions (10 min
each) were stable, and used the percentage of actual same unit that failed to satisfy
the stability criterion as an estimate of the chance of falsely negatives. Criteria of
sorting quality for all included single-units remained stable over the 7-day training
period (Fig. 2f, mean±s.d. of ID on day 1: 48.68±18.28, day 7: 49.37±18.53,
P¼ 0.391; mean±s.d. of L-ratio on day 1: 0.033±0.027, day 7: 0.034±0.021,
P¼ 0.663, one-way repeated measures ANOVA, n¼ 158; tetrode, Supplementary
Fig. 2j, mean±s.d. of ID on day 1: 61.77±40.38, day 7: 60.14±40.31, P¼ 0.315;
mean±s.d. of L-ratio on day 1: 0.033±0.025, day 7: 0.032±0.026, P¼ 0.346,
one-way repeated measures ANOVA, n¼ 41).

Cell type identification. Based on the offline sorting results, putative pyramidal
projection neurons (PNs) and INs were categorized based on three electro-
physiological properties: spike valley-to-peak width (t, ms), valley-to-peak ampli-
tude ratio (v/p) and mean firing rate68. Automatic clustering of these average
waveforms from individual cells by using a k-means algorithm discriminated two
groups of cells.

Analysis of task correlates of single neuron activity. For individual unit, spike
trains were discretized (bin size: 12.5 ms) and PETHs were calculated in relation to
forelimb movement, from 6 s before forelimb ‘orient’ position until 1 s after this
event, or from 1 s before food provided until 6 s after this event. PSTHs were then
smoothed with 5-point Gaussian filter, z-scored and plotted in each learning
session (both first reach success and failure trials). The significant changes in
firing rate were compared to pre-trial activities by bootstrapping. If the P value of
firing rates falls below 0.01 for 5 or more successive time bins, the neuron was
quantified as behaviour-correlated and the time point where the P-value first
falls below 0.01 was termed time until divergence. The time interval between
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time until divergence and forelimb ‘orient’ gives an estimate of the response
times of single neurons.

Estimation of time-lagged mutual information (IM). To quantify the informa-
tion of forelimb instantaneous velocity carried by single-unit activity, we estimated
the time-lagged mutual information70 IX,Y (t) between single-unit spike train and
forelimb movement instantaneous velocity. Formally, let X denote forelimb velocity
and Y denote single-unit spike train recorded simultaneously, the mutual
information of X and Y is defined as:

I X;Yð Þ ¼
X
xt2X

X
yt2Y

p xt ; ytð Þlog2

pðxt ; ytÞ
p xtð ÞpðytÞ

� �
;

where p(xt, yt) is the joint probability distribution function of X and Y, p(xt)and
p(yt) are the marginal probability distribution functions of X and Y respectively,
and carries unit of bit with logarithm base 2 used. By introducing a time lag t in
either one of the variables, time-lagged mutual information can be given in a
directional sense and computed as:

IX;Y ðtÞ ¼
X
xt2X

X
yt2Y

p xt ; yt� tð Þlog2

pðxt ; yt� tÞ
p xtð Þpðyt� tÞ

� �

in which IX,Y (t) is quantified as a function of t. Single-unit activity was discretized
in time (bin size¼ 12.5 ms) and shifted backward or forward bin by bin (t ranged
from � 500 to 500 ms), and the optimal time lag topt. was defined as the value
of t where IX,Y (t) attains maximum (IM).

To test the null hypothesis that the observed pattern of IM evolution with time
arose by chance as a result of firing rate fluctuation independent of forelimb action,
for each neuron we bootstrap resampled (107 times) the firing rate data of 5 min
recordings to obtain estimates of IM distribution under the null hypothesis.
Statistical significance was determined as IM greater than 99% of IM distribution
under null hypothesis (corresponding to Po0.01).

To account for the across-trial variability of task execution time and behaviour
kinematics causing possible apparent shortening of topt., we specifically extracted
individual forelimb trajectory during periods of ±1 s when forepaw was within
experimental arena and controlled for the variability by performing DTW to find
the optimal mapping of individual trial trajectories to the reference expert trial,
and applied the optimal trajectory warping path to time series of neural activity
and the instantaneous velocity. The time-lagged mutual information was then
re-calculated.

Neural variability evaluated by mean-matched FF. We employed the mean-
matched FF for quantification of single-unit firing variance as previously reported
using the Variance Toolbox for MATLAB48. Spike counts were computed in a
50 ms sliding window in 10 ms steps. The firing rate was calculated as the spike
count in each time bin divided by the length of the window. FFs for each time bin
of single-unit activities covering ±1 s relative to the time of forelimb grasping were
calculated. The statistical significance of FF was evaluated by comparing the overall
FFs in three key epochs: pre-grasp (� 1 to � 0.5 s before grasp), during grasp
(� 0.25 to � 0.25 s) and post-grasp (0.5 to 1 s).

Hierarchical clustering analysis. Hierarchical clustering was performed using the
MATLAB Statistics Toolbox function clustergram based on the Euclidean distance
metric. For each neuron, the maxima of time-lagged mutual information IM across
7 training days generated one 7-dimensional vector, and the Euclidean distance
between pairs of neuron’s IM vector was calculated. According to the matrix of
distance, an iterative agglomerative procedure, Ward’s minimum variance method,
was used to combine neuron into groups such that at each stage the total number
of groups was reduced by merging groups whose combination gave the smallest
possible increase in the within-group sum of squared deviation. The step was
repeated until only one cluster remained. Putative PNs and INs were identified first
and classification procedure was performed for PNs and INs separately. The
optimal number of clusters based on IM was evaluated by the MATLAB Statistics
Toolbox function evalclusters based on the Calinski–Harabasz clustering criterion.
Three main types of PNs (type 1, 2, 3) were determined by statistically estimating
the training correlated changes of optimal time lag (topt. To explore for any signs of
evolution of neural responses within 1 training day, we ordered three types of
neurons in the same hierarchical sequence and recomputed IM and topt. from
sessions 1 to 6 within the first training day.

Evaluation of neuronal activity-correlation pattern. To evaluate the joint
neuronal firing statistics during motor learning, we calculated pairwise
cross-correlation across all pairs of neurons’ spike trains in a given time period.
The time period was restricted to from ‘food provided’ to ‘complete’ state in single
success trials. Spike trains were binned (12.5 ms) to get the instantaneous firing
rates, which were then convolved with a Gaussian filter for smoothing. The squared
cross-correlation coefficient (r2) between pairs of neuron’s firing activity was
calculated to generate the correlation matrix for each training session. Neurons
were ordered following the ranks from hierarchical clustering of IM. The similarity
of correlation matrices across different training days was assessed using the

correlation coefficient of off-diagonal elements. To account for the possibility that
the emerged correlation reflects merely changes in across-trial variability of fore-
limb reaching kinematics, we also computed correlations for type 1 and type 2
neurons using activities recorded when the animal was not executing the task.

Decoding of forelimb movement information by SVR. SVR71 was employed to
predict instantaneous forelimb velocity by neuronal activities, using the LIBSVM
toolbox V1.04 in MATLAB71. To obtain the optimal preceding time window of
each neuron’s activity for decoding instantaneous velocity, single neuron SVR
decoding was first performed. Neural activity was discretized in time bins of
12.5 ms corresponding to the frame duration of the video camera for behavioural
recording. Given N neurons, let xi(t) denote the discretized firing rate time series
of neuron i and let y(t) denote forelimb velocity. The optimal time lag for neuron i
was found as the value of tSVRi which allowed the best approximation of y(t) for all
t by the SVR mapping f ½xi tð Þ; . . . ; xi t� tSVRið Þ�, where tSVRi are multiples of
discretization time bin (12.5 ms). While topt. represents the time difference that
maximizes mutual information between instantaneous firing rate and forelimb
velocity, for SVR prediction of forelimb velocity, firing before time window covered
by t0 to t� topt. can also be informative about forelimb velocity. To maximize
decoding/prediction accuracy, one would need to include all time points that
jointly give the best information content. Consistent with this, tSVRi for individual
neurons are invariably greater than or equal to topt. (Supplementary Fig. 6d).

After performing single neuron SVR decoding, we then performed SVR
decoding based on neuronal population activity. For each neural population, the
maximum of ftSVRig

N
i¼1, denoted tSVRM , was chosen as the time lag for the

population decoding of forelimb velocity, to cover a time window that includes all
neural activity that maximize decoding performance for individual neurons. To
perform neuronal population decoding of forelimb velocity, the goal of SVR
algorithm was to find an optimal hyperplane

PN
i¼1 fi xi tð Þ; . . . ; xi t� tSVRMð Þ½ � that

best approximated y(t) for all t; hence the input vector had dimensionality of
N� ðtSVRM =rÞþ 1ð Þ, where r corresponds to the frame duration (12.5 ms). To
obtain a good model, fivefold cross-validation was carried out and a set of
parameters that minimized the mean squared error was selected. Specifically, SVR
used a parameter vA(0,1] to control the number of support vectors. Grid search
function in Libsvm was used to find the optimal parameters cost c
(� 5rlog2cr10)) and gamma (g � 10rlog2 gr5) for the radial basis function
kernel. Prediction accuracy was quantified by squared correlation coefficient and
mean squared deviation between predicted and actual behaviour output.

Dimensionality reduction of population neural responses. GPFA50 was used for
extraction and visualization of the neural population activity trajectory of
individual trials. Briefly, this method worked by performing smoothing of spike
trains and dimensionality reduction simultaneously within a common probabilistic
framework. We performed the analysis by using GPFA MATLAB toolbox50. It
assumed that the observed activity neuronal population was a linear function
(plus noise) of a low-dimensional neural state, whose evolution in time was well
described by a Gaussian process, and the probabilistic framework allowed good
resolution of subtle neural dynamics. To minimize the potential contribution of
reduced behavioural kinematics variance to neural variance changes with training,
we selected first reach success trials with forelimb trajectories close to expert
trajectory from each individual days of training (criteria: 30 randomly selected first
reach success trials with trajectory deviation within mean±s.d. of cumulative
Euclidean distance after DTW). Neural dynamics during these behavioural-
variation consistent first reach trials, as well as first reach failure trials (30 randomly
selected trials for each day) were visualized by performing GPFA on population
neuronal activities (three types of neurons pooled together or separately),
consisting of discretized spike counts (non-overlapping 10 ms bins, then
square-rooted) from 800 ms before to 800 ms after the forelimb ‘orient’ states.
Three latent dimensions that resulted in good separation of the data points
were shown in the figures.

One-dimensional current source density analysis. CSD72, distribution C is a
quantity that gives the location of current sources (cationic flux from the
intracellular to the extracellular space) and sinks (cationic flow from the
extracellular to intracellular space to achieve electroneutrality) that give rise to the
stimulation evoked FPs. FPs (F) is related to C by

C ¼ �r � s � rF;

where r denotes gradient operator and s is the conductivity tensor. In a volume
element, C is positive if outward currents dominate (source), and negative if inward
currents dominate (sink).

In laminar cortical structures, which are isotropic and homogeneous,
simultaneous excitation of a cortical lamina results in extracellular current that
flows invariant in the direction perpendicular to the cortical plane. In this case the
one-dimensional CSD analysis is applied and could be computed by

�C ¼ sz �
@2F
@z2

;
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where z is the direction perpendicular to the cortical plane along which voltage
gradient is sampled.

The MATLAB GUI toolbox CSDplotter-0.1.1 (ref. 73) was applied to produce
continuous 1D-CSD based on the spline inverse CSD (iCSD) method, which
assumed the current distribution to be continuously varying in depth (z) but
homogeneous in the x,y dimensions and used standard electrostatic theory to
establish a forward model matrix F between the measured FPs from N recording
sites and CSD distribution. The inverse of the matrix F� 1 was then used to
estimate the CSD as Ĉ ¼ F � 1 � F. With N separate measurements of the FPs F, the
smoothly varying CSD along z dimension was constructed by cubic spline
interpolation.

Evaluation of learning related synaptic plasticity in vivo. Ten days after surgery,
synaptic inputs targeting basal and apical dendrites were assayed by stimulating the
deep L5 and superficial L1 respectively. FPs evoked by monophasic electrical pulses
(100 ms pulse width) at increasing intensities (40, 60, 80, 100, 200, 400, 600, 800,
1,000 mA) were recorded, with an inter-pulse interval at 30 s. Twenty continuous
sweeps of FPs amplitude measurements were averaged to obtain the input–output
curve. We obtained linear regression of the input–output curve and chose the test
stimulation intensity for evaluation at between 25 and 75% (usually at 50%) of the
intensity that evoked the maximal FPs amplitude. To monitor the stability of the
baseline of evoked FPs, the amplitude of the FPs at the test stimulation intensity
was evaluated twice per day over 5 days.

To investigate motor learning-related synaptic plasticity occurring at L5b in
behaving rats, stimulations at the test stimulation intensity were delivered every
20 s in turn during the 5 min inter-session resting interval. Fifteen continuous
sweeps of FPs amplitude were averaged, and the level of learning-related synaptic
potentiation was calculated as the increment of the evoked FPs initial slope and
amplitude relative to the baseline level74.

Histological analysis. Rats were deeply anesthetized with chloral hydrate
(400 mg kg� 1, i.p.) and perfused transcardially with 300 ml ice-cold PBS, followed
by 200 ml 4% paraformaldehyde. The brain was then quickly removed from the
skull and post-fixed in the same fixative for 24 h. The fixed brain was transferred to
30% sucrose solution in PBS with pH 7.4 until it sank, then embedded in a tissue-
freezing medium (OCT) and stored at � 30 �C. Coronal sections (20 mm) of the
M1 were cut by a freezing microtome (CS1031L9705, Shandon, UK).

For immunohistochemistry, the primary antibodies used included anti-Cux1
(CDP, rabbit, 1:100, Santa Cruz Biotechnology, catalogue No: M-222), anti-VGlut2
(Guinea Pig, 1:5,000, Millipore, catalogue No: AB2251), anti-TH (rabbit, 1:500,
Millipore, catalogue No: AB152), and anti-NeuN (mouse, 1:500, Millipore,
catalogue No: MAB377). Sections were incubated in primary antibodies at 4 �C
overnight, and stained with the secondary antibodies. To identify the laminar
structure of the M1, the layer specific marker Cux1 (labels L2/3) (ref. 75) and
VGlut2 (labels L1, L2/3b, L5b) were doubly stained using Alexa Fluor 488 and 546
conjugated secondary antibodies (Invitrogen Corporation). The exact stimulating
and recording site were confirmed by verifying the depth of electrode track with
reference to the thickness of each cortical layer.

Statistics. No randomization method was used and data were not analysed
blindly. Data are presented as mean±s.d./s.e.m., unless otherwise specified. Paired
t-test, one-way repeated measures ANOVA, least squares regression, Pearson’s
correlation test was used for statistical evaluation. Methods used for each analysis
are mentioned in the main text and corresponding figure legends. No statistical
methods were used to pre-determine sample sizes. The sample sizes in this study
are in general similar to those employed in the field. Unless specified otherwise, the
variance was similar between groups that were statistically compared.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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