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VHL deficiency augments anthracycline
sensitivity of clear cell renal cell carcinomas
by down-regulating ALDH2
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Yun Yu2, Hao-Jie Lu1, Peng-Yuan Yang1, Tian-Rui Xu3, Jing-Lin Xia1, Guo-Qiang Chen2 & Li-Shun Wang1,2

The von Hippel-Lindau (VHL) is deficient in B70% of clear-cell renal cell carcinomas

(ccRCC), which contributes to the carcinogenesis and drug resistance of ccRCC. Here we

show that VHL-deficient ccRCC cells present enhanced cytotoxicity of anthracyclines in a

hypoxia-inducible factor-independent manner. By subtractive proteomic analysis coupling

with RNAi or overexpression verification, aldehyde dehydrogenase 2 (ALDH2) is found to be

transcriptionally regulated by VHL and contributes to enhanced anthracyclines cytotoxicity in

ccRCC cells. Furthermore, VHL regulates ALDH2 expression by directly binding the promoter

of � 130 bp to � 160 bp to activate the transcription of hepatocyte nuclear factor 4 alpha

(HNF-4a). In addition, a positive correlation is found among the protein expressions of VHL,

HNF-4a and ALDH2 in ccRCC samples. These findings will deepen our understanding

of VHL function and shed light on precise treatment for ccRCC patients.
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R
enal cell carcinoma (RCC) is the most common type of
kidney cancer, accounting for 2–3% of all adult tumours1,2.
To date, surgery is the main treatment for this kind

of cancer, while RCC is notoriously resistant to conventional
chemotherapy, possibly through high expression of some
multidrug resistance genes or inactivation of apoptotic
pathways3. Also, most of these patients suffer from the side
effects of chemotherapy. More recently, some new drugs targeting
vascular endothelial growth factor receptor, such as sunitinib
and sorafenib, have been proven to be beneficial for RCC4.
Unfortunately, large portion of kidney cancer patients treated
with these inhibitors will eventually experience disease
progression. Drug treatment of kidney cancer is still
unsatisfactory5. Therefore, it is urgent to identify the potential
therapeutic targets and chemotherapeutic agents for RCC.

Clear-cell RCC (ccRCC), the most frequent and malignant type
of RCC, is characterized by early loss of the von Hippel-Lindau
(VHL) tumour-suppressor gene in most tumours6. The VHL gene
encodes two isoforms, that is, a 24–30 kDa isoform with
213-amino-acid and a 19 kDa one with 160-amino-acid3. Early

functional studies suggested that both isoforms have tumour-
suppressor activity in vivo6. Functional studies indicated that
VHL is an E3 ubiquitin ligase that targets the oxygen-sensitive
a subunit of the hypoxia-inducible factor (HIF-a) for
proteasomal degradation. When oxygen is available, HIF-a is
hydroxylated on two proline residues by the oxygen-dependent
HIF-a-specific prolyl hydroxylases. The hydroxylated HIF-a is
ubiquitinated by VHL, followed by proteasomal degradation4,7.
Under hypoxic conditions, HIF-a is stabilized due to the
inhibition of hydroxylation and ubiquitination, and it
subsequently translocates into the nucleus where it forms
heterodimer with constitutively expressed HIF-1b (refs 7,8).
The HIF-a/HIF-1b heterodimer binds to hypoxia-responsive
elements (HREs) in the promoters and activates the transcription
of its targeted genes, which are involved in energy metabolism,
angiogenesis, cell proliferation/differentiation and invasion/
metastasis9–13. In addition to its role in HIF regulation, VHL is
also implicated in a variety of HIF-independent processes,
including regulation of the extracellular matrix, microtubule
stabilization and maintenance of the primary cilium, control of
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Figure 1 | VHL-deficiency augments the cytotoxicity of anthracyclines in ccRCC. (a) RCC4/EV and RCC4/VHL were incubated in normoxia or hypoxia for

24 h and the indicated proteins expression was detected by western blot. (b) Different chemotherapeutic drugs were applied to treat RCC4/EV and RCC4/VHL

cells for 24 h and cell growth inhibition rates were detected by CCK-8. (c) Doxorubicin was used to treat different ccRCC cell lines for 24 h and cell growth

inhibition rates were detected and analysed using one-way ANOVA test followed by Bonferroni correction for post hoc test. c, # and , respectively, represent

the difference of RCC4, 786-O and A498 versus OS-RC-2, Caki-2 , HK-2, Caki-1 or ACHN. (c, # and , Po0.05, cc and , Po0.01). (d,e) Western blot for

VHL with actin as a loading control (bottom) and cell growth inhibition rates after treatment with doxorubicin or 1mM VCR for 24 h (Top). (d) 786-O cells were

stably transfected with VHL expression vector (VHL) or EV. (e) Caki-1 cells were infected with retroviral vectors harbouring shRNAs against VHL (shVHL)

or NC. The column represents mean with bar as s.d. of three independent experiments with triplicate samples. (*Po0.05,**Po0.01 for t-test). ANOVA,

analysis of variance; EPI, epirubicin; EV, empty vector; CDDP, cis-Diaminedichloroplatinum; CPT-11, irinotecan; DOX, doxorubicin and; DNR, daunomycin;

5-Fu, fluorouracil; NC, non-specific control; PS-341, bortezomib; TPT, topotecan; VCR, vincristine; VP-16, vepeside.
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cell senescence, and modulation of RNA polymerase II
subunits14–18. However, whether VHL is a potential therapeutic
target for ccRCC is currently unknown.

Aldehyde dehydrogenase belongs to a family of oxidizing
enzymes that is responsible for the detoxification of aldehydes19,20.
The mitochondrial aldehyde dehydrogenase 2 (ALDH2) is well
known for its critical role in metabolism of acetaldehyde. In
particular, ALDH2 plays a key role in oxidizing endogenous
aldehydic products, such as 4-hydroxy-2-nonenal (4-HNE) and
malondialdehyde, which arise from lipid peroxidation under
oxidative stress19,20. ALDH2, which is expressed ubiquitously but
abundant in liver, kidney, brain and heart21,22, has been regarded
as a crucial enzyme in protecting the heart from oxidative stress23.
ALDH2 dysfunction may contribute to a variety of human diseases
such as cardiovascular diseases, neurodegenerative diseases,
diabetes, stroke and cancer19,24–27.

Anthracyclines, mainly including daunorubicin, doxorubicin
and epirubicin, are still widely used in modern cancer treatments
despite the advent of targeted therapy. In general, anthracyclines
are applied to first- or second-line standard chemotherapy in
treating childhood leukaemia, lymphomas and solid malignancies
by intravenous administration to induce cancer-cell growth
inhibition28–30.

Here we report that VHL-deficiency augments ccRCC
sensitivity to anthracyclines by downregulation of ALDH2 in an
E3 ubiquitin ligase-independent manner.

Results
VHL-deficiency augments cytotoxicity of anthracyclines. RCC4,
a VHL-defective ccRCC cell line, was stably transfected with
empty vector (RCC4/EV) or VHL (RCC4/VHL). As shown in
Fig. 1a, RCC4/EV, but not RCC4/VHL cells, expressed higher
levels of HIF-1a and pyruvate dehydrogenase kinase 1 (PDK1, a
HIF-1a-responsive gene9) under normoxia, while HIF-1a and
PDK1 proteins were increased in RCC4/VHL cells under hypoxia
(1% O2). We compared the growth inhibition of RCC4/EV
and RCC4/VHL under chemotherapeutic drugs. The results
demonstrated that all three anthracycline drugs, but not non-
anthracycline chemotherapeutic drugs tested, had higher growth
inhibition rates to RCC4/EV than RCC4/VHL cells (Fig. 1b).
Also, the cell growth inhibitory ability of doxorubicin at three
different concentrations was always higher in RCC4/EV than in
RCC4/VHL cells (Supplementary Fig. 1a). The half maximal
inhibitory concentrations (IC50) of all three anthracyclines tested
in RCC4/VHL were over 2.9 folds more than those in RCC4/EV
(Supplementary Fig. 1b).

To consolidate the potential role of VHL in cell sensitivity to
anthracyclines, doxorubicin, with vincristine as a control, was
applied to a series of ccRCC cell lines, including VHL-deficient
RCC4, 786-O, A498 and 769-P, as well as VHL-proficient Caki-1,
Caki-2, OS-RC-2, HK-2 and ACHN31. The results revealed that
the VHL-deficient ccRCC cells except for 769-P demonstrated
a higher growth inhibitory response to doxorubicin than
VHL-proficient ccRCC cells tested (Fig. 1c, Supplementary
Fig. 1c). Similar results were shown in the comparison of
VHL-deficient 786-O/EV cells with their counterpart 786-O/VHL
(Fig. 1d). In consistence with this, VHL-proficient Caki-1
cells that stably expressed shRNA specifically against VHL
(Caki-1/shVHL) presented higher sensitivity to doxorubicin
compared with their counterpart with transfection of non-
specific shRNA (Caki-1/NC, Fig. 1e).

To evaluate the role of VHL on cytotoxicity of doxorubicin
in vivo, 786-O/EV and 786-O/VHL or Caki-1/NC and Caki-1/
shVHL cells were subcutaneously implanted into the flanks of
NOD/SCID mice. As depicted in Fig. 2, doxorubicin treatment

significantly reduced tumour growth of VHL-deficient tumour
cells compared with corresponding VHL-expressing tumour cells
(Fig. 2a–d). The same results were demonstrated in immunodefi-
cient nude mice (Supplementary Fig. 2a–d). Collectively, all these
data propose that VHL-deficient ccRCC cells present higher
sensitivity to anthracyclines than that of VHL-proficient cells.

HIFs do not contribute to the anthracycline cytotoxicity. Since
HIF-a is a major substrate of VHL4,32, the potential role of HIFs
in the regulation of cytotoxicity of anthracycline was tested.
Towards this end, doxorubicin was applied to RCC4 and 786-O
cells in the presence or absence of ectopic VHL expression under
normoxia or hypoxia. Compared with normoxia, hypoxia,
which accumulated HIF-1a and -2a proteins, failed to impact
the drug cytotoxicity (Fig. 3a,b, Supplementary Fig. 3a). In
addition, the cell growth inhibition after doxorubicin treatment
had no significant difference in the presence or absence of
hypoxia mimetic agent CoCl2 (Fig. 3c), which also accumulated
the HIF-1a protein33. These results suggest that HIFs might
not contribute to the enhanced cytotoxicity of anthracyclines.
To consolidate this, we effectively silenced HIF-1a and
HIF-1b or HIF-2a by their specific shRNAs in RCC4 or 786-O
cells. Although these silences suppressed the proliferation
(Supplementary Fig. 3b,c), they did not impact on the growth
inhibition rates of doxorubicin in RCC4 or 786-O cells (Fig. 3d–f).

Proteomics reveals regulators of anthracycline cytotoxicity.
Next, we sought to identify proteins mediating the enhanced
cytotoxicity of anthracyclines in VHL-deficient RCC4 and 786-O
cells by subtractive proteomics strategy. Figure 4a showed a
schematic representation of the stable isotope dimethyl-labelling
experiments. Briefly, cell lysates from each condition were
digested and the peptides were labelled with light, medium and
heavy reagents, respectively, and then were equally mixed and
injected to Orbitrap Fusion liquid chromatography (LC)–mass
spectrometry (MS/MS). Three independent experiments were
performed in the indicated triplex configuration, which provided
the direct comparisons between cells with EV and VHL trans-
fection in normoxia, as well as cells with VHL transfection in
normoxia and hypoxia.

As a result, we identified 4,282 and 3,585 proteins, respectively,
in the pooled cell lysates of RCC4 and 786-O cells
(Supplementary Data 1,2). All quantification data were normal-
ized and natural log transformed before further analysis.
Differentially expressed proteins were determined by applying
paired t-test and corrected by Benjamini–Hochberg algorithm
as multiple hypothesis testing correction34. Thus, 142 and 557
proteins were identified to be regulated, respectively, between
RCC4/EV versus RCC4/VHL and 786-O/EV versus 786-O/VHL
cells under normoxia (Supplementary Data 3,4). And 118 or 303
proteins were identified to be regulated in RCC4/VHL or 786-O/
VHL cells under normoxia and hypoxia (Supplementary Data
5,6). Accordingly, 25 and 47 proteins were regulated by both VHL
and hypoxia in RCC4 and 786-O cells (Supplementary Data 7,8).
And thus, 117 and 510 proteins were identified to be regulated by
VHL but not hypoxia, respectively, in RCC4 and 786-O cells
(Supplementary Data 9,10). To get an overview of these VHL
alone-regulated proteins in RCC4, function enrichment and
pathways analysis were performed using QIAGEN’s Ingenuity
Pathway Analysis tools. The bioinformatic analysis indicated
complicated biological processes, such as organismal injury and
abnormality, cancer, cell growth and proliferation, and multiple
pathways were involved (Supplementary Fig. 4a–d).

The comparison of the bioinformatic data revealed that
RCC4 and 786-O presented very different functional state
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(Supplementary Fig. 4a–d and Supplementary Data 11,12). The
functional enrichment and pathway analysis suggested that RCC4
cells presented a series of suppressed functional state such as
cellular movement, maintenance, cellular assembly and organiza-
tion, whereas 786-O demonstrated a series of active functional
state in the cellular processes mentioned above, which might
contribute to the different biological characteristics of these two
cell lines. 786-O was derived from a primary clear-cell
adenocarcinoma and high tumorigenic, but RCC4 was low
tumorigenic35,36.

However, these two VHL-deficient cell lines shared common
effect on the enhanced cytotoxicity of doxorubicin. To further
narrow down the candidate proteins involved in cytotoxicity of
anthracyclines, these results of IPA analysis were compared
between these two cell lines (Supplementary Data 11,12) and the
common function enrichment and pathways were picked up
(Supplementary Data 13,14). Totally, 107 function enrichment or
pathway including cancer, cell death and survival, organismal
injury and abnormalities were shared by RCC4 and 786-O cells
(Supplementary Data 13,14). Among the proteins involved in
these common function enrichment and pathway, 26 were shared
by RCC4 and 786-O (Fig. 4a,b). Notably, five of these 26 VHL
alone-regulated proteins, including vesicle-associated membrane
protein-associated protein A, 4-hydroxy-2-oxoglutarate aldolase
1, aldehyde dehydrogenase 2 (ALDH2), vimentin and protein
phosphatase 1 regulatory subunit 13 like, were found to be
regulated consistently in RCC4 and 786-O cells (Fig. 4b). Hence,
we silenced or ectopically expressed these five genes followed by
doxorubicin treatment in RCC4/VHL (Fig. 4c,d) and 786-O/VHL
(Fig. 4e,f). The results demonstrated that ALDH2 but not other
four genes regulated the cytotoxicity of doxorubicin in both
ccRCC cells.

ALDH2 regulates anthracycline cytotoxicity. ALDH2 was
reported to regulate cytotoxicity of doxorubicin in cardiac cells,
leukaemia cells and lung cancer cells37–39. Indeed, the cytotoxicity
of doxorubicin was significantly higher in the primary mouse
embryo fibroblast (MEF) cells from ALDH2 knockout mice than
those from wild-type mice (Fig. 5a). To address the potential role
of ALDH2 in cytotoxicity of anthracyclines in ccRCC cells, we
silenced ALDH2 expression in RCC4/VHL cells, and found that
the reduction of ALDH2 suppressed the proliferation of these
cells (Supplementary Fig. 5a), although the ALDH2 knockout
did not affect the proliferation of the primary MEF cells
(Supplementary Fig. 5b). Then, these RCC4/VHL cells were
treated with doxorubicin at different concentrations, and showed
that cytotoxicity of doxorubicin significantly increased in ALDH2
silencing cells (Fig. 5b). Reciprocally, stable ectopic expression of
ALDH2 decreased cytotoxicity of doxorubicin and daunorubicin
in RCC4 cells (Fig. 5c). Because cytotoxicity of doxorubicin is
contributed partially by apoptosis30, the apoptosis of these cells
was examined. The doxorubicin-treated RCC4/EV cells had a
higher apoptosis rate than RCC4/VHL (Supplementary Fig. 5c),
and cell apoptosis rate was higher in the ALDH2� /� MEF cells
(Supplementary Fig. 5d) and RCC4/VHL with ALDH2 silencing
(Supplementary Fig. 5e).

To explore whether ALDH2 enzyme activity affected doxor-
ubicin-treated cells, we used ALDH2 activator alda-1 (ref. 23) and
inhibitor daidzin40 to pre-treat RCC4/VHL cells. The results
showed that alda-1 reduced, while daidzin increased, the
cytotoxicity of doxorubicin in RCC4/VHL cells (Fig. 5d,e),
suggesting that doxorubicin cytotoxicity might be negatively
correlated with enzymatic activity of ALDH2.

It has been reported that doxorubicin could increase the level
of intracellular ROS and 4-HNE (ref. 29). As the main
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Figure 2 | VHL-deficiency augments the sensitivity of ccRCC cells to anthracyclines in vivo. All indicated cells (5� 106) were injected into NOD/SCID

mice. Tumour-bearing mice were treated every two days with vehicle or with 4 mg per kg doxorubicin by intraperitoneal injection. Five tumours per

condition were analysed. (a,c) Pictures of tumour in NOD/SCID mice injected with the indicated cells. (b,d) Relative tumour volume growth. Data are
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metabolism enzyme of 4-HNE, ALDH2 may affect cell deaths by
metabolism of 4-HNE. In agreement, ectopic VHL expression
significantly reduced 4-HNE in RCC4 cells, while ALDH2 silence
increased 4-HNE in the RCC4/VHL cells, under the treatment of
doxorubicin but not vincristine (Fig. 5f,g). Furthermore, doxor-
ubicin combined with 4-HNE led to even higher growth
inhibition than doxorubicin treatment alone in RCC4/VHL cells
(Fig. 5h). All these data propose that a higher intracellular 4-HNE
levels endow cells with higher cytotoxicity of doxorubicin.

VHL regulates the transcription of ALDH2. To validate the
proteomic results that VHL regulates ALDH2 in ccRCC, VHL
was overexpressed or knocked down in ccRCC cells. As shown in
Fig. 6a, the VHL overexpression in RCC4 augmented the
expression of ALDH2 in mRNA and protein levels. This is also
true in 786-O cells (Fig. 6b). Visa versa, both mRNA and protein
of ALDH2 were significantly downregulated by silencing VHL
expression in RCC4/VHL and Caki-1 (Fig. 6c,d). Consistent with
the above findings that HIFs do not contribute to the enhanced

cytotoxicity of anthracyclines in VHL-deficient ccRCC cells, the
ALDH2 protein levels were also not affected by HIF-1a and
HIF-2a silencing in RCC4 cells and 786-O cells (Fig. 6e,f). These
results suggest that VHL regulates the transcription of ALDH2 in
ccRCC cells in HIF-independent manner.

As documented4,41, the ubiquitin E3 ligase activity of VHL is
dependent upon its a-domain and b-domain, among which the
b-domain directly binds putative substrates such as HIF-1a, while
the a-domain directly contacts elongin C in pVHL-elongin
C- elongin B complex. We constructed an a-domain mutant
C162F and a b-domain mutant Y98H of VHL, which lost its E3
ligase activity41, to examine the expression of ALDH2. The results
showed that, like wild-type VHL, these two VHL mutants still
upregulated ALDH2 expression, but these mutants failed to
induce HIF-1a degradation (Supplementary Fig. 6a). Of great
interest, we sequenced VHL genes from 44 cases of ccRCC cancer
tissues, and found that 13 cases of them carried VHL mutations,
among which 8 cases were missense mutations with no E3 ligase
activities (Supplementary Fig. 6b). In spite of this, tissues with
wild type and mutated VHL had the similar levels of ALDH2
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protein, as evaluated by immunohistochemistry (Supplementary
Fig. 6c–e). Cumulatively, our results suggest that VHL regulates
the transcription of ALDH2 in an E3 ubiquitin ligase-
independent manner.

HNF-4a mediates regulation of ALDH2 by VHL. It was
reported that hepatocyte nuclear factor 4a (HNF-4a) is a tran-
scription factor of ALDH2 (refs 42,43). Although HNF-4a was
not detected in the proteomic analysis for its low abundance as a
transcription factor, we put HNF-4a as well as all the proteins
regulated by VHL but not hypoxia into the protein interaction
analysis with IPA. Indeed, HNF-4a was found to be a central
node in the network in RCC4 (Supplementary Fig. 7a) and 786-O
(Supplementary Fig. 7b). In addition, several HNF-4a target
genes were found in these VHL alone-regulated genes
(Supplementary Data 15). Thus, we extrapolated that HNF-4a

might be involved in the regulation of ALDH2 by VHL. To
confirm this, we showed that HNF-4a mRNA and protein levels
were significantly upregulated in RCC4 and 786-O cells with
ectopic VHL expression (Fig. 7a,b). Accordingly, silencing of
VHL in RCC4/VHL cells suppressed HNF-4a expression on
mRNA and protein levels (Fig. 7c). On the other hand, silencing
of HNF-4a decreased ALDH2 expression in RCC4/VHL
(Fig. 7d). Our results suggest that VHL could upregulate the
mRNA and protein levels of HNF-4a to activate ALDH2
transcription.

Furthermore, we found that anti-VHL antibody but not normal
mouse IgG could precipitate the putative promoter of HNF-4a
(Fig. 7e). Hence, VHL-expressing plasmids and the 1,500 bp of
the HNF-4a promoter-driven luciferase reporter were co-
transfected into 293T cells, and the results demonstrated that
VHL transfection significantly increased the luciferase activity
(Fig. 7f). In addition, we constructed 550 bp trunk of the HNF-4a
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promoter, and five different mutants of this trunk39,44. The
second mutant, from � 130 bp to � 160 bp, significantly
decreased the luciferase activity in response to VHL transfection
(Fig. 7g), which indicate that this site is essential for VHL
regulating the transcription of HNF-4a.

VHL is positively correlated with HNF-4a and ALDH2. We
further explored whether the relationships among VHL, HNF-4a
and ALDH2 existed in clinical patient samples. As for this, 114
cases of RCC samples were collected to detect the expression of
VHL, HNF-4a and ALDH2 in cancer and adjacent tissues by
immunohistochemical assay. Significantly lower expression of
VHL, HNF-4a and ALDH2 were found in cancer tissues than

their corresponding adjacent tissues (Fig. 8a,b). On the other
hand, as shown in Fig. 8c, high-VHL expression was often
associated with high HNF-4a and ALDH2 expression, and vice
versa (Po0.01). Taken together, these results suggest that VHL
protein expression has a positive correlation with HNF-4a and
ALDH2 in ccRCC.

Furthermore, 72 cases of ccRCC patients with cancer and
corresponding adjacent tissues in database GEO were used to
verify the relationship among VHL, HNF-4a and ALDH2. As
shown in Supplementary Fig. 8a–c, lower mRNA expression of
VHL, HNF-4a and ALDH2 were found in cancer tissues
compared to their corresponding adjacent tissues, and there
was a positive correlation between VHL and HNF-4a mRNA
(Supplementary Fig. 8d) and between HNF-4a and ALDH2
mRNA (Supplementary Fig. 8e). But we could not find a
correlation between VHL and ALDH2 mRNA (Supplementary
Fig. 8f), which might be because VHL functional mutations
interfere with protein stability or the alteration of the VHL start
codon could result in loss of VHL protein expression45,46.

HNF-4a mediates the cytotoxicity of anthracyclines. To further
confirm the role of HNF-4a in the cytotoxicity of anthracyclines
in ccRCC, we silenced the expression of HNF-4a in Caki-1 cells
by shRNA specifically against HNF-4a (Fig. 9a). The results
demonstrated that the silence inhibited the cell proliferation
(Fig. 9b), and significantly increased the cytotoxicity of doxor-
ubicin (Fig. 9c). We also subcutaneously implanted Caki-1/NC
and Caki-1/shHNF-4a cells into the flanks of nude mice. Tumour
growth of Caki-1/shHNF-4a cells were significantly reduced
compared with that of Caki-1/NC cells after doxorubicin treat-
ment (Fig. 9d,e). Collectively, HNF-4a mediates the cytotoxicity
of anthracyclines in ccRCC.

Regulation of anthracycline toxicity by VHL is conserved. VHL
is a conservative key regulator under hypoxia condition. We
further investigated its conservation on regulation of ALDH2 and
chemotherapeutic toxicity. C.elegans is good system to verify
the conservation of gene function as well as drug action47.
The double-mutant strain of C.elegans acs-20;acs-22 increases
penetration of several drugs47 but has no effect on worm
survivability. Thus this mutant worms were used to test the
anthracycline toxicity and the role of these genes. As shown in
Supplementary Fig. 9a, this mutant had no effect on the survival
of the worms when no drugs were applied. Of note, this mutant
strain of C.elegans had a higher toxicity of doxorubicin than its
wild-type strain (Supplementary Fig. 9b). In addition, the RNAi
of vhl-1 (corresponding to human VHL) and alh-1 (corresponding
to human ALDH2) had no effect on the survival to this mutant
worms (Supplementary Fig. 9c,d). Consistent to our findings in
ccRCC cell lines, the silence of either vhl-1 or alh-1 significantly
increased the toxicity of doxorubicin in C.elegans compared with
treatment of DMSO with the same osmolality (Fig. 10a–d).
Furthermore, vhl-1 silencing also inhibited alh-1 mRNA
expression (Fig. 10e). Intriguingly, loss of function vhl-1 mutant
could downregulate the mRNA of nhr-69 (HNF-4a in mammal)
and alh-1 in C.elegans (Fig. 10f). Collectively, these results
indicate the evolutionary conservation in the regulation of
ALDH2 and HNF-4a expression and the anthracyclines toxicity
by VHL.

Discussion
Here we found that VHL-deficiency made RCC cells more
sensitive to anthracyclines. Previously, VHL overexpression has
been found to synergize with doxorubicin to suppress hepatocel-
lular carcinoma in mice48, suggesting different effects of VHL on
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anthracycline response in different cellular context between liver
and kidney. Considering that HIF-a is the major substrate of
VHL, we investigated whether HIFs are involved in the effect of
VHL on anthracycline sensitivity in ccRCC cells. It has been
reported that suppression of HIF-2a restores P53 activity and
promotes the apoptosis induced by anthracyclines49, and it has
also been reported that anthracyclines inhibited the binding of
HIF heterodimer to the consensus HRE and thus impaires the
transcriptional response of HIF50. However, our results show that
the VHL-deficiency increased sensitivity of ccRCC cells to
anthracyclines is independent upon HIF-1 or HIF-2.

We demonstrate that ALDH2 is a target gene of VHL and
participates in cytotoxicity of anthracyclines in ccRCC. The
regulation of cytotoxicity of anthracyclines in cardiac cells by
ALDH2 has been reported by several studies recently.
DOX-induced myocardial cellular toxicity has been found to be
further aggravated in ALDH2 knockout mice and ameliorated in
ALDH2 transgenic mice37. Consistently, the cardiotoxicity is also
found to be aggravated when the DOX plus ALDH2 inhibitor
daidzin, while DOX plus ALDH2 agonist Alda-1 would partial or
complete alleviate the cardiotoxity39. Notably, Moreb et al. have
found that overexpression of ALDH2 in leukaemia cell K562 and
lung cancer-cell H1299 could promote their proliferation and
resistant to doxorubicin38. These findings suggested the
sensitivity to anthracyclines is regulated by ALDH2, which is
consistent to our finding in RCC cells. Considering the fact that
an inactive mutant form of ALDH2 is found in 40% of East Asian
populations19, it is of great interest to explore whether these
findings can be extended to other cancers in the future.

Our further investigation show that the effect of VHL on
cytotoxic sensitivity to anthracyclines in ccRCC cells is not
dependent on its E3 ligase activity. VHL is located in both
cytoplasm and nucleus, the nuclear form of VHL exhibits the
anti-tumour properties51. There are a few reports that VHL plays
a role in other ways except as an E3 ubiquitin ligase. It has been
reported that VHL mediates the transcriptional suppression of
the c-Myc gene by binding to the c-Myc promoter52. More
intriguingly, here we also show that VHL could activate HNF-4a
transcription through binding to the promoter of HNF-4a and
revealed a novel nuclear function of VHL.

As a member of HNF-4, HNF-4a belongs to subfamily NR2 of
the nuclear receptor superfamily53. HNF-4a is a key transcription
factor for hepatocyte differentiation, proliferation control, cellular
homeostasis, epithelial morphogenesis, glucose metabolism and
insulin secretion54–58. Reduced expression of HNF-4a is found
in hepatocarcinogenesis and confers advantages to tumour
cells59–61. Thus, HNF-4a could be considered as a potential
tumour suppressor in liver cells. The malfunction of HNF-4a has
also been described in human RCCs62. Our results indicate that
VHL could regulate HNF-4a, which partially explains the low
expression of HNF-4a in RCC.

Despite the limitations in detecting low-abundance proteins,
proteomics could reveal the most significant changes of high-
abundance proteins through an unbiased strategy, which could
demonstrate some of the most important aspects of the drug
effects. In this sense, proteomics could accelerate the drug
development via uncovering the action mechanism of novel
reagents63. On the other hand, proteomics, as drug targets
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discovery means, always encounter a bottleneck to conceive the
real targets. Functional analysis of potential drug target proteins
will be great helpful.

As a model for drug target verification, Caenorhabditis elegans
has its advantage to verify the functional conservation64.
However, the surface barrier is essential for maintaining the
internal environment to C.elegans and prevents drugs penetrating
into the bodies of C.elegans65. acs-20;acs-22 mutant C.elegans has
defective skin barriers, and thus drugs can easily penetrate into
the bodies of C.elegans, which greatly reduces the lethal dose
of drugs47. In our work, we have verified the drug action
and candidate genes affecting cytotoxicity of anthracyclines by
acs-20;acs-22 mutant and demonstrated the value of this mutant
worm.

Conclusively, we found that VHL-deficiency augments anthra-
cycline chemotherapy by downregulation of ALDH2 in ccRCCs.
This work might provide clues for understanding the novel
function of VHL and precise treatment for ccRCC patients.

Methods
Cell culture and treatment. A498, ACHN, 786-O, HK-2, 769-P, OS-RC-2, Caki-1,
Caki-2 were purchased from cell bank of Chinese Academy of Science, Shanghai.
RCC4, RCC4/EV and RCC4/VHL were provided by Dr J.K. Cheng in SJTU-SM.
There were no signs of mycoplasma contamination for all cell lines. RCC4, RCC4/
EV and RCC4/VHL were cultured in DMEM medium (Invitrogen) supplemented
with 10% FBS (Gibco BRL, Gaithersburg, MD, USA). A498, ACHN were cultured
in MEM medium (Invitrogen) with 10% FBS, 786-O, HK-2, 769-P, OS-RC-2 were
cultured in RPMI-1640 medium with 10% FBS, Caki-1and Caki-2 were cultured in
McCoy’5A (Invitrogen) with 10% FBS. The cell lines were cultured in 5% CO2/95%
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air in a humidified atmosphere at 37 �C. Hypoxic treatment was performed in a
specially designed hypoxia incubator (Thermo Electron, Forma, MA, USA) with
1% O2, 5% CO2 and 93% N2.

Tissue samples and immunohistochemistry. Paraffin-embedded tumour tissues
and normal adjacent tissues from Ruijin Hospital. The immunohistochemical
analysis was performed on the 4 mm thick fraction mounted on charged slides and
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sectioned from each clinical sample. Then, each slide was deparaffinized in 60 �C,
followed by treatment with xylene and graded alcohol. After the antigen retrieval
and being blocked with 5% bovine serum albumin, tissue slides were immuno-
histochemically stained by antibodies against VHL (1:50, Abcam, ab140989),
HNF-4a (1:50, Abcam, ab181604) and ALDH2 (1:200, Abgent, AM1831a),
respectively, then visualized by standard avidin-biotinylated peroxidase complex
method. Then, hematoxylin was used for counterstaining and morphologic images
were observed with Olympus BX51 microscope. All of staining was assessed by
pathologists blinded to the origination of the samples and subject outcome.
Each specimen was assigned a score according to the intensity of the staining
(no staining¼ 0; weak staining¼ 1, moderate staining¼ 2, strong staining¼ 3)
and the extent of stained cells (0%¼ 0, 1–24%¼ 1, 25–49%¼ 2, 50–74%¼ 3,
75–100%¼ 4). The final immunoreactive score was determined by multiplying
the intensity score with the extent of score of stained cells, ranging from 0
(the minimum score) to 12 (the maximum score).

Quantitative real-time PCR. Total RNA was isolated by TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) and treated with RNase-free DNase (Promega,
Madison, WI, USA). Reverse transcription was performed with TaKaRa RNA PCR
kit (TaKaRa, Dalian, China). The double-stranded DNA dye SYBR Green PCR
Master Mixture Reagents (Applied Biosystems, Warrington, UK) was used for
quantitative real-time reverse transcription–polymerase chain reaction (PCR)
analysis. The following specific primers used were 50-TGGTGGACAAAGACAA-
GAGG-30 (forward) and 50- AGGAGCGCATTGATGGAG-30 (reverse) for HNF-
4a, 50-TTCGCCCTGT TCTTCAACCA-30 (forward) and 50-CCTGCTCGGTC-
TTGC TATCAAA-30 (reverse) for ALDH2, 50-CTGGCCTCTGCCATCTTCTG-30

(forward) and 50-TTAGC CTCCTTGCTCACATGC-30 (reverse) for CYP1A2, and
50-CATCCTCACCCTGAAGTACCC-30 (forward) and 50-AGCCTGGATAGCAA
CGTACATG-30 (reverse) for Actin as control. To C. elegans, 50-ACGGCATAA
TCCAACTGA-30 (forward) and 50-AGGAGGAGGAATTGAACG30 (reverse) for
vhl-1, 50- TCGGCAGTGAGTGGAGAC-30 (forward) and 50-CGGCGTAATA
AVGAAGAGT-30 (reverse) for alh-1, 50-AGCGGGAATGAAGAGTA-30 (forward)
and 50-CGTATGGTGCAAGTGAAG -30 (reverse) for nhr-69, 50-CCATCAT-
GAAGTGCGACATTG-30 (forward) and 50-CATGGTTGATGGG GCAAGAG-
30(reverse) for act-1 as control. The folds of changes were shown as means±s.d. in
three independent experiments with each triplicate.

shRNA design and transfection. Pairs of complementary oligonucleotides against
VHL were synthesized, annealed and ligated into pSIREN-RetroQ according to the
manufacturer’s instruction (Clontech, Mountain View, CA, USA). The target
sequence for VHL was 50-GAGCCTAGTCAAGCCTGAG-30 , the sequences for
ALDH2 were 50-TTATATCACCATTAAGGCA-30 and 50-ATGTCTCCGGTAT-
TATGCC-30 , the sequences for HNF-4a were 50-AAGGTCAAGCTATGAGGA-
CAG-30 and 50-AAGCAGGAAGTTATCTAGCAA-30, and the sequences for HIF-
1a were 50-GGACAGTACAGGATGCTTGC-30 and 50-GGTGGATTACCA-
CAGCTGAC-30 (ref. 12). After transfection for 48 h, the viral supernatant was
collected, filter-sterilized and added to cells in six-well plate containing polybrane
with a final concentration of 4 mg ml� 1 and then puromycin (2mg ml� 1) was
added to select the stably transfected cells after another 48 h.

Cytotoxicity assay and cell proliferation. For cytotoxicity assays, 5,000 ccRCC
cells were plated in 96-well plates in 100 ml of media, respectively. The following
day, different concentrations of drugs was added in media for different time points
at 37 �C. Then each well was pulsed by addition of 10 ml of CCK-8 assay (WST-8;
Cell Counting Kit-8 from Dojindo, Kumamoto, Japan) and incubated for 3 h.
Absorbance readings at a wavelength of 450 nm were taken on Synergy H4
Hybrid Microplate Reader. The growth inhibition rate is calculated by (Ac–Ae)/
(Ac–Ab)� 100%. Ac, Ae and Ab mean absorbance value in control, experiment
(Ae) and blank.

Cell proliferation was also evaluated by the CCK-8 assay. Briefly, 1,000 cells
were plated in 96-well plates in 100 ml of media for different days, then each well
was pulsed by addition of 10 ml of WST8 and incubated for 3 h. Absorbance
readings at a wavelength of 450 nm were taken on Synergy H4 Hybrid Microplate
Reader.

Chromatin immunoprecipitation. 786-O/VHL cells were crosslinked with 1%
formaldehyde at room temperature for 10 min, and cells were pelleted and resus-
pended in 400 ml lysis buffer (1% sodium dodecyl sulfate, 10 mM ethylenediami-
netetraacetic acid, 50 mM Tris–HCl, pH 8.0). Then DNA of the cells was sonicated
and sheared to small fragments of 500–1,000 bp with sonicator ultrasonic processor
(Misonix, Farmingdale, NY, USA). Subsequently, the supernatant of the sonicated
cells was collected, diluted and precleared by protein A agarose (Santa Cruz Bio-
technology). Furthermore, anti-VHL antibody (1:50, Novus biologicals, Littleton,
CO) was added to the supernatant for immunoprecipitation with normal
preimmuned mouse IgG (1:50, Santa Cruz Biotechnology) as a normal control.
After overnight incubation, the protein A agarose were added and incubated for 3 h
and then washed with low-salt, high-salt and LiCl buffers and the immunopreci-
pitated DNA was retrieved by 5 M NaCl at 65 �C for 4 h and purified with a PCR
purification kit (TaKaRa). PCR was performed with specific primers for

HNF-4a:50-GGCAGCCTTATCTCTGCAAAAGC-30 (Promoter, forward) and
50-GTGGGGGTTAATGGTTAATC-30 (Promoter, reverse), 50-GGAGATGACTT
GAGGCCTTACT-30 (30UTR, forward) and 50-GGGGAATCGTTTCCAA
GGCCTC-30 (30UTR, reverse), 50-GGCTCTGACACTGCAGAGTTCTAGAAC-30

(Enhancer, forward) and 50-ACCAACTTACCCAGCTGCTAATCATTGC-30

(Enhancer, reverse).

Western blot. Cell extracts were prepared by using the following lysis buffer
(4% sodium dodecyl sulfate, 20% glycerol, 100 mM dithiothreitol, Tris–HCl, pH
6.8). In total, 20 mg of proteins were loaded and separated by 10 or 15% sodium
dodecyl sulfate-polyacryl-amide gel. After electrophoresis, proteins were trans-
ferred to nitrocellulose membrane (Bio-Rad, Richmond, CA, USA). Then, 5% non-
fat milk in Tris-buffered saline was used to block the membrane and immuno-
blotted with antibodies against Flag (1:1,000, Sigma-Aldrich, A8592), Actin
(1:10,000, Merck, MAB1501), HIF-1a (1:1,000, BD Transduction Laboratories,
610958), VHL (1:500, Novus biologicals, NB100-485), ALDH2 (1:1,000, Abgent,
AM1831a), PDK1 (1:1,000, Stressgen, ADI-KAP-PK112-D) and HNF-4a (1:500,
Santa Cruz, sc-6556). Followed by horseradish peroxidase-linked second antibody
(1:2,000, Cell signaling Technology, Beverly, MA, USA) for 1 h at room tem-
perature, detection was performed by SuperSignal West Pico Chemiluminescent
Substrate kit (Pierce, Rockford, IL, USA) according to the manufacturer’s
instructions. All the uncropped versions of images were shown in Supplementary
Fig. 10.

Luciferase assay. The indicated sequences in promoter of HNF-4a were obtained
from National Center for Biotechnology Information, amplified by PCR from
genomic DNA and subcloned into pGL3-Basic (Promega) to construct luciferase
reporter plasmids. For the luciferase assay, 293T cells were seeded in a 12-well plate
(Becton Dickinson, Franklin lakes, NJ, USA), and co-transfected with VHL
expression vector, luciferase reporter plasmids driven by promoter fragments of
HNF-4a and pRLSV40-Renilla. After 36 h transfection, cells were lysed and ana-
lysed by the Dual-Luciferase Assay system according to the manufacturer’s
instructions (Promega). The following oligonucleotides were used for HNF-4a
promoter mutagenesis: the first mutant primers: -104 GGGTCGATGGTGGAT-
CCGTCCCCCGCCGGTGGATAGGCTG -143; the second mutant primers: _-160
ATCCCTGCAGCCATGGCCAGCC TATCCACCG -130; the third mutant pri-
mers: -298 GGTGAGTCGACGCACAAAT GAGTGCCCGTGA -268; the forth
mutant primers:-423 GCATTGAGGGTAGAA TCTAGAGATTTGGGAAGTTA-
TTG -386; the fifth mutant primers: -419 AATGCTTTTGCAAAGCTTAGGCT-
GCCCCATGGCCC -453

In vivo studies. Animal care and experiments were performed in strict accordance
with the ‘Guide for the Care and Use of Laboratory Animals’ and the ‘Principles for
the Utilization and Care of Vertebrate Animals’ and were approved by the
Experimental Animal Ethical Committee at Fudan University. Male NOD/SCID or
nude mice, 4 to 6 weeks old, were obtained from Shanghai Research Center for
Model Organisms. 786-O/EV, 786-O/VHL, Caki-1/NC, Caki-1/sh-VHL or Caki-1/
sh-HNF-4a cells were resuspended in matrigel to a final volume of 200ml and
injected subcutaneously. Mice were randomized into vehicle control group or
treatment group. When tumours reached an approximate average volume of
50 mm3, the mice were treated with 4 mg per kg of doxorubicin. Tumour growth
was blinded to measure every 2 days after drug treatment was started. The volume
of the tumour was calculated using the equation length�width�width/2.

Apoptosis assay. Apoptotic cells in the populations were measured with a
FACScan flow cytometer (Becton-Dickinson) by the AnnexinV Fluos apoptosis
detection kit (Roche Molecular Biochemicals, Mannheim, Germany). Cells were
stained with Annexin-V-FITC for exposure of phosphatidylserine on the cell
surface as an indicator of apoptosis, following the manufacturer’s instruction (BD
Biosciences). Data acquisition and analysis were performed using a BD Biosciences
FASCalibur flow cytometer with CellQuest software. Positively stained by annexin-
V-FITC only (early apoptosis) and propidiumiodide (late apoptosis) were quan-
titated, and both subpopulations were considered as overall apoptotic cells.

Trypsin digestion and stable isotope dimethyl labelling. Cells were dissolved in
lysis buffer containing 7 M urea, 2 M thiourea with protease inhibitor cocktail
(Roche), followed by centrifugation (15,000 g, 30 min) at 4 �C. The supernatant was
quantified using Brandford protein assay, and the precision was validated with
SDS-PAGE electrophoresis.

In total, 100mg of proteins were sequentially reduced with 10 mM DTT and
alkylated with 12 mM iodoacetamide. Add trichloroacetic acid to 12% and let it sit
for 2 h at room temperature to purify the protein samples. Spin for 5 min in a
microfuge (15,000 g) and carefully discharge the supernatant and retain the pellet.
Wash the pellet twice with one volume of cold acetone. Vortex and repellet the
samples for 5 min at full speed between washes. Samples were reconstituted in
100 ml of 100 mM TEAB buffer. After 1 mg trypsin enzyme was added and digested
for 4 h, 2 mg trypsin enzyme was added and incubated overnight. An aliquot of
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100ml of 100 mM TEAB, 8 ml of 4% (vol/vol) formaldehyde (CH2O, CD2O or
13CD2O), 9 ml of 0.6 M cyanoborohydride (NaBH3CN or NaBD3CN) were added
and incubated for 1 h at room temperature. The reaction was quenched with 16 ml
of 1% ammonia. Finally, 8 ml formic acid was added to terminate the reaction. The
three differentially labelled samples were equally mixed and desalted using SPE-
PAK C18(Waters) before LC–MS analysis.

Two-dimensional LC–MS/MS system. The peptide mixture was fractionated by
high pH separation using a UPLC system (Waters Corporation, Milford, MA,
USA). Fifteen fractions were collected, each fraction was dried in a vacuum con-
centrator. The successive low pH separation was achieved with a linear gradient
starting from 5% ACN to 40% ACN in 40 min on an EASY-nLC-1200 system
combined online with Orbitrap Fusion mass spectrometry (Thermo, San Jose, CA,
USA). The mass spectrometer was operated in the data dependent mode collecting
full MS scan from 350 to 1,200 m/z at 120 K resolution (after accumulation to a
target value of 500,000). Ions above the intensity threshold of 2e5 were selected for
tandem MS scan at 15 K resolution. Higher energy collisional dissociation (HCD)
fragmentation was performed with normalized collision energy of 30.

Database search and data analysis. The raw data was search against Uniprot
human database (2016-3 with 20,211 entries) using MaxQuant (version.1.5.3.7).
The light, medium, heavy dimethyl label on both peptide N-terminus and lysine
were selected as quantification tags. Peptides with two missed cleavages, fixed
carbamidomethylated cysteines and variable acetylated protein N-terminus, and
oxidized methionines were set as group-specific parameters. Initial MS and MS/MS
tolerances were set at 20 p.p.m. Protein and peptide FDRs were 1%. Quantification
results of three biological replications were normalized and the variations were
calculated66. In each LC–MS run, Maxquant normalize the protein ratios so that
the median of their logarithms is zero, which corrects for unequal protein loading,
assuming that the majority of proteins show no differential regulation.

Differentially expressed proteins were determined by applying paired t-Test
with unadjusted significance level Po0.05 and corrected by Benjamini–Hochberg
algorithm34. Multiple test correction was performed by using Scaffold 4 software
(version4.7.2, Proteome Software Inc., Portland, OR, USA).

The networks functional analyses were generated through the use of QIAGEN’s
Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City).

Measurement of 4-HNE concentrations. The concentrations of 4-HNE were
measured using OxiSelect HNE-His Adduct ELISA Kit (Cell Biolabs) according to
the manufacturer’s instructions.

C.elegans experiments. C. elegans was maintained on nematode growth medium
agar plates seeded with OP50 Escheria coli strains at 20 �C. The wild-type strain
Bristol N2 and the vhl-1-deficient mutant strain CB5602 was obtained from the
Caenorhabditis Genetics Center. The double-mutant acs-20(tm3232);acs-
22(tm3236) C.elegans were obtained from National BioResource Project for the
Nematode in Japan. RNAi of candidate genes in C.elegans was carried out using
standard bacterial feeding methods67. For RNAi feeding assays, Synchronized L4
worms were placed on each plate seeded with RNAi bacteria and incubated at 20 �C
until adulthood, then synchronized for off-spring. The C.elegans at L4 stage of the
second generation were put into 96-well plates (50–100 per well) with M9 buffer.
After treatment with doxorubicin or DMSO for 1–2 days, C.elegans deaths were
observed with stereo microscope. We used the tip to slightly touch the worms when
these worms stop moving, to make sure that these worms are really dead or just
stop movements even if they are healthy.

Statistical analysis. All the statistical analyses were performed by the statistical
package for social science (SPSS) (v. 13) (SPSS Institute). The Pearson’s w2 test was
used to evaluate the correlation among the protein expression of VHL, HNF-4a
and ALDH2 in immunochemical assay. Unless described otherwise the P values for
comparison between line-linked groups were obtained by Student’s two-sided
t-test. The correlation of relative mRNA levels of VHL, HNF-4a and ALDH2 and
its P values was analysed using linear correlation and regression. Multigroup
comparisons of the means were carried out by one-way analysis of variance test
followed by Bonferroni correction for post hoc test. Po0.05 was considered to be
statistically significant.

Data availability. The authors declare that all the data supporting the findings of
this study are available within the article and its Supplementary Information files
and from the corresponding authors on reasonable request.
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