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Cis-perturbation of cancer drivers by the
HTLV-1/BLV proviruses is an early determinant
of leukemogenesis
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Human T-cell leukaemia virus type-1 (HTLV-1) and bovine leukaemia virus (BLV) infect

T- and B-lymphocytes, respectively, provoking a polyclonal expansion that will evolve into an

aggressive monoclonal leukaemia in B5% of individuals following a protracted latency

period. It is generally assumed that early oncogenic changes are largely dependent on virus-

encoded products, especially TAX and HBZ, while progression to acute leukaemia/lymphoma

involves somatic mutations, yet that both are independent of proviral integration site that has

been found to be very variable between tumours. Here, we show that HTLV-1/BLV proviruses

are integrated near cancer drivers which they affect either by provirus-dependent

transcription termination or as a result of viral antisense RNA-dependent cis-perturbation.

The same pattern is observed at polyclonal non-malignant stages, indicating that provirus-

dependent host gene perturbation contributes to the initial selection of the multiple clones

characterizing the asymptomatic stage, requiring additional alterations in the clone that will

evolve into full-blown leukaemia/lymphoma.
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A
n estimated 10–20 million people are infected with
the Human T-cell leukaemia virus type-1 (HTLV-1)
worldwide1. In B5% of infected individuals the virus

provokes adult T-cell leukaemia/lymphoma (ATL), an aggressive
T-cell malignancy with a poor prognosis2. Bovine leukaemia
virus (BLV) is closely related to HTLV-1 and causes a very similar
B-cell leukaemia in cattle and sheep3,4. The virus
infects B50 million dairy cattle worldwide inducing substantial
economic costs in infected herds5. Like HTLV-1 in humans,
following a long period of asymptomatic infection (several years
in cattle, several decades in humans) B5% of BLV-infected
animals develop leukaemia/lymphoma. In addition to infecting
bovines, it is possible to experimentally infect sheep with BLV,
providing a powerful model for studying deltaretrovirus-induced
tumours6,7. In contrast to cattle, infected sheep systematically
develop leukaemia/lymphoma and in a shorter time frame
(B20 months). A further advantage of this model is that it is
possible to monitor animals from before infection to terminal
leukaemia/lymphoma, recapitulating many of the stages observed
in HTLV-1-associated human malignancy.

Despite a long history of study in both the HTLV-1 and BLV
models, key steps on the road from initial infection to leukaemia
development remain poorly elucidated. In chronic stages of
infection, HTLV-1 and BLV propagate primarily through
clonal expansion of infected T- or B-cells, respectively, resulting
in the presence of multiple clones of varying abundance each
uniquely identified by their proviral integration site in the host
genome. Following a protracted incubation period, one of
these clones expands, leading to the accumulation of malignant
cells in the peripheral blood (leukaemia) and/or diverse tissues
(lymphoma)4,8–10. Tumour cells consist of a predominant
malignant T- or B-cell clone and chiefly harbour a single
integrated provirus, yet integration sites are very variable10–12. As
a consequence, it has been widely believed that virus-encoded
products drive clonal proliferation and influence oncogenic
progression. Historically the focus of research in BLV/HTLV-1
has been on the oncogenic potential of the viral TAX protein.
TAX can immortalize rodent cells in vitro and induces tumours
in transgenic mice, supporting the hypothesis that it is an
essential contributor to oncogenesis13,14. TAX activates
transcription of the provirus and of many host genes, promotes
cell-cycle progression and interacts with DNA repair
mechanisms15,16. However, the lack of TAX (and other viral
sense transcript) expression in the majority of BLV/HTLV-1-
induced malignancies and the high frequency of proviruses
containing alterations inactivating TAX points to a more
complicated picture17–20. While TAX expression provides a
proliferative advantage to the infected clone, it also makes this
clone a target for cytotoxic immune response21. Therefore, it may
be advantageous for the virus to evade the strong immune
response to TAX by silencing expression from the positive strand.
It is thus widely accepted that TAX fulfils an essential role at early
stages of the oncogenic process, yet is not required for late-stage
precipitation to monoclonal malignancy.

Over the last years it has become increasingly apparent that
another viral product, HTLV-1 basic leucine zipper (bZIP) factor
(HBZ) encoded from the minus-strand, plays an important role
in the life cycle and oncogenic potential of the virus. HBZ
downregulates HTLV-1 transcription, promotes T-cell prolifera-
tion and displays oncogenic properties in transgenic mice,
suggesting a critical role in HTLV-1-mediated leukemogen-
esis16,22. In contrast to TAX, HBZ is consistently expressed in
infected cells in vivo, regardless of their transformation status.
HBZ appears to exert its effects through both the transcript
and the protein23; however, the precise mechanisms by which
HBZ contributes to the oncogenic process remain largely

unknown. Like HTLV-1, BLV expresses antisense transcripts,
AS1 and AS2, driven by 30LTR-dependent promoter activity and
constitutively produced in leukaemic cells24. In addition, BLV
strongly expresses RNA polymerase III-dependent microRNAs
overlapping AS1 and contributing to B40% of microRNAs in the
tumour cell25.

In the fraction of infected individuals who do progress, many
years separate the initial infection from the development
of leukaemia/lymphoma. This indicates that infection with
BLV/HTLV-1 is not sufficient to provoke tumour development
and that secondary events are required to make the transition
to a neoplasm. A recent study examined the landscape of
mutations in ATLs and found frequent alterations enriched in
T-cell related pathways and immunosurveillance11. As regards
BLV-induced tumours, beyond limited studies that reported
frequent genome instability and mutation of p53 (refs 26,27), the
occurrence of secondary events in BLV malignancies remains
largely unexplored.

As BLV and HTLV-1 vary little in sequence both within and
between hosts, and as wide variations exist in clone abundance
between infected individuals and over time, it is hypothesized that
the proviral integration site is the principal attribute that
distinguishes one infected cell clone from the other, thus is
a key element on the road to malignancy. Using a quantitative
high-throughput sequencing (HTS) approach to characterize the
genomic environment of the provirus, previous studies have
addressed the role of the genomic integration site in determining
clonal expansion and the potential for malignant transformation
of cells carrying integrated HTLV-1 or BLV8–10,28,29. Although
HTLV-1 and BLV preferentially integrate in transcriptionally
active genomic regions, near transcriptional start sites and
transcription factor-binding sites, there was no reported
evidence of recurrent proviral integration. In tumours, there
were no clear hotspots of HTLV-1/BLV integration associated
with leukaemic clones, although the ontology of the nearest
downstream gene was associated with malignant clones in 6% of
the ATL cases10,12.

Despite the variability of integration sites in fully transformed
cells, a role for proviral integration and cis-perturbation of host
genes in HTLV-1/BLV-induced clonal expansion cannot be
excluded. Here, to explore this hypothesis, we carried out
RNA-seq of primary tumours in both the human disease and
the animal model in combination with HTS mapping of proviral
integration sites. We show that HTLV-1/BLV proviruses are
integrated in the vicinity of cancer drivers, which they perturb
either by provirus-dependent transcription termination or as
a result of viral antisense RNA-dependent cis-perturbation.
The same pattern is observed at asymptomatic stages of the
disease, indicating that provirus-dependent host gene perturba-
tion triggers initial amplification of the corresponding
clones, requiring additional alterations to develop full-blown
leukaemia/lymphoma.

Results
We obtained samples from 44 adult T-cell leukaemias/lymphoma
(ATLs) (from 35 patients, HTLV-1, human disease) and 47 B-cell
leukaemias (from 43 individuals, BLV, animal model). The animal
sample set included 15 bovine tumours (natural disease) and
32 tumours from BLV-infected sheep, a well-established experi-
mental model for BLV/HTLV-1 (refs 6,7) (Supplementary Data 1).
We utilized stranded RNA-seq data (91 tumours) in combination
with an improved version of DNA-seq based high-throughput
mapping of integration sites (56 tumours) to simultaneously profile
proviral integrations, measure clonal abundance and identify virus–
host transcriptional interactions in tumours9,24,29–31. We identified
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92 distinct proviral integration sites considering all available
tumours (54 genic and 38 intergenic, Supplementary Table 1). Of
the examined tumour samples, 87.8% were characterized by
a single predominant malignant clone defined by a single
integration site and clonal abundance ranging from 79.4 to
99.9%. For the remaining tumour clones B6.75% showed
evidence of two integrations, while B4.05% carried three or four
integration sites, with each integration displaying equivalent
abundance characteristic of multiple proviruses in a single clone
rather than the co-occurrence of multiple tumour clones. Finally,
one tumour showed evidence of seven integrations (Supplementary
Table 1 and Supplementary Data 2). These observations are
consistent with previous findings of multiple proviruses in 9–15%
of ATL cases10,11,32. The integration sites were defined 86% of
the time by both 50 long-terminal-repeat (LTR)-flanking
and 30LTR-flanking host sequences and 14% of the time by
30LTR-flanking sequences only (29% of ATLs), in agreement
with earlier reports describing 50LTR-defective (but never 30LTR-
defective) proviruses in both ATLs and B-cell tumours11,17,32.

Preferential integration of HTLV-1/BLV near cancer drivers.
A naı̈ve examination of the proviral integration sites revealed
a number of striking instances of repeated integration into the
same genomic vicinity. Three B-cell leukaemias had BLV inte-
gration sites falling within an B80 kb region upstream of FOXR2
(M251, M138 and M21, OAR3.1 chrX: 47,545,987, 47,600,711
and 47,618,373, respectively). Additionally, two pairs of ATLs had
integration sites in the same genomic region (ATL1_ly/ATL2_7
within 300 kb of RBFOX1, ATL1_ly/ATL58_23 within 600 kb of
CA10). Finally, a bovine B-cell/ATL tumour pair had integration
sites 17 and 13 kb from the same host gene, respectively
(T15, ATL4_2, TMEM67), while an ovine B-cell/ATL tumour
pair had their proviruses integrated within and 430 kb down-
stream of the same host gene, respectively (M395/ATL25_10,
ELF2). These observations contrast with previous studies that
did show preferential integration in transcriptionally active
regions, but failed to observe hotspots of HTLV-1 integration in
ATLs9–11,28. We showed by simulation that the observed degree
of recurrent integration into narrow genomic regions significantly
exceeded expectation assuming random proviral integration
(P¼ 0.0024; Supplementary Fig. 1). Consistent with this
conclusion, one of the ovine B-cell tumours showed evidence of
BLV integration into UBASH3B, which was identified as the
target gene of HTLV-1 integration in one of the ATLs analysed by
WGS in the recent study of Kataoka et al.11.

The observed non-random distribution can either indicate that
some sites are more prone to proviral integration, possibly
reflecting specific chromatin features28, or/and reflect the fact that

integration at specific sites promotes tumorigenesis, i.e., selection.
To distinguish between these hypotheses, we verified whether the
54 genic (versus 38 intergenic) proviral integration sites identified
across tumours were enriched in known cancer drivers using
seven publicly available cancer driver lists (Supplementary Fig. 2).
Indeed, under the selection model, genes interrupted by the
provirus are expected to be enriched in cancer drivers
(the affected gene, if any, is a priori more difficult to pinpoint
for intergenic insertions). The enrichment was significant
compared to random sets of genes matched for expression
level in lymphocytes (0.0016oPo0.0219), strongly suggesting
that—in contrast to the prevailing view—HTLV-1 and BLV
integration sites are overrepresented in the vicinity of genes
connected to cancer, and that the resulting perturbation is an
essential driver of tumour formation (Table 1, Supplementary
Data 3 and Supplementary Table 2).

Provirus-dependent transcription interruption of host genes.
In 27 of the analysed tumours (11 in human and 16 in
ruminants), the provirus was integrated in the intron of a gene with
same transcriptional orientation (assuming dominant 50LTR
to 30LTR viral transcription). We refer to this group as ‘genic
insertion, concordant’. In 21 of these, the RNA-seq data revealed
premature termination of transcription and polyadenylation
of the interrupted host gene at the viral poly-(A) signal (441 and
603 bp within the BLV and HTLV-1 50LTR, respectively). This
was accompanied by severe reduction of downstream exon
reads (P¼ 5.9e-08, Mann–Whitney U-test), strongly suggesting
cis-allele truncation of the affected host genes (Fig. 1). Expression of
downstream exons was halved on average, suggesting that provirus-
dependent transcriptional termination operates in all infected cells.
In two of these tumours read numbers of downstream exons were
even significantly o50% of controls, supporting additional
perturbation of the trans-allele, as expected for tumour suppressor
genes (tumours T1345 and M2532, 88% and 96% downregulation
of MSH2 (ref. 33) and STARD7 (ref. 34), respectively; Fig. 1c). The
list of truncated genes includes established anti-oncogenes such as
MSH2 and BRCC3 (refs 33,35).

Viral antisense RNA-dependent cis-perturbation of host genes.
Demonstrating 50LTR-dependent transcriptional termination of the
interrupted gene in 23% (21/92) of the tumours leaves the question
open of what alternative molecular mechanisms perturb the
presumed cancer drivers in the remaining 77% of tumours. To gain
some insights into what these mechanisms might be, we carefully
mined the RNA-seq data from the 71 (i.e., 92–21) remaining
tumours. Mapping the RNA-seq reads to the proviral and host
reference genomes revealed in all tumours the complete absence of

Table 1 | HTLV-1/BLV interacting host genes are enriched in cancer driver genes.

Gene number Enrichment (P-values)

Random* Random Paraw Exprz Expr Paraw

Tumour samplesy

Genic proviruses 41 0.0029 0.0016 0.0219 0.0111
All proviruses excluding genic concordant poly-(A) 65 0.0004 o1e-05 0.0006 o1e-05
Intergenic proviruses excluding exon capture 30 0.0015 0.0012 0.0006 0.0004
All proviruses 82 o1e-05 o1e-05 0.0004 o1e-05

Asymptomatic samplesy 723 o1e-05 o1e-05 o1e-05 0.0002

*Random simulated gene sets.
wSimulated gene sets that include information about paralogs.
zExpression-matched simulated gene sets.
yGene subsets as defined in Supplementary Data 3 and Supplementary Table 4.
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viral 50LTR-dependent sense transcripts (50S) (corresponding to the
GAG, POL, ENV structural genes and the regulatory genes
including TAX), yet abundant 30LTR-dependent antisense tran-
scripts corresponding to the previously described HTLV-1 HBZ
and BLV AS1/2 RNAs11,22,24 (Fig. 2a and Supplementary Fig. 3).

Most importantly, it revealed the systematic interactions between
the antisense transcripts (30AS) and host genes located upstream of
the provirus. (Fig. 2b, Supplementary Fig. 4 and Supplementary
Table 3). These interactions conformed to four major schemes:
capture of host exons located upstream of the provirus by the first
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Figure 1 | Provirus-dependent host gene interruption in HTLV-1/BLV primary tumours with genic-concordant proviral integration. (a) Normalized

RNA-seq read counts of upstream (left) and downstream (right) exons relative to the proviral integration site in the tumour set characterized by

genic-concordant proviruses (red plot, N¼ 21) and control tumours without integration in that gene (blue plot). ***P¼ 5.878e-08 (Mann–Whitney U-test).

(b) Transcription patterns of human leukaemia ATL66 shown as RNA-seq sense (red) and antisense (blue) coverage mapped to the proviral (top) or

host (bottom) genomes visualized in Integrative Genomic Viewer (IGV)59. Top panel: HTLV-1 proviral genome flanked by 50LTR/30LTR redundant regions

(U3, R, U5) that contain regulatory elements, transcriptional start sites (TSS) and poly-(A) signal. Positive-strand transcripts (red) encode structural

and regulatory (TAX/REX) proteins; spliced HBZ antisense transcripts (blue) expressed from negative-strand. ATL66 RNA-seq coverage of HTLV-1:

HBZ antisense transcripts and upstream coverage exposing hybrid transcripts; positive coverage of 50LTR reveals read-through transcription and provirus-

dependent premature polyadenylation of host gene OSBP. Absence of 50LTR-driven viral transcription. Bottom panel: mapping to host genome (hg19). Small

box: HTLV-1 integration in OSBP introns 9–10 (opposite orientation). OSBP exons 10–14 show decreased coverage (*ATL66/control ATLs (N¼ 39):

52% decrease, ATL66 OSBP downstream/upstream exons, fold-change¼0.52). Sense coverage: 30LTR-dependent chimeric transcript in antisense overlap with

OSBP. (c) Transcription patterns of bovine T1345/ovine M2532 B-cell tumours shown as RNA-seq sense (red) and antisense (blue) coverage mapped to the

proviral (top) or host (bottom) genomes. Top: BLV genome, annotation and T1345 RNA-seq coverage representative of both tumours: AS1 antisense

transcription; positive coverage of 50LTR reveals host gene transcription (read-through) and provirus-dependent premature polyadenylation. Bottom panels:

mapping to host genomes (UMD3.1 and OAR3.1). Small box: BLV integration in MSH2 (ref. 33) intron 6 or STARD7 (ref. 34) intron 5. Decrease of MSH2 and

STARD7 downstream exon coverage (*MSH2 T1345/control tumours (N¼ 14), 88% decrease; T1345 MSH2 downstream/upstream exons, fold-change¼0.12

and STARD7: 96% decrease (control tumours, N¼ 31), downstream/upstream exon fold-change¼0.08). Antisense coverage: 30AS-dependent chimeric

transcript in antisense overlap with MSH2/STARD7. See also Supplementary Fig. 3 for RNA-seq coverage assignment to 50LTR/30LTR.
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HBZ/AS exon (genic (27/71 tumours) and intergenic (12/71
tumours), discordant), antisense overlap of genes located
upstream of the provirus by long 30LTR-dependent antisense
transcripts (genic (6/71 tumours) and intergenic (8/71 tumours)
concordant), sense overlap of genes located upstream of the
provirus by long 30LTR-dependent antisense transcripts
(23/71 tumours, intergenic discordant) and the capture of viral
HBZ/AS exon 2 by host gene transcripts (10/27 tumours, genic-
discordant) (Figs 2b and 3 and Supplementary Fig. 5). The genuine
nature of the chimeric transcripts detected by RNA-seq was tested
by RT–PCR (7 transcripts) or 30 modified RACE (2 transcripts) and
confirmed for all of these (Fig. 3c and Supplementary Fig. 7).

At least one such antisense RNA-dependent interaction
was observed in every one of the 71 tumours. Across all 71
tumours, a total of 92 genes were involved, including 60 coding

and 32 non-coding genes (Supplementary Data 2 and 4 and
Supplementary Table 4). The distance between the perturbed
host gene and the interacting provirus averaged 172 kb,
ranging from zero in the cases of genic insertions to 1,300 kb in
a case of intergenic insertion. Interactions were observed
with a single (45 integrations) or multiple host genes per provirus
(15 with 2, 3 with 3, and 2 with 4 genes). In 21 cases, the
interacting host gene was not the gene most closely located to the
provirus. Like these 71 proviruses, the 21 genic-concordant
proviruses described above all showed evidence of 30LTR
dependent transcription with antisense overlap of upstream
sequences in addition to the poly-(A) dependent interruption
type of perturbation (Figs 1 and 2b, top left panel). In 5 of
these 21 tumours, we observed additional interactions of this
30LTR-dependent antisense transcript with the adjacent upstream
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Figure 2 | Viral antisense RNA-dependent transcriptional interactions with the host genome in HTLV-1/BLV primary tumours. (a) Schematics of

RNA-seq coverage mapped to HTLV-1/BLV in ATLs/B-cell tumours and antisense-predominant viral transcription. Top: proviral genome and simplified

HTLV-1/BLV common annotation: positive-strand transcripts (red), spliced HBZ/AS antisense transcripts (blue). (i–iv): RNA-seq coverage. In all tumours,

(i) absence of 50LTR-dependent positive-strand coverage (structural proteins and TAX, Supplementary Fig. 3), (ii) 30LTR-dependent HBZ/AS antisense

transcripts (dark-blue) and upstream coverage (light-blue), (iii) hybrid antisense reads that span HBZ/AS exon 1-host and 50LTR-host boundaries,

supporting 30LTR-dependent chimeric transcripts. In 21 proviruses (genic-concordant), (iv) positive coverage of host-50LTR-U3/R boundary (viral poly-(A)-

dependent host transcript truncation). See also Supplementary Fig. 3: coverage for 24 representative tumours and Supplementary Fig. 4: secondary types of

virus-host transcriptional interactions. (b) Four main patterns of viral antisense RNA-dependent transcriptional interactions with the tumour genome: upper

left: genic integration, concordant gene-provirus transcriptional orientation. Viral 50LTR poly-(A)-dependent gene interruption, downstream exon decreased

expression (*blue boxes, see also Fig. 1) and 30AS-dependent hybrid transcript in antisense overlap with upstream sequences. Splicing to host cryptic SA

(10/21 proviruses). Upper right: genic integration, discordant gene-provirus transcriptional orientation. 30AS-dependent virus–host hybrid transcript and

HBZ/AS exon 1 SD sequestration by upstream host exon(s) (i.e., tumour M160/ICA1; Fig. 3a). Capture of viral HBZ/AS exon 2 by downstream host gene

exon (10/27 proviruses). Bottom left: intergenic integration, concordant gene-provirus transcriptional orientation. 30AS-dependent virus–host chimeric

transcript in antisense overlap with host gene (i.e., ATL1_Ly/RGCC; Supplementary Fig. 5a). Bottom right: intergenic integration, discordant gene–provirus

transcriptional orientation. 30AS-dependent chimeric transcript in sense overlap with upstream host gene(s) (i.e., tumours M138, M251 and M21/FOXR2

and RRAGB; Fig. 3b,c), and capture of exon 2 or novel exon that creates non-canonical isoforms (i.e., tumour LB120/SEPT11; Fig. 3d). Six proviruses were

integrated in gene deserts (Supplementary Table 1 and Supplementary Data 2). See Supplementary Figs 4 and 6: comprehensive characterization of

dominant and secondary types of virus-host interactions in tumours. RNA-seq splice junctions/breakpoints were validated by RT–PCR for representative

tumours of each group (Supplementary Fig. 7).
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Figure 3 | Viral antisense RNA-dependent cis-perturbation of host genes in representative tumours with discordant proviruses. RNA-seq antisense

(blue) and sense (red) coverages of tumours with genic (a) and intergenic (b–d) discordant proviruses. Upper (yellow) and lower (black) IGV tracks:

tumour of interest and control tumour, respectively. (a) Genic-discordant provirus and host gene cis-perturbation by 30AS-dependent capture of upstream

exons. Ovine tumour M160: capture and increased coverage of ICA1 exons 13–15; *read counts M160 ICA1 upstream/downstream exons fold-

change¼ 11.54; ICA1 upstream exons M160/control tumours (N¼ 31) fold-change¼ 6.89. Box: hybrid RNA-seq split reads spanning BLV AS exon 1 and

ICA1 exon 13. (b) Intergenic-discordant provirus and interaction with multiple host genes: RNA-seq of three independent ovine tumours M251, M138, M21

with BLV integration upstream of FOXR2 (ref. 42) (80 kb-window) reveals sense overlap of FOXR2 and RRAGB (ref. 66) by 30AS-dependent hybrid

transcripts (160, 220 and 240 kb in length respectively). (c) 30AS-capture RNA-seq reveals AS exon 1–FOXR2/RRAGB splice junctions and ectopic
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generate novel transcript isoforms: host gene cis-perturbation by sense overlap of upstream gene by 30AS-dependent hybrid transcript with capture of both

exon 2 and a novel exon upstream of canonical exon 1, creating two novel isoforms (bovine tumour LB120: BLV integration upstream of SEPT11 (ref. 67),

SEPT11 exon 1 skipping). See also Supplementary Fig. 5 for representative tumours with concordant proviruses.
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host gene, either by antisense overlap (2 tumours) or by exon
capture (3 tumours; Supplementary Fig. 5b).

Provirus-interacting genes are enriched in cancer drivers. To
test the biological relevance of the observed antisense
RNA-dependent interactions, we examined the enrichment of the
65 (60þ 5) antisense interacting protein-coding genes in known
cancer drivers (gene subsets and criteria for gene inclusion;
Supplementary Data 3 and Supplementary Table 4). The
enrichment was highly significant and robust, and dependent on
both the 33 genic and 38 intergenic insertion sites of the three

species (1e-05oPo0.0006; Table 1 and Supplementary Data 3).
Interacting genes included well-established cancer-connected
genes such as DNMT3A, SMAD2, MTCP1 and TLE4
(refs 36–39) (Fig. 4a). Further supporting a role for viral antisense
RNA-dependent interaction in tumorigenesis, we observed
a significant enrichment in cancer drivers for the 43 nearest
protein-coding genes located in a 1 Mb-window upstream of
intergenic proviral integration sites while the matched list of
48 genes located downstream of these integration sites was not
enriched (Fig. 4b). Note that Cook et al. (2014) presented evi-
dence for loose association of HTLV-1 integration sites with Gene
Ontology terms (cell morphology, immune cell trafficking,
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haematological system development and function), in only 6% of
the ATL cases examined (11/197) and only when restricting the
analyses to genes located downstream but not upstream of the
provirus (contrary to our findings which point upstream genes,
consistent with antisense-dependent interaction). The reasons for
these apparent discrepancies between their and our findings are
not known.

Proviral antisense-dependent exon capture has the potential to
cause expression of non-canonical isoforms of expressed genes, or
ectopic expression of genes that are normally silent in the
lymphoid lineage. Intriguing examples include N-terminal
truncated isoforms of ELF2 and TCF4 (members of the
Ets family of transcription factors and DNA binding transcrip-
tional regulators of the Wnt pathway, respectively)40,41, and
ectopic expression of the well-established oncogene FOXR2
(refs 42,43) in three independent ovine tumours (Fig. 3b,c). The
capture of viral HBZ/AS exon 2 by host gene transcripts (10/27
genic-discordant cases) may cause premature transcription
termination of the host gene at the HBZ/AS exon 2 poly (A)
site (Fig. 2b, top right panel and Supplementary Fig. 4, scheme v).
This suggests that genic-discordant insertions have the potential
to affect the same gene by two distinct mechanisms—transcript
interruption and downstream exon capture—consistent with
observations in Sleeping Beauty transposon induced tumours in
mice44. For the majority of intergenic proviruses (26/38),
standard RNA-seq revealed sense or antisense gene overlap by
provirus-dependent hybrid transcripts, yet without direct
evidence of exon capture. Nevertheless, enrichment in cancer
drivers for the 30 corresponding protein-coding genes was
robust and highly significant (0.0015oPo0.0004, Table 1 and
Supplementary Data 3), suggesting that these antisense-driven
transcripts have a functional impact on the corresponding genes
despite the lack of obvious transcriptional effects.

The strong bias for upstream interaction is in agreement with the
absence of 50LTR dependent mRNA transcription from the proviral
positive-strand in all tumours examined, consistent with previous
reports that showed antisense-predominant HTLV-1/BLV
transcription and 50LTR epigenetic silencing or TAX mutations
in tumours11,18–20,24 (Fig. 2a and Supplementary Fig. 3). It is
noteworthy that we observed 30LTR-driven antisense-dependent
chimeric transcripts involving well-established cancer drivers
located upstream of the provirus in the 11 ATLs with 50LTR-
deleted defective HTLV-1 proviruses (i.e., SPSB1; Supplementary
Fig. 8). This strongly suggests that in fully malignant clones,
positive-strand—and paradoxically TAX—silencing accompanies
HTLV-1/BLV antisense-dependent host gene cis-perturbation
presumably allowing the malignant clone to proliferate under
strong host immune control21.

Note that Kataoka et al. also reported HTLV-1-dependent
read-through transcripts in ATLs. From 53 integration sites, the
authors identified 12 aberrantly spliced fusions with the host
genome, which all were produced from genic proviruses (N¼ 23).
They did not report interactions with host genes in the case of
intergenic proviruses (N¼ 30). While the authors conclude that
the relevance of aberrant transcripts observed in ATL is
unknown, our findings show that they tend to occur with genes
that are enriched in known cancer drivers and hence play an
important role in tumorigenesis.

Altogether, our findings support the notion that cis-perturba-
tion of cancer drivers by the HTLV-1/BLV proviruses is an
essential component of leukemogenesis.

Non-random provirus distribution at asymptomatic stages.
The results reported thus far were obtained on late-stage tumours.
They do not discriminate between a role for proviral integration

in promoting early-stage polyclonal expansion rather than
late-stage precipitation to full-blown monoclonal tumour.
To discriminate between these two hypotheses, we utilized
the BLV experimental model in sheep. A considerable advantage
of this model is that—contrary to the natural diseases in human
and cattle—all infected sheep develop leukaemia/lymphoma,
tumour onset occurs within a much shorter time frame
(20 months on average) and it is possible to monitor
infected animals at the very early stages of infection. We first
comprehensively analysed proviral integration sites at early
nonmalignant stages (characterized by the presence of
multiple clones of low abundance). This was achieved by very
deep, high-throughput DNA-seq-based mapping of BLV
integration sites for 10 infected but still asymptomatic
sheep (proviral load range: 0.02–34%, clone abundance range:
0.002–9.524%; Supplementary Data 1). It uncovered 66,557
unique integration events. Examining their chromosomal
distribution revealed extreme non-randomness, defining
674 genic and 48 intergenic hotspots of integration (genome-wide
corrected Po0.05) (Fig. 5). We showed by simulation that the
majority of genic hotspots could not be explained by expression
level and gene size alone (false discovery rate (FDR)o0.1 for
468/674 genic hotspots; proportion of true alternative (i.e., not
explainable by expression level and size alone) hypotheses
(p1)¼ 0.67). The average number of integration sites per hotspot
was 33 (range: 12–322) for genic hotspots and 37 (range: 12–202)
for intergenic hotspots. The average size was 67,180 bp (range:
11,180–302,000) and 80,570 bp (range: 23,040–504,200) for genic
and intergenic hotspots, respectively. Genes involved in genic
hotspots showed a highly significant enrichment in cancer drivers
(Po1e-5; Supplementary Data 3) and a robust overlap with the
74 30AS-interacting host genes identified in the HTLV-1/BLV
tumour set (P¼ 0.00073; Fig. 5b and Supplementary Table 5).
The list of genic hotspots includes established cancer drivers such
as ARID1A, ARID1B, CBL-B, PIK3CA and PTEN45–48 (Fig. 5c).
Most interestingly, we observed a very strong signature of
non-randomness of proviral orientation within hotspots
(Fig. 5d–f). Of the 674 (76%) genic integration hotspots,
517 showed a significant bias (FDRo0.1) towards either
concordant (350) or discordant (167) orientation (with regard
to the orientation of the host gene as defined above; concordant:
provirus and gene in the same orientation; discordant: provirus
and gene in opposite orientation). The genic hotspots
with predominant concordant integration most probably point
towards events of insertional inactivation by transcriptional
termination, while hotspots with predominant discordant
integration may point towards viral antisense-dependent
exon captures. This finding certainly weakens the alternative
(versus selection) hypothesis of chromatin-feature-dependent
integration (which is unlikely to be orientation-dependent).
Equally interesting, we observed the same orientation bias
for non-genic integrations. Of the 48, 38 (79%) non-genic
integration hotspots showed an orientation bias with FDRo0.1
(see also Fig. 5e,f). This observation is in agreement with our
hypothesis of BLV antisense RNA-dependent perturbation of
cancer driver genes.

Virus–host hybrid-RNA signatures at asymptomatic stages.
To further test this hypothesis, we followed up on this DNA-seq-
based study and performed RNA-seq of BLV antisense-enriched
RNA from the same asymptomatic animals (30AS-capture
RNA-seq). This revealed BLV 30AS-host chimeric transcripts
involving multiple genes per sample (range of 4–276, mean of 84;
Supplementary Table 3), supporting a total of 723 interacting
host genes. Genes involved showed a highly significant level of
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recurrent capture of the same host genes between asymptomatic
individuals (Po1e-5), a significant overlap with transcript-
interacting host genes previously identified in malignant clones of
the three species (P¼ 0.00085; Fig. 5b and Supplementary
Table 6), and a highly significant enrichment in cancer drivers
(Po1e-05; Table 1 and Supplementary Data 3). As expected, we

observed a very strong overlap between the genes exposed by
30AS-capture RNA-seq hybrid reads and the genic hotspots
identified by DNA-seq mapping of integration sites in the
same asymptomatic individuals (Po1e-5; Fig. 5b). Most inter-
estingly, the 30AS-capture RNA-seq data revealed mapping of
viral antisense RNA-host chimeric reads upstream of intergenic
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hotspots defined by DNA-seq (Fig. 5g). It also uncovered
typical splice junctions between the BLV AS transcript and the
corresponding upstream gene. This revealed cases of potential
activation of important oncogenes (i.e., ID3 (ref. 49), Fig. 5h), and
included other examples (in addition to FOXR2) that may lead
to ectopic expression of otherwise silent genes (i.e., CCDC80;
Fig. 5i). These observations are in perfect agreement with our
hypothesis of viral antisense RNA-dependent perturbation of
cancer drivers.

Assessing integration hotspots and cancer driver enrichment.
When infected animals develop full-blown leukaemia following
the asymptomatic polyclonal phase, the tumour clone is assumed
to expand and dominate, yet coexist with multiple infected clones
that remain in the background. Further mining the data from the
DNA-seq-based integration mapping of 22/32 ovine tumours
indeed revealed 8,015 minor proviral integration sites in addition
to the 22 dominant ones described above. As expected, this novel
collection of integration sites was characterized by highly
significant non-randomness, defining 65 hotspots (61 genic and
4 intergenic) that all overlapped with the hotspots defined in the
asymptomatic samples. Forty-five (42 genic and 3 intergenic,
70%) of the hotspots were characterized by significant
(FDRr0.10) orientation bias (33 concordant, 9 discordant for
genic hotspots). Also as expected the genes corresponding to the
genic hotspots were highly enriched in cancer drivers (Po1e-5).
The same approach was then applied to 31/44 human ATL cases.
This allowed for the identification of 4,628 minor proviral inte-
gration sites in addition to the 32 tumour-specific ones described
above. Surprisingly, examining their chromosomal distribution
did not reveal any evidence for integration hotspots or orientation
bias. We expanded our collection of HTLV-1 proviral integration
sites with a recently published data set of 11,279 sites10,50 to reach
a total of 15,939, but this did not alter the outcome regarding
integration hotspots or orientation bias. These findings are in
agreement with results published by others10,11,28. Paradoxically,
the 7,155 human genic integration sites were very significantly
biased towards known cancer driver genes (Po1e-5), genic
hotspots defined in sheep (P¼ 2.88e-13) and cis-perturbed host
genes previously identified in malignant clones of the three
species (P¼ 6.68e-05) (Supplementary Tables 7 and 8). To
understand the apparently discrepant results in the human
samples, i.e., lack of evidence for integration hotspots yet strong
enrichment of genic integration sites in cancer drivers and genic

hotspots defined in sheep, we performed simulations assuming
that a fraction w of x proviral integration sites are sampled from
clones that are undergoing expansion due to perturbation of one
of y cancer drivers (out of a total of 20,000 genes), of which
a fraction z is reported in cancer driver lists. The remaining
fraction (1�w) of proviral integration sites are assumed to be
sampled from infected but non-expanded leukocyte clones. w was
varied from 0.01 to 1, x from 1,000 to 100,000, y from 500 to
3,000 and z from 0.25 to 1. It was obvious that the statistical test
for enrichment in cancer drivers was considerably more powerful
than that for the detection of integration hotspots for
a substantial proportion of parameter space (Supplementary
Fig. 10). This is mostly due to the requirement to adjust the
hotspot test but not the enrichment test for multiple testing.
Particularly noteworthy was the effect of a decreasing proportion
of integration sites sampled from expanded clones (w). This
fundamental power difference between the two tests may
thus very well explain the apparent discrepancy observed
with the human data, and the fact that integration hotspots
were not reported before. The model used in the simulations,
characterized by two distinct populations of infected lymphocytes
(one expanding with proviral insertions affecting cancer drivers,
and one not expanding with random proviral insertions), predicts
that the degree of integration in hotspots and of enrichment in
cancer drivers should be correlated with corresponding clonal
abundance (as expanding clones are by definition more
abundant). We tested this prediction using the large number of
insertion sites available in asymptomatic sheep and found that it
was indeed the case (Supplementary Table 9).

Discussion
Taken together, our results strongly support the notion that
cis-perturbation of cancer drivers by the provirus is a major
determinant of early clonal expansion in both BLV and HTLV-1
induced leukaemia. We provide circumstantiated evidence that
the absence of easily detectable integration hotspots yet enrich-
ment in cancer drivers in the human natural host (contrary to
the flagrant hotspots detected in the ovine model) may reflect
species-specific dynamics of infected-expanding versus infected-
nonexpanding lymphocyte populations and hence proportions.
This may point towards disparities in the antiviral immune
response—a major driving force underlying clone abundance in
HTLV-1 individuals21,28—between the experimental model and
the human disease. It is tempting to speculate that this may also

Figure 5 | Hotspots of proviral integration at polyclonal nonmalignant stages of infection. (a) Genome-wide distribution of BLV integration sites in

asymptomatic sheep samples. Y-axis: number of integration sites per genomic bin (100 kb overlapping genomic windows sliding by steps of 50 kb).

Hotspots of proviral integration were identified by simulation (Methods), defining 674 genic and 48 intergenic hotspots (Po0.05). (b) Significant

recurrence (P-values) between genes revealed by BLV genic integration hotspots (674 genes), antisense-RNA interacting genes identified in tumours

(74 genes, HTLV-1/BLV) and genes identified by 30AS-capture RNA-seq of asymptomatic samples (723 genes). All gene subsets showed robust cancer

driver enrichment (Po1e-05 and 7e-04 for asymptomatic and tumour samples, respectively, Supplementary Data 3). (c) Top 50 genic integration hotspots.

Comprise gene classes like chromatin modifiers, E3-ubiquitin ligases and tumour suppressors (ARID1B, CBL-B, PTEN). Genes in bold: also identified in

tumour RNA-seq data set (TLE4 and STK17A: ATLs, TCF4: bovine B-cell tumour). (d) Genic integration hotspot in tumour suppressor TLE4 (ref. 39): arrows

represent proviruses (50–30 orientation). Of 163 sites, 159 show identical orientation (ratio same/opposite: 0.97) consistent with genic-concordant

proviruses predicted to cause TLE4 loss-of-function. TLE4 also affected in tumour data set (ATL62_2). (e) Intergenic integration hotspot upstream of RTN4

(ref. 69): 121/124 sites show identical orientation (ratio same/opposite: 0.97) consistent with intergenic-discordant proviruses predicted to cause RTN4

activation (gain-of-function). Mixed genic–intergenic hotspot type shown in Supplementary Fig. 9 (ATF7IP). (f) Provirus pairs from genic (red) and

intergenic (blue) IS data sets were scored for relative orientation and same/opposite ratios computed for all combinations of pairs (Methods). Bias towards

same orientation is associated with provirus proximity, consistent with non-randomness of proviral orientation in hotspots. (g) Virus–host chimeric

transcripts uncovered by 30AS-capture RNA-seq map to genomic region upstream of intergenic hotspots consistent with antisense-dependent

transcriptional activity. Absence of coverage for corresponding downstream regions. (h) Mapping of 30AS-capture RNA-seq hybrid reads (red coverage) to

genomic region upstream of intergenic hotspot chr2: 242,107,500-242,240,229 reveals antisense-dependent chimeric transcription and interaction with

oncogene ID3 (ref. 49). (i) Hybrid reads mapping to genomic region upstream of intergenic hotspot chr1: 175,765,639–175,927,608 (blue coverage) reveal

ectopic expression of CCDC80 (not expressed in lymphocytes) consistent with a gain-of-function mechanism.
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underlie the observed species-specific latency time. For example,
if the half-life of infected-expanding lymphocytes was more
drastically increased in sheep than in human and bovine, it might
explain their higher proportion among infected lymphocytes (and
hence increased power to detect integration hotpots) and reduced
latency time (due to the increased probability to acquire the
somatic mutations needed for progression to full-blown cancer).

Combining DNA-seq and RNA-seq data, yields a list of 674
putative leukaemia driver genes of which 370 were reported in
one or several cancer-related gene lists used for enrichment
analysis. Of the 50 most significant ovine genic hotspots (Fig. 5c),
40 were reported in these lists. Six of the 10 remaining genes,
despite not being listed, were genes for which literature search
supported undeniable oncogenic properties (STIM2, ARHGAP24,
KLF12, KMT2C, CCDC88C and DOCK11), and 4 genes were—to
our knowledge—not previously reported in cancer, yet may
include new candidate drivers. MARCH1, a gene that exhibits
E3 ubiquitin ligase activity and was recently reported to regulate
MHC class II turnover51, is an example of such a candidate. Thus,
the catalogue of genes revealed by proviral integration hotspot
identification represents a potential resource of novel cancer
drivers. It may be particularly attractive for the discovery of new
cancer-related noncoding RNAs considering that several genes
uncovered by this work belong to that class.

In conclusion, although there is considerable evidence from
previous work that the viral products—TAX and HBZ/AS—and

the acquisition of somatic alterations in the host genome play
a critical role in tumour development, we herein uncover an
additional previously unrecognized yet complementary mechan-
ism that contributes to leukemogenesis. We demonstrate that in
tumour clones the HTLV1/BLV proviruses are integrated in the
vicinity of cancer driver genes which they affect by either
premature transcription interruption or antisense dependent
cis-perturbation. We show that the same pattern already exists at
early asymptomatic stages of infection. Thus, cis-perturbation of
key host genes may contribute to malignant progression by
providing a polyclonal background of infected cells with
increased survival or proliferation. This extended half-life
will promote the accumulation of further secondary mutations
in the rest of the genome, ultimately precipitating the progression
of one of these clones to full-blown ATL/B-cell malignancy
(Fig. 6). Our results suggest that pharmacological repression of
30LTR-dependent transcription may lessen polyclonal expansion
during the asymptomatic/chronic stage of the disease, thereby
delaying the emergence of the tumour.

Methods
Samples. Samples from HTLV-1-infected individuals were collected after
informed consent obtained in accordance with the Declaration of Helsinki and
after institutional review board-approved protocol at the Necker Hospital,
University of Paris, France in accordance with the ‘Comité d’éthique Ile de
France II’. We selected human ATL samples for sequencing on the basis of the

Somatic mutations

Proviral
integration

HBZ/AS expression

TAX expression

Infection

CTL growth
suppression

Asymptomatic polyclonal phase Leukaemia

Infected but not expanded/persistent lymphocyte clones (proviral integration NOT perturbing cancer driver)

Infected expanded/persistent lymphocyte clones (proviral integration perturbing cancer driver)

Malignant clone (proviral integration perturbing cancer driver + somatic mutations)

Uninfected lymphocyte

Figure 6 | Model of leukemogenesis by HTLV-1/BLV. After infection by HTLV-1/BLV the fate of a given infected T-cell/B-cell clone depends on the proviral

integration site within the host genome, the expression of TAX and HTLV-1-HBZ/BLV-AS, the host CTL response to HTLV-1/BLV antigens and somatic

mutations in the host genome. Asymptomatic polyclonal stage: the integration of HTLV-1/BLV proviruses in the vicinity of cancer drivers causes their

perturbation and hence favours the persistence/survival/expansion of the corresponding infected clone (green clones). Clones in which proviral insertions

do not affect cancer drivers show a modest survival (purple clones). The relative contribution of each infected clone to the polyclonal population of infected

cells results from the balance between cancer driver perturbation, expression of TAX and HBZ/AS that both promote cell growth, and negative selection by

the host CTL response. The prolonged life-span of clones in which cancer drivers are perturbed favours the acquisition of further somatic alterations in the

host genome. Malignant stage: the accumulation of somatic changes ultimately precipitates the progression of one of the clones to full-blown malignancy

(green clone—red integration and orange leukaemic clone). The tumour clone originates from an expanded/persistent clone yet not necessarily the most

abundant one. The absence of TAX expression in the tumour clone confers a survival advantage through escape from the strong CTL immune response.
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availability of sufficient DNA/RNA of clinical samples available from the Necker
Hospital at the time of initiation of the study (N¼ 44). Samples consisted of
peripheral blood mononuclear cells (PBMCs) from 21 acute ATLs, 3 chronic ATLs,
3 lymphoma-affected patients and 7 acute ATL patients that underwent therapy.
Six samples were collected from lymphoma (lymph node and skin). Samples from
asymptomatic carriers (AC) comprised three blood samples and one sample from
an AC lymph node. Control samples consisted of uninfected CD4þ T-cells.
PBMCs were isolated from blood using Histopaque-1077 (Sigma). Primary leu-
kaemic B-cells and lymphoid tumours from BLV-infected sheep (Suffolk and
polled Dorset crossed with Arcott breeds of either sex; N¼ 32) were collected at the
acute stage of the disease (latency prior to tumour development range of 15–48
months). Sheep were housed at the Centre de Recherches Vétérinaires et Agro-
chimiques (Brussels, Belgium) and at the Vaccine and Infectious Disease Organi-
zation (VIDO-Intervac, Saskatoon, Canada). Experimental procedures approved by
the Comité d’Ethique Médicale de la Faculté de Médecine, ULB were conducted in
accordance with national and institutional guidelines for animal care and use.
Asymptomatic sheep samples came from animals infected with the molecular clone
pBLV3447 following experimental procedures approved by the University of
Saskatchewan Animal Care Committee, following Canadian Council on Animal
Care Guidelines (Protocol #19940212). PBMCs were isolated from EDTA-treated
blood using standard Ficoll-Hypaque separation. Lymphoid tumours were minced
through a nylon mesh cell strainer (Becton Dickinson) to obtain single-cell
suspensions. B-cell percentages were measured by fluorescence-activated cell
sorting (FACS) using CD72-specific mAb DU2-104 (VMRD) and wereZ93% for
all malignant samples used for further investigation. Samples from asymptomatic
BLV-infected sheep were collected between 7 weeks to 34 month following
experimental inoculation. Ovine control samples consisted of PBMCs of uninfected
sheep assigned to the control group using physical randomization at the time of
experimental inoculation with BLV (N¼ 3). Bovine B-cell tumours (N¼ 15) taken
from our tumour collection stored at � 80 �C comprised samples from various
geographical origins (Japan, France, United States, and Belgium). Tumour samples
were collected from blood or B-cell lymphoid masses developing following natural
BLV infection some of which have been characterized previously52. The latency
period before tumour onset in these animals is not accurately documented. Bovine
control samples consisted of PBMCs isolated from seronegative animals. The total
animal tumour sample size (N¼ 47) was defined to match clinical sample numbers.
No statistical test was used to determine adequate sample size. The study did not
use blinding. Detailed HTLV-1 patients’ and animal samples’ information is
available in Supplementary Data 1 and 2. YR2 and L267 are tumour B-cell lines
derived from ovine B-cell tumours M395 (B-cell leukaemia) and T267 (B-cell
lymphoma), respectively17,18. Cell cultures selected for RNA-seq were validated
using FACS labelling as previously described and tested for the absence of
mycoplasma contamination.

RNA sequencing. Total RNA was extracted using the Qiagen AllPrep DNA/RNA
kit and strand-specific ribosomal RNA-depleted RNA-seq libraries were prepared
using the Illumina TruSeq Total RNA stranded kit. Libraries were analysed on an
Agilent Bioanalyser DNA 1000 and quantified by qPCR using the KAPA kit
(KAPA Biosystems). Sequencing was carried out on an Illumina HiSeq 2000
(2� 100 bp paired-end reads) and generated B2� 60 million raw paired-end
reads per library. The RNA-seq raw reads were aligned using STAR (v2.3.1.u)53

and custom host–provirus genome references build using host reference genomes
hg19 (human), UMD3.1 (bovine) or OAR3.1 (ovine), respectively, and proviral
genome sequences BLV-YR2 (GenBank: KT122858) and HTLV-1-ATK-1
(GenBank: J02029), respectively. SAMtools and BAMtools were used to sort and
index, and separate sense and antisense reads from the STAR output,
respectively54,55. ENSEMBL v84 was used for host genome annotations and custom
annotations for both HTLV-1 and BLV genomes. FeatureCounts56, R packages
DESeq2 (ref. 57) and DEXSeq58 were used for read quantification, normalization
and differential gene and exon expression analysis, respectively. Integrative
Genomic Viewer (IGV) was used for visualization of sequencing alignments on
both the host and viral genomes59. RNA-seq reads stemming from any of the viral
LTRs (HTLV-1 and BLV) systematically mapped to both the 50 and 30 LTR as both
are identical in sequence. Reads were specifically assigned to one or the other LTR
based on additional host-specific mapping data and fusion-read information
(outlined below): upstream or downstream position of host-mapping mate pair
alignment, 30AS RNA-host hybrid read identification (antisense coverage, 30LTR
alignment), host-LTR hybrid read identification (sense coverage, 50LTR alignment),
LTR-host read identification (sense coverage, 30LTR alignment), host genomic
environment (genic, intergenic) and evidence of 50LTR deletion from HTS-based
integration mapping data.

Detecting hybrid RNAs and insertion sites from RNA-seq data. Mispaired and
soft-clipped reads supporting virus–host hybrid transcripts were identified using
a custom two-pass alignment scheme as described in ViralFusionSeq60. RNA-seq
paired-end reads were aligned to the host genome using BWA61 (default parameter
except -k 19 and -L 1) and mispaired and soft-clipped reads (minimum
8 soft-clipped nts) were re-aligned to the proviral genome. Host and proviral
alignments of each read were compared, and reads were flagged as fusion reads if
one read mapped to the host genome and the other to the proviral genome, or if

their soft-clipped breakpoint was localized within a 5 nt window. Fusion reads
sharing the same fusion point within a 5nt window were clustered. Fusions were
classified as genic/intergenic and concordant/discordant using a combination of
BEDTools 2.16.2 (ref. 62) and BEDOPS 2.30 (ref. 63). HTLV-1/BLV integration
sites were determined based on identification of chimeric transcripts that encom-
passed LTR-host boundaries. Hybrid reads generated from 30AS-enriched RNA-seq
data (asymptomatic samples) were additionally filtered to exclude both tumour-
specific chimeric reads and hybrid reads common to multiple asymptomatic
samples to exclude artefacts from sample cross-contamination. RNA-seq read
coverage, virus–host annotated junctions and hybrid reads were loaded onto IGV
to visualize the viral and host-specific transcriptomes and assess the consequences
of proviral integration/transcription on the host transcription patterns.

30AS-capture RNA-seq. Using total RNA as template, cDNA was produced
with SuperScript III Reverse Transcriptase (Life technologies) following the
manufacturer’s instruction and primed with an oligo-dT tailed with the Nextera
reverse sequence attached (Integrated DNA Technologies). cDNA was treated with
RNase H (New England Biolabs) and semi-nested PCR was carried out to enrich
the BLV fusions. The first PCR was performed using primers LTR1 (matches BLV
AS exon 1) and NexRs (matches end of the Nextera-oligo dT) and Q5 High-Fidelity
DNA Polymerase (New England Biolabs) with an annealing temperature of 66 �C
and a 4 min extension (25 cycles). In the second PCR the LTR1 primer was
replaced by LTR2 and NexR was reused. The PCR product was sheared in
a Bioruptor Pico (Diagenode) following the manufacturer’s instructions for
fragments of B400 bp, treated with the NEBNext Ultra End Repair/dA-Tailing
Module (New England Biolabs) and ligated to a Y adapter produced by annealing
oligos corresponding to the Nextera forward and reverse sequences using T4 DNA
Ligase (New England Biolabs). The resultant DNA was indexed with Nextera XT
indexes (Illumina) and libraries were mixed in equal proportions. Sequencing was
carried out on an Illumina MiSeq instrument with 2� 150 bp reads (Reagent Kit
v2). Primer sequences are available in Supplementary Data 5. Hybrid RNA-seq
reads and chimeric transcripts were analysed as described above (standard
RNA-seq). Hybrid reads upstream or downstream of intergenic hotspots were
identified in genomic windows defined as the region spanning from the hotspot
extremity to the nearest protein-coding gene.

HTS integration mapping and measure of clonal abundance. To identify
HTLV-1 and BLV proviral integration sites we used a method similar to that
outlined by Gillet9,29, but with a number of key changes to increase sensitivity and
reduce costs by simplifying multiplexing24. In the case of asymptomatic samples,
we used a modified method that included an extension step using a Hot start Taq
Polymerase (Promega) with 25% of the dTTPs replaced with Biotin-11-dUTP
(Thermo Scientific) followed by streptavidin-based selection (Dynabeads M-280
Streptavidin, Invitrogen/Life Technologies), allowing a reduced number of PCR
cycles and removing the need for End Repair/dA-Tailing (15 cycles, annealing
temperature of 66 �C with a 30 s extension) prior to addition of Nextera XT indexes
(Illumina). Primer sequences are available in Supplementary Data 5. Paired-end
reads were aligned to a host–provirus hybrid genome using BWA. After quality
trimming (average base quality Z30) only paired-end reads that fulfilled the
following conditions (spanning LTR-host junctions) were retained: Read 1: BLV
5’LTR: 30 nts, BLV 3’LTR: 27nts, HTLV-1 50LTR: 29 nts, HTLV-1 30LTR: 45 nts of
the read mapped to the relevant LTR extremity. Read 2: the read mapped to the
host genome with r3 mismatches. Duplicates were removed based on reads that
showed the same genomic insertion site and identical eight random nt tags. Read
numbers were counted for each proviral integration site and reported using
in-house R and Perl scripts. Clone abundance in tumours was determined as
follows: if both 50 and 30LTR flanking sites were identified, %¼ average 30–50LTR.
If only one flanking site was detected: %¼% defined by detected LTR flanking site
and provirus identified as either LTR-deleted if deletion is supported by evidence
from RNA-seq hybrid read detection (non-canonical virus–host boundary) or
full-length if RNA-seq-based data support the presence of LTR-host fusion reads.

Identifying hotspots of proviral integration. Identical proviral integration sites
(IS) across samples were removed to account for potential cross contamination
between samples and the IS that showed the highest read count was retained. 50 and
30 LTR flanking IS with same proviral orientation located within a 10 bp window
were merged. IS distribution across the genome was first examined by counting the
number of IS in sliding consecutive bins of 100 kb (50 kb overlap) and bins showing
IS numbers 499th percentile of the distribution of IS per bin (‘hotbins’) were
visualized in individual chromosomes. Hotspots were then defined as follows
(contrary to hotbins that have a predetermined size of 100 kb, hotspots defined by
simulation show a range of sizes): for each IS we counted the number of IS located
in a 50 kb window centred on that IS¼ IS(i). We then randomly picked 66,557 IS
in the ovine genome, performed the same counting procedure and retained the
simulated IS window harbouring the highest number of IS¼max.simIS. We
performed N¼ 1,000,000 iterations of this procedure to generate a distribution
reflecting random integration. We then assigned a P-value to each IS: P-value
IS(i)¼ # max simIS4¼ IS(i)/1,000,000. Hotspots were defined by grouping
consecutive IS windows that showed a P-value r0.05, the position of the two
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extreme IS ±5 kb determining the boundaries of the hotspot. Hotspots were
defined as genic if the median of the IS in the hotspot fell within a gene. Intergenic
hotspots defined by simulation were then manually curated to account for poor
annotation of the ovine transcriptome (ENSEMBL OAR3.1 v84) and re-assigned to
the genic class if they fell within transcribed regions (i.e., non annotated exon,
50 transcribed region of a mis-annotated gene). This was achieved by visual
examination of each predicted hotspot (IS positions and orientation) in IGV
combined with the corresponding RNA-seq alignments (RNA-seq data of ovine
primary B cells). Predicted hotspots that overlapped multiple genes or novel
unannotated transcripts were discarded for further analysis in this study. Of the
genes uncovered in the genic hotspot class after curation, 618 showed evidence
of 1 hotspot while 56 carried multiple hotspots (2–4). Multiple hotspots in the same
gene were merged. This resulted in a curated list of 674 genic and 48 intergenic
hotspots. Besides genic and intergenic types, we identified hotspots that combined
genic and upstream intergenic integrations for the same gene. For each given
hotspot a proviral orientation ratio was calculated by counting the number of
proviruses integrated in the same orientation relative to the total number
of IS within that hotspot, considering the predominant orientation. Hotspots
significantly biased towards non-random orientation were defined as these
associated with an FDRo0.1 (one-tailed binomial test). The provirus integration
orientation relative to host gene transcription (concordant/discordant) was
determined for hotspots that showed a significant orientation bias. To measure
the non-randomness of provirus orientation, we also determined the relative
orientation and distance of each possible IS pair across all (i) genic and
(ii) intergenic IS identified, grouped the results by distance in 100 bp increment
bins and computed the orientation ratio (same/opposite) relative to each bin.

To verify that genic hotspots were independent of gene size and gene expression
level, the number of IS per gene in our data set (42,113 genic IS, corrected total
number of unique genic integrations obtained after manual curation of hotspots
defined by simulation) was counted (IS.real(i)¼ number of IS in gene i) and
a simulation (N¼ 100,000 iterations) was performed as follows: for each iteration
IS were assigned to a subset of 10,679 genes matched for expression level with the
674 genic hotspot genes (considering bins of 100 genes centred on each hotspot
gene in terms of expression level defined by the average TPM across all ovine
samples; ENSEMBL OAR3.1 v84: 25,197 genes), each IS having a probability to be
assigned to a gene proportional to both gene size and gene expression level
in ovine lymphocytes. The number of simulated IS per gene was counted
at each iteration (i.e., IS.sim(i,j)¼ number of simulated IS in each iteration j),
and a P-value that reflects the independence of the number of IS and both
gene size and gene expression level was computed for each gene and N¼ 100,000
iterations comparing IS.real to the distribution of simulated IS.sim, i.e., for gene i :
p(i)¼ (# IS.sim(i,j)ZIS.real(i))/100,000. The proportion of genic hotspots not
explainable by gene size and expression level alone (p11) was estimated on the set
of nominal P-values obtained for the 674 genic hotspots64.

Testing enrichment of abundant infected clones in hotspots. To assess the
putative enrichment of abundant clones in hotspots of integration, we separated
the total IS set identified in asymptomatic BLV-infected sheep (66,557 IS) in two
classes (abundant IS: Abþ and non-abundant IS: Ab-) according to the number
of sequencing reads supporting each integration site. Increasing thresholds
corresponding to sequencing read numbers per IS were used (six groups, from
minimum 2 reads to minimum 100 reads) to assign an IS to the abundant or
non-abundant class of clones. The number of Abþ and Ab- clones located within
or outside the 722 defined hotspots respectively was reported for each test
group and a one-tailed Fisher’s exact test was performed to assess the statistical
enrichment of abundant clones in hotspots of integration.

Statistical assessment of host gene recurrence. The level of gene recurrence in
the vicinity of provirus integration sites across tumours was assessed as follows:
protein-coding genes in a 1 Mb genomic window upstream and downstream of
each distinct proviral integration site (92 IS) were identified using Bedtools
intersectBed tool62 with ENSEMBL v84 annotation. We calculated unweighted and
weighted global recurrence scores by summing individual gene recurrence scores
(unweighted score¼ 1 regardless of the number of occurrences across the 92 IS
window-based gene lists; weighted score¼ number of occurrences of a particular
gene across 92 IS window-based gene lists). Observed scores were tested against
N¼ 100,000 simulated recurrence scores obtained from 92 random sets of adjacent
genes of same size distribution. We assessed recurrence by P-value counting the
frequency of simulated recurrence scores equal to or higher than the observed
tumour provirus window-specific recurrence scores, divided by the number of
simulated gene lists (N¼ 100,000). Score calculation and simulations were
conducted using R 3.1.1.

Gene recurrence between viral transcript-interacting host genes identified in
asymptomatic sheep and tumour samples was assessed as follows: we calculated
a gene recurrence score by counting the number of overlapping genes between the
82-gene tumour gene list and the 723-gene asymptomatic gene set and tested the
statistical significance of the overlap by simulation based on N¼ 100,000
recurrence scores obtained from 82 and 723 random or expression level matched
simulated gene lists, respectively. Simulated expression-matched gene lists were
generated according to expression bins that each consisted of a group of 500 genes

that most closely matched the listed genes expression level based on average TPM
computed using RSEM65 across all available human leukaemia samples. Additional
scores were computed based on the recurrence of paralog genes. We assessed
recurrence by P-value counting the frequency of simulated recurrence scores equal
to or higher than the observed tumour/asymptomatic recurrence scores, divided by
the number of simulated gene lists (N¼ 100,000). Gene recurrence between
genic hotspots of proviral integration in asymptomatic sheep samples and
provirus-interacting host genes identified in either asymptomatic or tumour
samples, as well as HTLV-1 genic integrations retrieved from the public RID
database50, was assessed based on the same simulation method. The level of
recurrence between asymptomatic individual samples was computed based
on the same method testing unweighted and weighted scores (as defined above)
to N¼ 100,000 size-matched random or expression level-matched simulated
gene list scores.

Cancer driver gene enrichment analysis. Gene sets were tested for cancer-driver
enrichment by calculating a cancer driver enrichment score (ES) using seven
publicly available cancer-driver gene lists (CGL, Supplementary Table 2 and
Supplementary Fig. 2). Each gene in a CGL is assigned a score that rates its
cancer-driver potential. Observed scores were compared to simulated scores
obtained from N¼ 100,000 size-matched random or expression-matched
gene sets, including information about paralogs (Random Para, Expr Para) or not
(Random, Expr). Simulated expression-matched gene lists were generated as
described for assessment of gene recurrence. Direct and paralog ES were obtained
by summing each CGL-associated gene score (direct-score), or associated gene’s
paralog score (paralog-score), respectively. Paralog scores were calculated by
multiplying the direct score of the paralog gene with the percentage amino acid
identity gene/paralog gene using the Paralog Mapping Table (ENSEMBL). We
assessed enrichment by P-value by counting the frequency of simulated ES equal
to or higher than the observed gene ES divided by the number of simulation
iterations (N¼ 100,000). In addition, we calculated a global enrichment score
(‘meta-analysis’) that incorporated all seven CGL scores by summing the seven
CGL-associated P-values and comparing this meta-P-value to N¼ 100,000
simulated gene list meta-P-values. This resulted in five empirical ‘global P-values’.
Score and P-value calculations, as well as simulations, were conducted using
R 3.1.1.

RNA-seq based gene expression analysis. Gene and exon-specific read counts
were processed according to a two-pass normalization step. First read counts were
normalized to sequencing depth using the R package-implemented DESeq2.
Normalized read counts of the fusion-affected host gene (or specific exons) in a
particular tumour sample were divided by the mean normalized read count of this
particular gene (or corresponding exons) in all remaining samples of the same host
that do not have proviral integration in that locus. This resulted in an average
expression value of 1 for the control tumour samples and a normalized expression
value for the tumour containing the fusion-affected gene. Statistical significance of
expression levels was assessed using Mann–Whitney U-tests.

Validation of virus–host chimeric transcripts by RT–PCR. RNA was treated with
TURBO DNA-free Kit and retrotranscribed using SuperScript First-Strand
Synthesis System for RT–PCR (ThermoScientific) and random hexamers according
to the manufacturer’s instructions. BLV-host chimeric transcripts were amplified
from cDNA using combinations of a forward primer in BLV AS exon 1 and reverse
primers binding downstream of the fusion breakpoint identified by RNA-seq
(primers from Integrated DNA Technologies; Supplementary Data 5) and
generated using Primer 3 (http://bioinfo.ut.ee/primer3/). Two microlitres cDNA
was mixed with the PCR mix (4,125 ml H2O, 1,25 ml of each 2.5 nM reverse and
forward primer, 0.2 ml 10 mM dNTP (Promega), 2 ml 5�Q5Reaction Buffer
(New England BioLabs) and 0.1 ml Q5High-Fidelity DNA Polymerase
(New England BioLabs)). PCR consisted of 35 cycles of 8 s at 98 �C, 20 s at 67 �C
and 35 s at 72 �C. Products were visualized on a 2% agarose gel and sequenced by
conventional Sanger methods.

Proviral load quantification. DNA was isolated using the Qiagen AllPrep DNA/
RNA/miRNA kit and proviral DNA was quantified by real-time PCR using primers
targeting either the BLV or HTLV-1 30 region and RPS9 or Actin, respectively, for
normalization (primers from Integrated DNA Technologies; Supplementary Data
5). Runs were performed in a 50ml volume containing 1 mg of total DNA, primers
and probe (200 nM concentration of each) in 1� PCR buffer (Platinum Quanti-
tative PCR SuperMix-UDG) (HTLV-1) or 10 ml containing 50 ng DNA and
1� Universal PCR Master Mix, No AmpErase UNGa (ThermoScientific) (BLV).
Thermocycling conditions were 10 min at 95 �C, followed by 50 cycles at 95 �C for
15 s and 60 �C for 1 min. Standard curves were generated using serial dilutions of
DNA from the YR2 cell line (BLV, two proviral copies) or the Tarl2 cell line
(HTLV-1, single proviral copy). Proviral load in % PBMCs¼ (Sample Average
Quantity)� 2/(Sample RPS9 or Actin quantity)� 100. The YR2 chromosome that
carries the BLV provirus integration appears to be duplicated.
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Testing statistical power of hotspot and cancer driver analysis. Assuming
20,000 genes of which y are cancer drivers (500–3,000) and z is their fraction
present in cancer driver lists (25–100%), we first randomly assigned x integration
sites (IS, from 1,000 to 100,000) to G¼ 20,000 genes and reported the maximum
number of IS across all genes (max_hits_R) and the sum of IS across all
cancer-driver genes (cancerDriverHits_R). We performed N¼ 100,000 iterations
resulting in two N¼ 100,000-element vectors representing non-preferential
integration (hotspot detection¼max_hits_R and cancer-driver enrichment¼
cancerDriverHits_R). We then assumed the presence of two types of IS, w corre-
sponding to expanded clones (from 0.01 to 100% of the x IS, integrated in cancer
drivers) and 1�w to infected but non-expanded clones. We randomly assigned
w IS to a fraction z of y cancer-driver genes and 1�w IS to G¼ 20,000 genes and
reported (i) the sum of IS across the y cancer-driver genes (cancerDriverHits_Exp)
and (ii) the maximum number of IS across all G¼ 20,000 genes (max_hits_Exp) for
N¼ 100,000.

P-values of max_hits_Exp and cancerDriverHits_Exp were calculated for all

parameter combinations: P�valuehotspot ¼
PN¼100;000

i¼1
ðmax hits Exp�max hits RÞ

N¼100;000 and

P�valueCancerDriverEnrichment ¼
PN¼100;000

i¼1
ðcancerDriverHits Exp�cancerDriverHits RÞ

N¼100;000 ,
respectively.

We performed T¼ 10,000 iterations and computed the power of hotspot

detection and cancer-driver enrichment as powerhotspot ¼
PT¼10;000

i¼1
ðP�valuehotspot�PlimitÞ
T¼10;000

and powercancerDriverEnrichment ¼
PT¼10;000

i¼1
ðP�valueCancerDriverEnrichment�PlimitÞ

T¼10;000 for Plimit ¼ 0:01.

Statistical analyses. Analyses of significance for RNA-seq-based gene expression
were performed using two-sided Mann–Whitney U-tests implemented in R 3.1.1,
assuming equal variances. One-tailed Fisher’s exact-tests were used to assess
recurrence between gene groups and the statistical enrichment of abundant clones
in hotspots of integration. Values of Po0.05 were considered as statistically
significant. Continuous biological variables were assumed not to follow a normal
distribution.

Data availability. Sequence data that support the findings of this study have been
deposited in the European Nucleotide Archive (ENA) hosted by the European
Bioinformatics Institute (EMBL-EBI) and are accessible through study accession
number PRJEB19394. All other relevant data are available within the article and
its Supplementary Information files or from the corresponding author upon
reasonable request.
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