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A mouse tissue transcription factor atlas
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Transcription factors (TFs) drive various biological processes ranging from embryonic

development to carcinogenesis. Here, we employ a recently developed concatenated tandem

array of consensus TF response elements (catTFRE) approach to profile the activated TFs in

24 adult and 8 fetal mouse tissues on proteome scale. A total of 941 TFs are quantitatively

identified, representing over 60% of the TFs in the mouse genome. Using an integrated omics

approach, we present a TF network in the major organs of the mouse, allowing data mining

and generating knowledge to elucidate the roles of TFs in various biological processes,

including tissue type maintenance and determining the general features of a physiological

system. This study provides a landscape of TFs in mouse tissues that can be used to elucidate

transcriptional regulatory specificity and programming and as a baseline that may facilitate

understanding diseases that are regulated by TFs.
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A
pproximately 1,500 transcription factors (TFs) are
encoded in the mammalian genome1 and constitute the
second largest gene family, with the immunoglobulin

superfamily being the largest. TFs can be grouped into different
families, depending on the structure of their DNA-binding
domains (DBDs), and each family prefers to bind a specific DNA
consensus sequence. Specific recognition of a response element
(RE) is essential for gene regulation in response to developmental
cues and environmental signals. These DNA sequences
are recognized by TFs that recruit co-regulators and the
transcriptional machinery2. The binding of TFs to DNA
determines the strength and resident time of gene regulation3.

TFs regulate almost every aspect of life1,4,5. Tissue specificity is
enabled by temporal and spatial gene expression patterns, which
are, in turn, driven by TFs6,7. This process involves important
roles, such as DNA-binding TFs interacting with the cis-elements,
including promoters, enhancers and silencers, of the genes they
activate or repress8. TFs are driving forces in tissue development
and tissue identity maintenance. For example, Hnf4a and Hnf1a
are critical for liver function9 and Nkx2-1 expression is related to
the peripheral airways and small bronchioles in the lung10. These
studies have demonstrated the close relationship between TFs and
tissue biological processes. Therefore, surveys of TF expression
patterns and DNA-binding activities in animals could advance
our understanding of how tissue specificity is determined and
maintained.

Previously, a variety of genome/transcriptome technologies
have been employed to investigate mammalian TFs at
high resolution and depth. Many studies have inferred TF
expression through mRNA expression profiling using RNA
sequencing (RNA-seq) combined with genome promoter
analysis11. Chromatin immunoprecipitation (ChIP) coupled
with microarrays or sequencing is another revolutionary
strategy that enables the genome-wide analysis of TF binding12.
Other methods that study TFs and gene regulation networks,
such as yeast one-hybrid assays13,14 and genome-wide DNase
footprints15 are also widely used to survey TFs interaction with
DNA. These technologies have been utilized in the Encyclopedia
of DNA Elements (ENCODE)16 and Functional Annotation of
Mammalian (FANTOM)17 genome projects.

While these studies have led to the construction of models of
TF actions, there are critical issues that remain unresolved. First,
the correlation coefficient between mRNA and protein abundance
is low and is insufficient to predict protein expression levels from
quantitative mRNA data18,19. Second, ChIP-seq measures the
binding sites for one TF at a time and can only obtain data for
limited numbers of TFs because of constraints by reagents
and experimental throughput. To date, screening TFs and
subsequently illuminating their activities at proteome scale
remains challenging. Thus, one clear and immediate task is to
map TFs at the protein level and determine their DNA-binding
activities in different organs/tissues12.

Towards this goal, we recently developed an approach that
permits identification and evaluation of the DNA-binding activity
of endogenous TFs at the proteome scale. Using a synthetic DNA
containing a concatenated tandem array of the consensus TFREs
(catTFRE) as an affinity reagent, the TF sub-proteome can be
identified to the TF sub-transcriptome level in cell lines and
tissues using mRNA-seq20.

In this work, we generate a quantitative proteome data set of
over 900 TFs in mouse tissues. By integrating multiple-omics
data, we present a TF network of major organs of the mouse,
allowing data mining and generating knowledge to understand
the roles of TFs in various biological processes. This resource can
be used to elucidate transcriptional regulation and may help
understand diseases that are regulated by TFs.

Results
Deep TF DNA-binding activity profiling of mouse tissues. We
profiled the TF DNA-binding activities from 32 histologically
normal mouse tissues, including 24 adult tissues and 8 fetal or
reproduction-related tissues, to obtain a panoramic view of TF
activity in mouse tissues (Fig. 1a). Endogenous TFs were enriched
by the catTFRE approach20 and fractionated by sodium dodecyl
sulfate (SDS)–polyacrylamide gel electrophoresis. The tryptic
peptides were analysed on high-resolution Orbitrap MS
instruments (Orbitrap Q-Exactive) (Fig. 1b, Supplementary
Fig. 1a,b). We measured 3–7 biological replicates from the 24
adult tissues until we obtained at least three measurements that
showed a correlation coefficient of R40.8 (Supplementary
Fig. 1c). One or two biological repeats for the fetal or
reproduction-related tissues were performed (Supplementary
Fig. 1d). A website ‘Mouse TF Atlas’ was developed to host the
data (www.tfatlas.org) (Fig. 1c).

Aided by annotation in the DBD database (http://dbd.mrc-
lmb.cam.ac.uk/DBD), we could assign 941 of the identified
proteins as TFs, representing 60% of the genes encoding TFs. In
the adult and fetal tissues, 907 and 587 TFs were identified,
respectively; among them, 354 and 34 TFs were unique to the
adult tissues and fetal tissues, respectively (Supplementary Fig. 1e
and Supplementary Data 1).

All DNA-binding transcription factor (DBTF) families
annotated in the DBD database were recovered in our data set.
Notably, components of the TF families belonging to AT hook,
TDP, RFX, IRF, STAT, SAND, CP2 and AP2 were all detected,
and the ZNF-GATA, NR, IPT/TIG, DM and MADs-box families
achieved deep coverage, with only one or two components
missing. In contrast, approximately 40% and 78% of the
ZNF-C2H2 and homeodomain family members, respectively,
were detected (Fig. 2a; Supplementary Data 1).

The number of TFs identified in each tissue varied, ranging
from 173 in skeletal muscle to 448 in thymus (Fig. 2b). We used
FOT (fraction of total), the portion of TF expression in all
detected TFs in a particular tissue, as an indicator of TF
abundance. We found that the most abundant TF in each tissue
accounted for at least 10% of the total TF abundance and that the
4 most abundant TFs accounted for 430% of the TF abundance
in the corresponding tissue. This phenomenon was most
profound in intestine, spinal cord, seminal vesicle and lung; for
instance, Hmgb2 represented over 60% of the total TF abundance
in small intestine, and Tfam accounted more than half of the total
TF abundance of spinal cord, seminal vesicle and lung (Fig. 2c
and Supplementary Data 1).

Geiger and colleagues reported a proteome profiling of 28
mouse tissues21. When compared with the proteome profiling
data set, the catTFRE showed a clear advantage in enriching
endogenous TFs with the identification of 941 compared to
151 identified by proteome profiling (Supplementary Fig. 1e).
Correlation analysis of the overlapping TFs in the 13 tissues in
both data sets showed that the Spearman’s rank correlation
coefficient ranged from 0.046 (liver) to 0.401 (spleen), revealing a
difference between TF expression levels and their DNA-binding
activities.

We mined hundreds of published literatures (Supplementary
Data 1) to construct a library for well-characterized TFs in the
13 overlapped tissues. As shown in Supplementary Data 1, the
catTFRE successfully detected most of these TFs in tissues (76 out
of 85), while profiling only identified few of them (6 out of 85).

Transcriptional co-regulators (TCs) play critical roles in
transcriptional regulation by interacting and cooperating
with the TFs. The catTFRE data set also contained 523 TCs
(Supplementary Data 1). An L-shaped distribution pattern
was observed among the 32 tissues (Supplementary Fig. 2a).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15089

2 NATURE COMMUNICATIONS | 8:15089 | DOI: 10.1038/ncomms15089 | www.nature.com/naturecommunications

www.tfatlas.org
http://dbd.mrc-lmb.cam.ac.uk/DBD
http://dbd.mrc-lmb.cam.ac.uk/DBD
http://www.nature.com/naturecommunications


catTFRE NE

catTFRE-pulldownNE prep LC-MS/MS Mouse TF atlas

SDS–PAGE

In-gel digestion

Pulldown

Time (min)

400 600 800 1,000 1,200 1,400 1,600 1,800
m /z

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Brain

Spinal cord

Skin

Kidney

Bladder

Eye

Seminal 
vesicle

Testis

Pancreas

Lung
Tongue

BAT

WAT

Muscle

Heart

Thymus

Spleen

Thyroid Adrenal gland

Stomach

Small intestine Liver
Colon

Respiratory
ory 
tory

systemNervous 
system

D
ig

es
tiv

e e
sy

st
em

Muscu
lar 

sys
temtem

ste
m

Reproduct

Reprod
e

ctivee 
system

Im
m

une 

system

E
ndocrine 

system

C
ar

di
ov

as
cu

la
r

 s
ys

te
m

Exc
re

tory 

sy
ste

m

E
ct

od
er

m

Meso
derm

Brain
Spinal cord

Skin
Kidney
Bladder
Eye

Testis

Pancreas

Lung

Tongue

.........

.........

.........

.........

.........

Thymus
Spleen

Thyroid
Adrenal gland

.........

Stomach
Intestine

Liver
Colon

Fetal liver
Fetal brain

Uterus

Placenta

MEF

FetalAdult

Nuclear 
extract

Blood

Embryo

 fe
ta

lB
ra

in
E

18
.5

 
 fe

ta
lB

ra
in

E
13

.5
 

 B
ra

in
 

 E
ye

 
 S

pi
na

l_
co

rd
 

 fe
ta

lL
iv

er
E

13
.5

 
 fe

ta
lL

iv
er

E
18

.5
 

 L
iv

er
 

 U
te

ru
s 

 E
m

br
yo

 
 P

la
ce

nt
a 

 T
es

tis
 

 L
un

g 
 W

A
T

 
 A

dr
en

al
_g

la
nd

 
 B

la
dd

er
 

 S
ki

n 
 K

id
ne

y 
 B

A
T

 
 H

ea
rt

 
 T

hy
m

us
 

 S
pl

ee
n 

 P
an

cr
ea

s 
 C

ol
on

 
 S

m
al

l_
in

te
st

in
e 

 S
to

m
ac

h 
 M

E
F

 
 S

ke
le

ta
l_

m
us

cl
e 

 T
on

gu
e 

 T
hy

ro
id

 
 S

em
in

al
_v

es
ic

le
 

 B
lo

od
 

Analysis

In
te

ns
ity

 [c
ou

nt
s]

R
el

at
iv

e
ab

un
da

nc
e

TF Atlas DB

Q
uantification

Filtering, integral

M/Z RTXIC

MS/MS
results

MS
profile

Extract infomation
from RAW

mzXML*.txt

Quant program

Peak area

iBAQ, FOT

• TF protein–protein interaction
• TF co-expression modules
• TF hierarchical network

TF Atlas
...

Client

Identification

• Proteome discoverer
  (Mascot)

• Unique peptide ≥ 1
• FDR < 1%

Embryonic : 8
Adult : 24

Tissues

Liver
regeneration

7 time points

912 raw files

Endoderm

Web

a

b

c

Figure 1 | Overview of the mouse tissue TF atlas workflow. (a) The 24 adult mouse tissues and 8 fetal tissues analysed to generate a draft map

of the mouse TF atlas are shown. The same font colour indicates that the tissues are from the same physiological system. The ambient arcs show the

layers from which the tissues developed. Red: ectoderm; Blue: mesoderm; Brown: endoderm. (b) Nuclear extract (NE) were prepared from each tissue,

and then the catTFRE pull down was carried out and analysed by LC-MS/MS to obtain the primary data. (See the Methods section for details). (c) The data

were analysed with a homemade platform and stored in the mouse TF atlas database. (See the Methods section for details).
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Figure 2 | TF identifications in 24 adult and 8 fetal mouse tissues. (a) Number of TFs identified in each TF family. The TFs were classified into families

according to their DNA-binding domains. TFs with multiple DBDs were classified in each of their respective families. The number of TFs in each family that

was detected using the catTFRE strategy is plotted. (b) Heatmap of TF DNA-binding activity in 24 adult mouse tissues and 8 fetal tissues; the TFs are

shown in the rows, and the tissues are shown in the columns. DBA: DNA-binding activity. (c) Cumulative protein abundance from the highest to lowest in

the 24 adult tissues. (d) Number of tissues in which the TFs are expressed. (e) Heatmap for non-ubiquitous (71.3%), ubiquitous-uniform (3.1%) or

ubiquitous non-uniform (25.6%) TF. The colour bar on the right indicates the relative expression abundance. (f) The number of tissue restricted TFs

(ttrTFs) and their fractions in total TFs in different tissues. (g) Distributions of ubiquitous and ttrTFs and their relative abundances in 24 adult tissues.

The abundance of the TFs spans almost seven orders of magnitude. The names of the top three most abundant TFs are listed.
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Interestingly, TCs in general showed lower tissue-specificity
scores (TSPS)22, the relative entropy to evaluate the distance
between the observed TF expression pattern and the
uniform expression pattern across all tissues, than TFs
(P value¼ 3.86E-16), suggesting their more uniform
distribution and essential functions in the whole body
(Supplementary Fig. 2b,c).

Ubiquitous and tissue-restricted DBTFs in mouse tissues. To
investigate the TF expression patterns in different tissues, we
plotted the number of TFs that were detected in different tissues
and found that less than 32% of the total number of TFs were
detected in more than 12 tissues (half of 24 adult tissues)
(Fig. 2d).We calculated the median and maximum FOT values in
all tissues where they were detected and used them to perform a
density plot analysis of the TF expression patterns across the 24
adult tissues. This analysis stratified the TFs into three categories:
non-ubiquitous TFs (non-ubiTFs, 640 TFs, accounting for 71.3%
of the identified TFs), which were highly expressed in only a few
tissues with a transformed median expression value of o0.5;
ubiquitous TFs (ubiTFs, 257 TFs, 28.7%), which were expressed
in a wide variety of tissues with a transformed median expression
value of 40.5. Among them, the expression of 27 TFs exhibited
a maximum value of less than ten times the median value,
indicating a ubiquitous-uniform distribution (27 TFs, 3.1%);
the rest of the TFs can be classified as ubiquitous-non-uniform
(230 TFs, 25.6%), with a maximum expression value exceeding
ten times the medium value (Fig. 2e, Supplementary Fig. 2d and
Supplementary Data 2). Consistent with their wide distribution,
the ubiquitous-non-uniform TFs mainly function in generic
biological processes, such as circadian rhythms, cell cycle, cell
growth and chromatin remodelling.

We define TFs that are expressed in a tissue at levels that are at
least ten times higher than the median value of all adult tissues as
tissue type restricted TFs (ttrTFs). The extreme case is the tissue-
specific TF, which is expressed only in one tissue. A large number
of ttrTFs were identified in the central nervous system, the
immune system (thymus), and the reproductive system (testis),
whereas a smaller number of ttrTFs were identified in the
metabolic system (intestine, liver, stomach and adipocytes)
(Fig. 2f,g). The TF specificity in adult tissues was further validated
by qPCR (Supplementary Fig. 2e and Supplementary Data 2).
Importantly, TF specificity at the mRNA levels is largely
consistent with their DNA-binding activities.

Transcription network of the NRs and other TF families.
Studies on the mRNA expression profile of TFs offered a simple
and powerful way to obtain highly relational information
regarding the physiological functions of the individual proteins
and the protein families. One of the most successful examples is
the anatomical profiling of NRs by the Nuclear Receptor
Signaling Atlas (NURSA) organization23–25. The mRNA
profiling of NRs defined a ring of NR physiology, dividing the
NR regulatory network along two physiological paradigms:
(1) reproduction, development and growth; and (2) nutrient
uptake, metabolism and excretion. These studies reveal a
transcriptional circuitry that extends beyond individual tissues
to form a mega network governing physiology on an organismal
scale.

Here, we were able to reliably detect 47 of the 49 NRs from 32
mouse tissues, with the exception of Nr1h5 and ESR2 (Fig. 3a).
Among them, 7 NRs were expressed in all tissues (not including
blood), 10 NRs were expressed in more than half of but not all
tissues and 30 NRs were restricted to less than 50% of the tissues
(Fig. 3b, Supplementary Fig. 3a and Supplementary Data 3).

While Nr1h5 mRNA expression was detected at very low levels
in three tissues23, TFRE-bound Nr1h5 was detected in one
experiment in mouse liver TFRE experiment and ESR2 in one
mouse embryonic fibroblast (MEF) TFRE experiment with
transfected over-expression of Hnf1a, Pdx1 and Bhlha15.

Unsupervised hierarchical clustering of the NR DNA-binding
activity revealed two major clusters, which can be further divided
into five sub-clusters (Fig. 3a). Cluster IC mainly includes (sex)-
steroid hormone receptors, such as AR, ER, PR and DAX-1.
Cluster IB includes NRs that are ubiquitously expressed in adult
tissues and are expressed at low levels in embryos. Cluster IIB
NRs are predominantly expressed in the digestive system,
whereas the NRs in Cluster IB have a more widespread expression
in different tissues.

In general, our clusters are consistent with the previous
one derived from the mRNA profiling23 but show some
differences (Fig. 3a). Esrra/ERRa, Nr2c1/TR2, Nr2f6/EAR2 and
Nr6a1/GCNF, which were once classified in Cluster lipid
metabolism and energy hemostasis, are now classified in
Cluster I as ubiquitous NRs and reproduction; Nr1h2/LXRb
and Nr3c2/MR that were once classified in Cluster central
nervous system and circadian function are now classified in
Clusters IIA and IIB in the digestive system. The current
classification is consistent with their functions that were
uncovered in more recent studies. For example, Nr1h2 regulates
genes involved in liver metabolism and cholesterol uptake26,27,
and Nr6a1 plays an important role in germ cell development
during gametogenesis28. Nr2c1 and Nr2c2 form the direct repeat
erythroid definitive complex, which plays a fundamental role in
early embryogenesis and embryonic stem cell proliferation29.
Notably, these two NRs were classified to the same cluster but
were divided into two groups based on the transcriptome data.
A modified version of ‘The Nuclear Receptor Ring of
Physiology’24 is illustrated in Fig. 3c. A minor difference in
classification between current and previously proposed one
revealed the diverse and complementary information provided
by TF DNA-binding activity at protein level and gene expression
at mRNA level.

Other TF families can be similarly analysed to uncover the
‘Ring of Physiology’. For instance, a cluster of the Fox family
(Foxa1, Foxa2, Foxa3 and Foxf1) was enriched in the digestive
system; another cluster of the Hmg family (Sox4, Sox14, Hmga2,
Sox2, Sox1 and Hmgn3) was predominantly expressed in
the nervous system (Fig. 3d and Supplementary Fig. 3b).
The propensities of TF families in different tissues suggested a
connection between TF DNA-binding domains and biological
functions (Supplementary Data 3).

Illuminating the dark proteome of TFs. We investigated the
co-expression of TFs in 24 adult tissues using TFs that were
expressed in more than four tissues. Using Pearson correlation
coefficient of 0.4 as a cutoff to define a positive correlation
between TF pairs30, we obtained 37 tightly related TF modules
that showed excellent co-expression patterns (Fig. 4a and
Supplementary Data 4).We summed the average intensity of
each module and then performed hierarchical clustering to reveal
the relationship among the 37 TF modules. These modules
segregate into six distinct clusters (Fig. 4b). Their Gene Ontology
(GO)31 term enrichments revealed their potential functions
(Fig. 4c) and connections with tissue distribution patterns. For
instance, many TFs in the Cluster I predominantly function in
oxidation-reduction and vitamin/steroid/lipid metabolism and
are highly enriched in liver, colon and small intestine. Functions
of unknown proteins may be inferred by the known functions
of other members of the module, thereby shedding light on the
‘dark proteome’. Twenty-two out of the 37 modules appeared to
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Figure 3 | Global profiling of TF families in mouse tissues. (a) Unsupervised hierarchical clustering of DNA-binding activities of nuclear receptors (NRs)

and the comparison with mRNA expressions. NRs were grouped into two main clusters (I and II) and five sub-clusters (IA, IB, IC, IIA and IIB). The

comparison with mRNA is shown on the right colour block. (b) Statistics of NR expressions in different tissues. The number of NRs expressed in various

tissues is indicated in the pie chart. Seven NRs were expressed in all tissues, ten NRs were expressed in more than half of but not all tissues and were

labelled ‘widespread’, and 30 NRs were restricted to less than 50% of tissues and were named ‘restricted’. (c) The ‘NR Ring of Physiology’ derived from

DNA-binding activity. The dendrogram is depicted based on the hierarchical clustering, revealing NR clusters in different tissues. (d) Unsupervised

hierarchical clustering of other TF families. Blocks with different colours represent different physiological systems. The annotations in the blocks are the GO

enrichment terms for the TGs that were co-regulated by at least two TFs in the block.
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have functional enrichment, and predicted functions of 131 of the
156 TFs matched their functions revealed by the previous
publications. For example, the Module #1 contains six TFs that
are mainly expressed in tongue and skin, was related to muscle
contraction and keratinocyte differentiation. Functional roles for
Module #5 proteins Tead2, Bach1, Notch3 and Dlx5 in the
nervous system have reported; this suggests that the other
member of Module 5, Fosl2, may have the similar function.

Similarly, Zfp655 in Module #12 was tightly co-expressed with
Hnf1a, Hnf1b, Hnf4a and Nr1h4, all of which play important
roles in liver (Fig. 4d). This finding suggested that Zfp655, whose
function is unknown, may play important roles in liver function.
We next identified genes with mRNA expression pattern similar
to the Zfp655 DNA-binding activity pattern in the 23 tissues and
carried out gene set enrichment analysis (GSEA). The GSEA
terms indicated that Zfp655 was positively associated with both
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Figure 4 | The DBTF co-expression network. (a) Co-expression blocks of TFs. Thirty-seven co-expression blocks of TFs were identified in 24 adult organs.

Pearson’s correlation coefficient of 0.4 was used as a cutoff, and Kendall’s Tau test was applied to test for significance. (b) Unsupervised hierarchical

clustering of the 37 co-expression modules. Six clusters were grouped according to their different tissue distribution patterns. (c) GO term enrichments and

tissue distributions of the six clusters derived from the 37 co-expression modules. (d) Details of Module #12. The correlation coefficients between the TFs

in Module #12 are listed in the table. (e) GSEA terms of Zfp655 suggest Zfp655 functions in metabolism and immunity.
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metabolism-related pathways and the immune processes (Fig. 4e),
consistent with the functions of Hnf1a/b, Hnf4a and Nr1h4
(ref. 32) (Supplementary Fig. 4a,b).

We also found tightly co-expressed TF pairs, for example,
Clock/Arntl (Bmal1), which form a core component of the
circadian clock and are widely expressed in several tissues,
particularly in circadian tissues33, with a correlation coefficient
was 0.92. Mef2 and Bhlha15 (Mist1) have been reported to
play diverse roles in skeletal and cardiac muscle. Mist1
mainly represses MyoD34, a major TF that regulates muscle
differentiation, whereas Mef2a and MyoD can cooperatively
activate muscle genes35. In our study, Mist1 and Mef2a
expression had a negative correlation coefficient of 0.70.
Consistently, Mist1 has been reported to be an important
Xbp1 target gene (TG) that inhibits muscle differentiation36,
and Xbp1 was negatively correlated with Mef2a (� 0.68)
(Supplementary Fig. 4c). These positive/negative correlations
confirmed the collaborative/antagonistic relations of the TFs in
biological processes.

Combinatorial TF network in mouse tissues. Combinatorial
TF interactions are critical for cellular functions and are
important determinants of different cell types. The TF interaction
network constructed from protein–protein interaction assays,
such as the mammalian and yeast two hybrid assay22,37,
have revealed many important regulatory features of TFs. One
limitation of such heterologous assays is that the over-expressed
proteins may or may not be co-expressed in the same cells.
TF atlas allows us to survey the combinatorial TF interactions
among different tissues from the perspective of endogenously
expressed proteins.

We re-analysed the TF interaction network of the 24 adult
tissues by matching differential TF expression patterns to the TF
network map22 (Fig. 5a and Supplementary Data 5). Similar to
the tissue specificity of TF expression, TF–TF interactions
exhibited an L-shaped distribution among tissues (Fig. 5b).
Thus, 764 tissue-restricted TF–TF interactions were identified in
no more than 12 tissues, and 252 ubiquitous TF–TF interactions
were identified in more than 12 tissues (Supplementary Data 5).

Ubiquitous TFs, such as Jun, Smad3 and Rxra, were involved in
large number of TF–TF interactions implying that they are
involved in wide variety of cellular transcriptional programs
through protein–protein interactions. In contrast, ttrTFs,
such as Nr1h4, Irf4 and Ptf1a, have fewer interaction partners,
suggesting these TFs may function in tissue-restricted processes
(Supplementary Fig. 5a). The positive correlation between
number of tissues expressed and the number of TF–TF
connections was significant (Fig. 5c).

Interactions between ubiquitous TFs and not ubiquitous TFs
were widely observed throughout TF network, which occurred
more frequently than expected and were higher than interactions
within each groups (ubiTFs–ubiTFs, non-ubiTFs–non-ubiTFs)
(Fig. 5d). As exemplified by the connection between Meis1 and
Homobox the ubiquitous TF Meis1 was expressed in 23 out of 24
adult tissues and has the potential to connect to 15 ttr-Homobox
TFs (Fig. 5e). The specificity of the interaction between Meis1 and
Homobox TFs appeared to be determined by the specificity of the
Homobox TF. Thus, TF–TF interactions are more conserved
among tissues than the TFs themselves. A signature TF networks
of each tissue type were also constructed (Supplementary Fig. 5b),
and TFs that were expressed in multiple tissues formed different
sub-TF networks. For example, Hnf4a interacted with Smad,
Hnf1a and Nr2c2 in the stomach, small intestine and colon,
whereas it was also connected to Esr1 in the liver, white adipose
tissue (WAT) and kidney (Supplementary Fig. 5c).

Our analysis also revealed similar TF expression patterns
between adjacent tissues in the nervous system (brain, eyes and
spinal cord), digestive system (stomach, colon, intestine and
liver), adipose tissue (brown adipose tissue (BAT) and WAT) and
immune system (thymus, spleen and blood) (Fig. 5f). We
identified top 30 differentially expressed TFs for each of the ten
physiological systems (Figs 1a, 5g and Supplementary Data 5) and
analysed their downstream TG. Our results revealed that they
were significantly enriched in the predominant biological
processes of the corresponding systems (Supplementary Fig. 5d).

TFs that maintain the tissue identity. We sought to identify TFs
that may be required to maintain the identities of the tissue types
(tissue-type-maintenance transcription factor (ttmTFs)). We
reasoned that ttmTFs should not only be specifically enriched in
the tissue but should also dominantly control the transcription of
their downstream genes in that tissue. We gathered the mRNA
expression data from publically available RNA microarray studies
and employed TF-downstream TG data from CellNET38,39.
A total of 286 ttmTFs were identified in 21 adult tissues,
ranging from 62 in thymus and 4 in pancreas, and none in
thyroid and seminal vesicle (Fig. 6a,b, Supplementary Fig. 6 and
Supplementary Data 6).

Notably, a number of ttmTFs identified here were consistent
with previously reported roles of directly converting fibroblasts
into the major cell type of the tissue (Table 1). For example,
Hnf4a, Hnf1a and Foxa2 had been reported to drive the direct
conversion of fibroblasts to hepatocytes9,40 and Myt1l, Lhx3 and
Isl1 have been shown to convert MEF to spinal motor neurons41.
These activities indicate dominant roles that ttmTFs play in
determining tissue identity.

The identification of ttmTFs of tissues provides a conceptual
framework for understanding how tissue identity is maintained
by TFs. It is logical to predict that genes controlled by two or
more ttmTFs may represent the biological processes of particular
tissues relatively specifically. We submitted the TGs that were co-
regulated by 2 ttmTFs to Reactome Pathway Database42,43 to find
these processes. Reactome terms that were enriched in TGs
controlled by dual ttmTF represent the major functions of the
tissue (Fig. 6c). For example, TGs of multiple ttmTFs in eye, brain
and spinal cord were enriched in neuron-related items, whereas
TGs related to immune functions were enriched in spleen and
thymus (Supplementary Data 6).

All tissues are developed from three germ layers: ectoderm,
mesoderm and endoderm. Because adult tissues are terminally
differentiated, they cannot be clearly clustered into their germ
layer origins based on their global proteome. We performed
principal component analysis (PCA) to test whether the TF
patterns were more suitable for clustering tissues to the ‘germ’
layers. We obtained clustering accuracy of 75% with all TFs and
80% with ttmTFs (Fig. 6d), outperforming the accuracy calculated
with TF mRNA expression profiling22 The correlation between
the ttmTFs and ‘germ layers’ exceeded 0.7 and was larger than
those of the non-ttmTFs and all TFs (Fig. 6e).

As ttmTFs play central roles in regulating gene expression in
tissues, we investigated the upstream regulatory factors control-
ling ttmTFs in tissues. DNA methylation is an epigenetic mark
that is critical for mammalian development and tissue lineages,
and tissue-specific differentially methylated regions (tsDMRs)
occur at distal cis-regulatory elements. These ‘vestigial’ enhancers
are hypomethylated and lack active histone modifications in adult
tissues but nevertheless exhibit activity during embryonic
development, suggesting that epigenetic memory of embryonic
development may be retained in adult tissues44. The ttmTF
promoters are highly enriched in tsDMR compared with those of
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Figure 5 | TF interaction network and specific TF expression patterns in physiological systems in mouse tissues. (a) Interaction network of all TFs in the

24 tissues. The colours indicate the tissue-specificity score (TSPS), and the node size shows the number of PPIs of the TF. (b) The numbers of TF–TF

interactions that were detected in different number of tissues. More than 150 TF–TF interactions were detected in one tissue and only 11 TF–TF interactions

were detected in all 24 tissues. (c) The negative correlation between tissue specificity and the number of TF–TF connections. The TFs were binned into five

groups of approximately equal size based on tissue specificity (x axis). The stacks of coloured segments represent the number of interactions for each bin.

(d) Statistical significance of different types of protein–protein interaction, calculated using 1,000-time permutation test. Centre line and box limits

represent median value and lower or upper quartile, respectively. Whiskers show the range of lower quartile � 1.5-fold IQR to higher quartile þ 1.5-fold

IQR. (e) TF interactions between Meis1 and Homobox TFs in different tissues. As a facilitator hub, Meis1 interacts with different TFs in the Hox family in

different tissues, showing the specificity of the interaction was determined by Homobox TFs, namely the ttr TFs. (f) Heat map showing the pairwise

correlations between all 24 adult tissues based on DNA-binding ability. The TF expression patterns are similar between tissues of the same physiological

systems. (g) Clustering of the top 30 most enriched TFs in the ten physiological systems to identify TFs that can specify the biological systems.
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Figure 6 | Identification of tissue-type maintenance transcription factors (ttmTFs) and their fundamental features. (a) ttmTFs for each tissue are

identified with high Z-scores (41) and TG Z-scores that are higher than those from random data. x axis represents the number of target genes; y axis

represents the average TG Z-scores. Network of TFs with a three-tiered organization was shown on the right. (b) The number of identified ttmTFs in the 24

adult tissues. (c) Heat map for the Reactome terms that were enriched in the TGs that were regulated by at least two ttmTFs in each adult tissue. (d) PCA

demonstrated that the ttmTFs exhibited the highest accuracy in separating the tissues from the ectoderm, mesoderm and endoderm lineages. Plus signs
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non-ttmTFs (Fig. 6f, Supplementary Fig. 7a and Supplementary
Data 6). For example, Hnf4a locus was hypomethylated in the
digestive system, particularly in the liver and colon, compared
with other tissues (Fig. 6g).

Regulation of liver TF pattern in response to perturbations.
We asked whether the TF hierarchy would change and particu-
larly ttmTF regulation, under physiological and pathological
conditions. We employed liver regeneration induced by partial
hepatectomy (PHx) that removed B70% of the liver as a model
for perturbation. As PHx is a dynamic process and prone to
experimental variations, we included more initial experimental
conditions to define a more accurate initial state. We combined
26 data sets of liver TFs obtained by catTFRE in physiology
conditions and use them as the control experiment to construct a
liver TF reference map that defines abundance range for each TF
(Supplementary Data 7).

The catTFRE experiments identified 420 TFs for the liver
regeneration process, of which 401 TFs could be quantified and
compared with the TF reference map of the liver. We found that
the intensities of 188 TFs after PHx were greater than the upper
quartile values (Q3) of the TF reference map in at least two out of
the three individual measurements, and the 188 TFs were defined
as outliers. We grouped TFs into four representative stages of
liver regeneration according to their temporal behaviour: priming
(0–12 h), early progression (24–48 h), later progression (3–5 days)
and termination (5–7 days). The TFs related to immune response
and NF-kB activation were immediately stimulated within 12 h;
TFs that regulate developments constituted the second wave.
Cell cycle signalling were activated in the progression phase
and downregulated in the terminating phase when the Wnt/beta-
catenin pathway was repressed and TGF-beta-Smad pathway was
upregulated (Fig. 7a).

One third of the 188 outlier TFs can be classified into the four
major functions categories, namely immune and stimulus
response, development and differentiation, nuclear receptors
and metabolism, repressors and brakes. Immune and develop-
mental TFs are overexpressed in the earlier/middle stage,

whereas nuclear receptor and repressors were dominant in the
middle/later stage (Fig. 7b).We found that Myc/Max/Mad
behaved as a switch in liver regeneration. Myc was stimulated
in the priming stage while its antagonist Mad was unregulated in
the terminating stage, suggesting the Myc/Max/Mad network is at
work in regulating liver regeneration (Supplementary Fig. 7c).

We found that ttmTFs tended to be downregulated when the
fate of the tissue was altered. The liver ttmTFs were significantly
decreased compared with that of the non-ttmTFs after PHx
(Fig. 7c and Supplementary Fig. 7d), indicating liver cells lost
their homeostasis and identity or dedifferentiation when dramatic
perturbation occurred. Six members of the hepatocyte nuclear
factor family in the liver ttmTF group were markedly down-
regulated in 12 h and 3 days after PHx, and showed a tendency of
returning to their original and stable state in the terminating
phase (Fig. 7d).

Profiling of the global liver proteome during PHx identified
downregulated proteins, which could be used as the TG products
to trace back TFs that regulate them (Supplementary Fig. 7e).
Many of these TFs that controlled downregulated proteins
during PHx were indeed ttmTFs (Supplementary Fig. 7f and
Supplementary Data 7). These results suggested that the liver lost
ttmTFs during the process of tissue expansion—a trait that
normally is not ascribed to liver, and implicated the importance
of losing ttmTFs when the identity of the organ is perturbed
during liver regeneration.

Discussion
Here, we present an atlas of mouse TF DNA-binding activities
from 24 adult tissues and 8 fetal tissues (www.tfatlas.org) In the
data set, an average of 290 TFs was identified per tissue, and more
than 60% of the TFs were encoded in the mouse genome,
ensuring that the TF atlas provides a comprehensive global view.

TFs are considered relatively low-abundance proteins in the
proteome; however, we found that the TF sub-proteome spanned
almost seven orders of magnitude in abundance, revealing a large
variation in the abundance of TFs. More than half of the detected
TFs were enriched in a certain tissue, and few non-specific or
ubiquitous TFs were identified.

Table 1 | Overlap of ttmTFs with known TFs involved in iPS cell transforming.

Species TFs Starting cells Target cells Reference

Human OCT4 Human dermal fibroblasts Blood progenitors 50

ASCL1, LMX1A and NR4A2 Human fibroblasts Dopaminergic neurons 51

OCT4, SOX2, KLF4 and c-MYC Human fibroblasts Endothelial cells 52

GATA4, MEF2C and TBX5 Cardiac fibroblasts Cardiomyocytes 53

SOX2 Fetal foreskin fibroblasts Neural stem cells 54

PRDM16 and CEBPB Skin fibroblasts BAT 55

NEUROD1, ASCL1, BRN2, MYT1L, LHX3, HB9, ISL1 and NGN2 Fetal foreskin fibroblasts Spinal motor neurons 41

Mouse Ascl1, Brn2 and Myt1l MEFs, TTFs Neurons 56

Sox2, Foxg1 and Brn2 MEFs Neural precursor cells 57

Hnf4aþ Foxa1, Foxa2 or Foxa3 MEFs, dermal fibroblasts Hepatocytes 58

Ascl1, Lmx1a and Nurr1 Mouse fibroblasts Dopaminergic neurons 51

Nr5a1, Wt1, Dmrt1, Gata4 and Sox9 MEFs Embryonic Sertoli-like cells 59

Gata4, Mef2c and Tbx5 TTFs Cardiomyocytes 53

Sox2 MEFs Neural stem cells 54

Ngn3, Pdx1 and Mafa Pancreatic exocrine cells Islet b-cells 60

Gata4, Hnf1a and Foxa3 TTFs Hepatocytes 40

Prdm16 and Cebpb Skin fibroblasts BAT 55

Ngn3 Hepatic progenitor cells Neo-Islets 61

Sox10, Olig2 and Zfp536 MEFs Oligodendroglial cells 62

Ascl1, Brn2, Myt1l, Lhx3, Hb9, Isl1 and Ngn2 MEFs Spinal motor neurons 41

The ttmTFs are marked in bold. BAT, brown adipose tissue; MEFs, mouse embryonic fibroblasts; TTFs, tail-tip fibroblasts.
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TFs often interact with each other to regulate gene
transcription22; these combinatorial interactions are commonly
identified by the yeast two-hybrid method. Using the endogenous
TF expression data in different tissues, these combinatorial
interactions among TFs derived from the artificial over-
expression system in yeast could be verified, such that an
interaction between two TFs could be ruled out if they were not
co-expressed in the same tissue. Interestingly, TFs with high
specificities tend to have less connectivity, whereas ubiquitous
TFs engage in more interactions than other TFs. As the largest
node, Smad3 was expressed in 23 out of the 24 adult tissues and
was connected with 38 TFs, ranging from the Smad3–Max
interaction in 23 tissues to the Smad3–Pax8 interaction in the
kidney alone. These observations suggested that a ubiquitous TF

interacts with different specific TFs to expand its regulatory
repertoire and perform regulatory functions in different tissues.

The TF sub-proteome is the driving force that shapes the tissue
proteome. We presented different ways of using our uniformed
data set of TF atlas for correlative bioinformatics analysis.
ttmTFs, which usually compose a small part of the total TFs in a
tissue, are the dominant drivers in forming and maintaining
tissue identities. ttmTFs are crucial in maintaining tissue identity,
and their TGs, particularly the groups that were controlled by
multiple ttmTFs, directly indicate the tissue functions. The
ttmTFs listed in this study covered most of the published key TFs
that were essential in direct tissue/cell type conversion from
fibroblast to the major cell type of the tissue. Interestingly, most
ttmTFs are among the most highly abundant TFs in the tissue,
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Figure 7 | Landscape of TF dynamics after PHx. (a) Four major upregulated TF groups and their accordingly GO pathways in different stages during liver

regeneration. GO terms were enriched using the TGs that were regulated by at least two TFs in the sub-clusters and expressed in according PHx data.
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indicating that they play a dominant role in the tissue and may be
candidates for tissue engineering and regenerative medicine
research.

As an in vitro approach and being naked DNA template, the
catTFRE approach does have its limitations. As naked DNA was
used to measure the potential DNA-binding activities of TFs, the
REs in the cell may be blocked in a nucleosome context or by
other histone/DNA modifications. The ‘activity’ of a TF as
measured by catTFRE may not reflect its actual activity in all loci
on the chromosome. While the multiple TFREs on catTFRE
allows for the enrichment and identification of many TFs, this
approach cannot distinguish the individual TF transcriptional
machinery nor dissect the TC–TF complex, prohibiting the
construction of the regulatory network between TFs and TCs.
A more precise approach, for example, using single TFRE to
purify TF–TC complexes may be applied to further validate
functional modules drawn in this study.

Taken together, our study constructed an atlas of TF
DNA-binding activities in mouse tissues, expanding the existing
knowledge of TFs on the proteome wide scale. The TF expression
patterns will have implications for our understanding of how TFs
execute their regulatory functions in tissues. Our study under-
scores the value of monitoring the TF sub-proteome of tissues to
uncover the transcriptional determinants of physiology and
pathology in mammals and provides a data set that can be used
to illuminate the ‘dark proteome’ of TFs.

Methods
Animals and organ collections. Six–eight-week-old male C57BL/6 mice were
purchased from Beijing HFK Bioscience Co., LTD (Beijing, China). All mice
were housed under standard conditions (a specific pathogen-free, temperature-
controlled micro-environment with a 12-h day/night cycle). Twenty-four adult
mouse organs and tissues (eye, skin, bladder, blood, thyroid, seminal vesicle, WAT,
BAT, tongue, pancreas, colon, small intestine, stomach, spinal cord, liver, heart,
kidney, brain, lung, muscle, spleen, thymus, adrenal gland and testis (males)) were
used in this study. Fetal tissues were collected from pregnant mice at different time
points (1.5 days, 6.5 days, 13.5 days and 18.5 days after conception) during
pregnancy (Fig. 1a). The mice were killed by cervical dislocation. Whole organs
were removed, and samples were quick-frozen in liquid N2 and stored at � 80 �C
for RNA extraction. Fresh tissue samples were collected to prepare nuclear extracts
(NEs). This study received ethical and scientific approval in compliance with the
animal care regulations of Institutional Animal Care and Use Committee, National
Center for Protein Sciences (The PHOENIX Center, Beijing).

Preparation of protein TFRE samples. The tissues were washed twice with
ice-cold phosphate-buffered saline to remove blood and other contaminates, then
suspended in 800 ml of Cytoplasmic Extraction Reagent I (CER I) buffer (NE-PER
kit, Thermo Scientific) and homogenized using a tissue grinder. Nuclear proteins
were extracted in accordance with the manufacturer’s instructions. Protein
concentrations were determined using the Bradford method (Bio-Rad SmartSpec
Plus, Bio-Rad Laboratories, Inc., USA). Approximately 0.15–8mg of the nuclear
proteins was extracted from each adult and fetal tissue. In each biological replicate,
tissues from 3 to 4 mice were pooled for each sample to further minimize the
individual differences between mice.

catTFRE pull-down and trypsin digestion. DNA was synthesized by Genscript
(Nanjing, Jiangsu Province, China). Biotinylated catTFRE primers were synthe-
sized by Sigma. Dynabeads (M-280 streptavidin) were purchased from Invitrogen.
Approximately 2–3 pmol of biotinylated DNA was pre-immobilized on Dynabeads
and then mixed with NEs from the tissues. The mixtures were supplemented with
ethylenediaminetetraacetic acid/ethylene glycol-bis(b-aminoethyl ether)-N,
N,N0 ,N0-tetraacetic acid to a final concentration of 1mM, adjusted with NaCl to a
total salt concentration of 200–250mM, and then incubated for 2 h at 4 �C. The
supernatant was discarded, and the Dynabeads were washed twice with NETN
(100-mM NaCl, 20-mM Tris-Cl, 0.5-mM ethylenediaminetetraacetic acid and 0.5%
[vol/vol] Nonidet P-40) and then twice with phosphate-buffered saline. The
catTFRE pull-down beads were re-suspended with 20 ml of 1� SDS loading
buffer and boiled for 5min. The samples were then loaded on 10-cm 10%
SDS–polyacrylamide gel electrophoresis gels and run to 1/3 of the length. The gel
was stained with Coomassie brilliant blue and then destained in 5% ethanol/10%
acetic acid solution. Six bands were excised according to the molecular weight
ranges and then subjected to in-gel trypsin digestion, as previously described45.

Partial hepatectomy. All partial hepatectomy surgeries were performed between
8:00 and 10:00. The mice were fasted for 12 h before surgery and intra-abdominally
anesthetized with pentobarbital sodium (30mg kg� 1). The PHx mouse model
(two-thirds hepatectomy) was established as described by Mitchell and
Willenbring46. After 12, 24, 48, 72, 120 and 168 h, the PHx mice underwent
relaparotomy, and liver tissues were taken for the TFRE and profiling experiments.
Groups of animals (n¼ 3–5 for each group) were killed at 0, 0.5, 1, 2, 3, 7 days after
surgery (Supplementary Fig. 7b) and two biological repeats were done with an
additional two operational repeats for one biological repeats, making a total of
three measurements per time point.

TF quantification capability. We performed serial dilution experiment with
3 pmol of catTFRE DNA with different amount of total NE (nuclear exact, 200 mg,
500 mg, 1, 2 and 5mg) from brain tissue (Supplementary Fig. 1a,b). The total MS
signal of TFs (chromatographic peak area) has high correlation coefficient
(R2¼ 0.959) with the total NE amounts. Notably, we got an excellent linearity
when NE amount ranged from 1 to 5mg. To this end, we used 3 pmol of DNA and
2mg of total NE for screening the TF atlas of mouse tissues.

LC-MS/MS analysis using Q exactive plus and orbitrap fusion. The samples
from catTFRE in-gel digestion were analysed on a Q Exactive Plus MS (Thermo
Fisher Scientific) interfaced with an Easy-nLC 1,000 nanoflow LC system (Thermo
Fisher Scientific). Tryptic peptides were dissolved with 10 ml of loading buffer
(5% methanol and 0.2% formic acid), and 5 ml was loaded onto a homemade trap
column (2 cm) packed with C18 reverse-phase resin (particle size, 3 mm; pore size,
120Å; SunChrom, USA) at a maximum pressure of 280 bar with 12 ml of solvent A
(0.1% formic acid in water). Peptides were separated on a 75 mm� 15 cm silica
microcolumn (3 mm C18, homemade) with a linear gradient of 5–35% Mobile
Phase B (acetonitrile and 0.1% formic acid) at a flow rate of 350 nlmin� 1 for
75min. The MS analysis was performed in a data-dependent manner with full
scans (m/z 400–1,500) acquired using an Orbitrap mass analyser at a mass
resolution of 70,000 at m/z 400. Up to 20 of the most intense precursor ions from a
survey scan were selected for MS/MS and detected by the Orbitrap at a mass
resolution of 15,000 at m/z 400. All the tandem mass spectra were acquired using
the higher-energy collision dissociation (HCD) method with normalized collision
energy of 27%. The automatic gain control for full MS was set to 3e6, and that for
MS/MS was set to 5e4, with maximum ion injection times of 60 and 80ms,
respectively. Dynamic exclusion time was 18 s, and the window for isolating the
precursors was 3 Th.

The PHx profiling samples were resuspended in 20 ml of loading buffer and
analysed by LC-MS/MS on an Orbitrap Fusion MS using the same nanoflow LC
system, column and gradient described above. For data-dependent acquisitions
using the Orbitrap Fusion, one MS full scan was performed using the Orbitrap
(m/z range¼ 300–1,400; R¼ 120,000; target value¼ 5e5), and then, the most
intense ions were selected in top-speed mode for fragmentation by HCD (target
value: 5,000; isolation window: 1.6 Th; threshold: 5e3) and MS/MS scans in the
IonTrap (IT). The MS/MS spectra were acquired with Rapid Ion Trap Scan Rate.
The dynamic exclusion time was 18 s, and the normalized collision energy was
set to 32%.

Peptide identification and protein quantification. Raw files were searched
against the mouse refseq protein database (27,414 proteins, version 04/07/2013)
with Proteome Discoverer (Thermo Fisher Scientific, version 1.4) using the
MASCOT47 search engine with percolator48. The mass tolerance of the precursor
ions was set to 20 p.p.m.. For the tolerance of the product ions, QE Plus was set to
50mmu, and Fusion was set to 0.5Da. Up to two missed cleavages were allowed for
protease digestion, and the minimal required peptide length was set to seven amino
acids. Carbamidomethylation of cysteine was set as a fixed modification, and
N-terminal protein acetylation and methionine oxidation were set as variable
modifications. For the TFRE experiments, the phosphorylation of Ser, Thr and Tyr
residues was also set as a variable modification. The data were also searched against
a decoy database so that protein identifications were accepted at a false discovery
rate of 1%. Homemade software was used to estimate the protein quantities based
on the precursor area under the curve. The amount of each gene product was
estimated with a label-free, intensity-based absolute quantification (iBAQ)
approach49. We then used the fraction of total (FOT) to represent the normalized
abundance of a particular TF. FOT is defined as a TF’s iBAQ divided by the total
iBAQ of all identified proteins. We replaced the FOTs less than 10� 8 with 10� 8 to
adjust extremely small values. Then FOTs were multiplied by 108 and log10
transformed to make the minimum value of log10(FOT) transformed to zero.

TF classification. We combined all DBPs, including TFs and TCs, to calculate the
ratio of DNA-related proteins in the total protein identifications. The results
showed DNA-related proteins account for an average of 22% in all protein
identifications (ranging from 13.6% (Blood) to 38% (Fetal Brain_E18.5) and
about 10% in all protein abundance (ranging from 2% in Blood to 23% in fetal
brain_E18.5)). We defined ubiquitous TFs as TFs detected in more than
50% tissues (12 tissues). Because the separation line for ubiquitous TFs and
non-ubiquitous TFs from Fig. 2f was 0.5, we chose the median log10 transformed
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value of 0.5 as the threshold. Ubiquitous-non-uniform TFs had a median log10
transformed value40.5 and a maximum value of 410� the median value.
Ubiquitous-uniform TFs had a median log10 transformed value 40.5 and a
maximum value of o10� the median value. Tissue-specific TFs only expressed in
one tissue not in the others. TFs with a transformed median expression value of
o0.5 and without much restriction of the maximum value were non-ubiquitous
TFs (non-ubiTFs, 640 TFs, accounting for 71.3% of the identified TFs), which
exhibited high expression in only a few tissues; TFs with a transformed median
expression value of40.5 were considered ubiquitous TFs (ubiTFs, 257 TFs, 28.7%)
expressed in a wide variety of tissues. Among them, the expression of 27 TFs
exhibited a maximum value of less than ten times the median value, indicating a
ubiquitous-uniform distribution (27 TFs, 3.1%); the rest of the TFs can be classified
as ubiquitous-non-uniform (230 TFs, 25.6%), with a maximum expression value
exceeding ten times the medium value.

To identify system-specific TFs, we identified the particular tissues that belong
to the same system. An average is taken for individual TFs among the tissues in the
system. For the ten systems, a Z-score is computed for all TFs in each system and
the top 30 TFs with the largest Z-score in each system were selected as system-
specific TFs. The ttmTFs are defined if they satisfied the following two conditions
(1) specifically enriched in the tissue with Z-scores 41 and (2) average Z-scores of
the mRNA expression level of their TGs exceed that of randomly selected genes.
Target genes’ mRNA expression data were obtained from the GEO database.

Protein–protein interaction annotation. We collected the known protein–protein
interactions between TFs from the open-access Human Protein Reference Database
(HPRD) (release 9, 2010-04-13). Homemade software was used to analyse the
protein–protein interactions among the TFs in each tissue, and each TF was
annotated with the number of edges and the TSPS22. The TSPS uses relative
entropy to quantify the extent to which the observed TF expression pattern departs
from the null distribution of uniform expression across all tissues. According to
this definition, a minimal TSPS of 0 would be reported for TFs that are expressed
uniformly across all tissues, whereas a maximal TSPS of 5 would be reported for
TFs that are only expressed in a single tissue. Using the TSPS, two distinct TF
populations were separated: one population of TFs with widespread tissue
expression (TSPSo1) and a second, smaller population with higher tissue
specificity (TSPS41). The TFs with TSPS 41 were almost the same as the
non-ubiquitous TFs defined by us above. A 1,000-time permutation was used to
test if interactions between ubiquitous TFs and not ubiquitous TFs were more
frequent than expected by chance.

Quantitative reverse-transcription polymerase chain reaction (RT-qPCR).
Total RNA was purified from tissues using the TRIzol reagent (Invitrogen)
according to the manufacturer’s protocol. Total RNA samples were verified to be
free of contaminating genomic DNA. RT–PCR was performed using the Super-
Script III First-Strand Kit (Invitrogen). Real-time PCR was conducted using the
SYBR Green PCR Master Mix (TOYOBO) in a Bio-Rad CFX96 Sequence Detection
System. The primers were chosen based on the principle described by Timothy and
Harukazu et al.22. Gene-specific primer pairs were collected from previously
published sequences or designed using Primer3 software (http://frodo.wi.mit.edu/
primer3/). The primers were purchased from Generay Biotech (Shanghai) Co.,
LTD. (Shanghai, China), and the sequences are listed in Supplementary Table 2.
Each measurement was performed in triplicate, and the results were normalized to
the expression of the Actin reference gene.

mRNA profiling and mapping of methylated DNA regions. We collected the
tissue-specific mRNA expression data from public data sets (brain, eye and seminal
vesicle from GSE9954; thymus, thyroid and tongue from GSE1133; BAT, WAT,
adrenal gland, bladder, heart, small intestine, kidney, liver, lung, pancreas, skeletal
muscle, spinal cord, spleen, stomach, testis and uterus from GSE10246; and
integrated data for colon and skin from CellNET). We only used genes with probe
sets in all three platforms (GPL1261: Affymetrix Mouse Genome 430 2.0 Array;
GPL1073: GNF1M, a non-commercial microarray; and CellNET: a mixed
expression profile for tissues constructed from hundreds of microarrays under
different conditions). DNA methylation maps for 12 adult mouse tissues were
downloaded from GSE42836 near the Hnf4a locus. Moreover, tsDMRs were also
downloaded from a previous publication44.

Hierarchical clustering and PCA. Unsupervised clustering was performed using
the pheatmap (Pretty Heatmaps) function in the R package (pheatmap, version
1.0.8). Briefly, Pearson’s correlation values were calculated for each TF pair based
on their tissue distribution profiles. The distances between the rows or columns of a
data matrix were computed as the Euclidean distance. The ‘Nuclear Receptor Ring
of Physiology’ illustrated in Fig. 4c was drawn using the application Phylodendron.
Separations were determined using PCA. For the ttmTF set, the first principal
component resulting from the analysis (PC1) was the main direction that was
informative for the blastoderm layer, and PC3 was the main direction that was
informative for the system. For all TF sets and non-ttmTF sets, PC2 was the main
direction that was informative for the blastoderm layer. The silhouette value was
used to measure how similar an object was to its own cluster (cohesion) relative to

the other clusters (separation). Using the first three PCs, the average silhouette
value for the ttmTFs was the highest among the three feature sets.

Co-expression modules. The correlation coefficient, which represents the occur-
rence of each TF across all tissues as a vector using coordinates of the TF FOT and the
coefficient between each pair of FOT vectors, was calculated according to the Pearson
correlation coefficient. If the two vectors did not pass Kendall’s Tau test, the coefficient
was set to 0. We searched for co-expression modules through diagonal. Three TFs
along the diagonal were used as module seeds, and they were required to exhibit good
correlation with each other and a correlation coefficient larger than 0.4. A new TF was
added to the module if it correlated well with the TFs in the module (that is, if more
than 2 coefficient were larger than 0.4). We used GSEA to construct a matrix of the
association of the DNA-binding ability of each TF with each of 5,296 gene sets
(including 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets, 217
Biocarta gene sets, 674 Reactome gene sets, 3,396 functional gene sets and 823 gene
ontology (GO) biological process terms). Module function was annotated by enrich-
ment analysis using the leading RNAs in the correlated GSEA terms.

Quantitative liver TF reference. As PHx is a dynamic process and prone to
experimental variations, we decided to include more initial experimental condi-
tions to define a more accurate initial state. We used 26 catTFRE experiments that
detected more than 150 TFs with at least one unique peptide in mouse liver as
reference. The amount of each TF was quantified using iBAQ described above.
FOT for TF and TC was used for normalization. Reference range of each TF was
calculated as 25th percentile to 75th percentile. Outlier TF in PHx experiments was
defined as those with amount greater than the third quartile (Q3) in two out of
three repeated experiments.

Function annotation. The GO terms that were enriched in the sets of enriched
genes were determined using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) Bioinformatics Resource v 6.7 with Fisher’s
exact test. A Reactome-based pathway enrichment analysis was performed
using the Reactome Pathway Analysis tool http://www.reactome.org/
#PathwayAnalysisDataUploadPage. ‘Project to human’ option was used, which
denotes that all non-human identifiers in the sample were mapped to their human
equivalents before the analysis was performed.

Data availability. All raw data and the Mascot output tables have been deposited
to iProX and can be accessed with the accession IPX00081900.
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