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Learning from data to design functional materials
without inversion symmetry
Prasanna V. Balachandran1, Joshua Young2, Turab Lookman1 & James M. Rondinelli3

Accelerating the search for functional materials is a challenging problem. Here we develop

an informatics-guided ab initio approach to accelerate the design and discovery of

noncentrosymmetric materials. The workflow integrates group theory, informatics and

density-functional theory to uncover design guidelines for predicting noncentrosymmetric

compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies

how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and

their interplay break inversion symmetry, while informatics tools learn from available data to

select candidate compositions that fulfil the group-theoretical postulates. Our key outcome

is the identification of 242 compositions after screening B3,200 that show potential for

noncentrosymmetric structures, a 25-fold increase in the projected number of known

noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19

compounds using phonon calculations, among which 17 have noncentrosymmetric ground

states including two potential multiferroics. Our approach enables rational design of materials

with targeted crystal symmetries and functionalities.
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N
oncentrosymmetric (NCS) oxide ceramics that break
all improper rotations and centres of symmetry
are challenging to discover. Materials with polar,

piezoelectric, chiral and those exhibiting circular dichroism
(collectively referred to as NCS materials) are defined by the
absence of inversion symmetry and are present everywhere—in
the form of organic amino acids, sugars and other biological
molecules1. Inorganic NCS materials containing oxide anions are
also not uncommon2. Quartz crystals with a helical arrangement
of corner-connected SiO4 tetrahedral units maintain the
punctuality of our mechanical timepieces3. At inorganic
crystalline surfaces, chirality plays a crucial role in corrosion
processes, heterogeneous catalysis and the fidelity of
enantioselective-based production or separation of industrial
solvents, plastics and pharmaceutical drugs4. Pb(Zr,Ti)O3,
BaTiO3 and BiFeO3 are some of the archetypal polar oxides
that have impacted many critical technologies5. Often inorganic
polar and chiral basic building units (BBUs) are selected and
assembled together, but acentric organization of BBUs within a
unit cell are difficult to predict due to the complex interplay of
chemistry and structure.

In the context of inorganic oxides, which is the focus of this
work, the design of NCS materials has relied mainly on BBUs
with metal centres that have d0 electronic configurations or
lone-pair cations, where the acentricity arises from an electronic
origin due to the pseudo- or second-order Jahn–Teller
(SOJT) effect6,7. A majority of inorganic oxides, however,
strongly prefer close-packed arrangements of ions and highly
symmetric cation coordination environments (for example,
octahedra). This is mainly due to the dominant electrostatic
effects that are optimized by favouring like–unlike interactions
(that is, positive and negative dipoles align equally and
oppositely), which stabilize atomic arrangements with inversion
symmetry8. In fact, the presence of BBUs with d0 metal centres
alone is not a sufficient condition for designing NCS materials.
For example, the perovskite SrTiO3 is a quantum paraelectric or
incipient ferroelectric9, whereas the isoelectronic layered
Ruddlesden-Popper (RP) Sr2TiO4 is a centric dielectric10.
Hence, it is the complex interplay between structure and
chemistry that determines the formation of NCS inorganic
oxides.

Alternative to pseudo-JT or SOJT effects, the ‘trilinear
coupling’, ‘hybrid improper’ or ‘geometric ferroelectricity’
mechanism, where two nonpolar lattice distortions (octahedral
rotations or tilting) couple to a polar lattice mode, have also been
shown to break the inversion symmetry with interesting
technological consequences11,12. Even in this case, no a priori
rules exist that guide the design of new hybrid improper
ferroelectric materials, unless exhaustive calculations are carried
out to map the chemical and energy landscape that subsequently
inform experiments12. As a result, NCS inorganic oxides are
challenging to discover.

Although high-throughput first principles-based methods have
shown promise in the design of NCS half-Heusler alloys13,
exhaustive calculations for more complex crystal structures
with numerous polymorphs (such as the RPs) and thousands
of unexplored chemical compositions have not (yet) been
demonstrated. This is partly because the potential energy
surface of complex oxides is difficult to navigate. Phonon
instabilities at high-symmetry points away from the G-point in
the irreducible Brillouin zones cause the primitive unit cell to
multiply several fold, resulting in large system sizes and vast
numbers of unique atomic arrangements. It is challenging
to rigorously evaluate the energetics of all structures in a
high-throughput manner. Furthermore, chemistries with
partially filled d (and/or f) orbitals and the existence of
energetically competing ground states complicate the structure
prediction process. As a result, novel approaches are desired to
guide the first principles calculations in an effective manner.
Materials informatics, a growing field at the intersections of many
scientific disciplines including data and information science,
statistics, machine learning (ML) and optimization, has the
potential to accomplish this objective14.

Here we develop a predictive data-driven computational
framework that unites applied group theory, informatics
techniques and ab initio electronic structure calculations
for designing novel NCS materials. We apply it to the
two-dimensional n¼ 1 RP structure family (Fig. 1a), for which
to date few compositions exist in NCS crystal classes15–17.
Nonetheless, the chemical search space is (Fig. 1b). We use
informatics-based methods to screen the chemical space and
downselect 242 compositions that show greater promise for NCS
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Figure 1 | Octahedral connectivity of n¼ 1 RP oxides and the chemical search space. (a) The n¼ 1 RP phase has a single layer of octahedra that are

connected in two dimensions, shown within brackets, whereas there is no connectivity in the third dimension. (b) Periodic table showing the potential

30 A-site and 19 B-site elements that occupy the n¼ 1 RP phase. In principle, there are more than 19 B-site elements when we also consider the multiple

valence states of certain elements (for example, Mn, Fe, Co, Ni and so on). This defines the chemical space for our informatics approach.
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ground states. The potential for discovering novel NCS n¼ 1 RP
compounds has key implications in technological applications
that require a broad range of functionalities including
high-temperature piezoelectricity, tunable bandgaps, improper
ferroelectricity, multiferroicity and thermoelectricity. We focus in
detail on the design of NaRSnO4 stannates and NaRRuO4

ruthenates (where R¼ La, Pr, Nd, Gd or Y) that were predicted
to have NCS ground state structures from informatics and
subsequently validated by density-functional theory (DFT). For
the stannates, which are candidate materials for sensors and
transparent conducting oxides18, we find two energetically
competing NCS ground state phases: P�421m (piezo-active) and
P21212 (chiral and piezo-active). We calculate their electronic
bandgaps in the P�421m crystal symmetry using hybrid exchange-
correlation functionals, finding optical transparency in the visible
light regime. We also compute their piezoelectric responses that
show a dependence on R-cation size. In sharp contrast, the NCS
NaRRuO4 are magnetic with metallic, half-metallic or insulating
electronic structures. Their ground state is determined to be
either piezo-active with P�421m symmetry when R¼ La, Pr and
Nd or polar with Pca21 symmetry when R¼Gd and Y. Moreover,
there is a transition from ferromagnetic metallic (R¼ La)
or half-metallic (R¼Pr, Nd) to antiferromagnetic insulating
(R¼Gd, Y) character as a function of R-cation size. Therefore,
these bulk ruthenates are predicted to belong to the intriguing
class of NCS metals19,20 and half-metals with piezo-active
symmetries or antiferromagnetic insulators with polar
symmetry (that is, multiferroics). Last, we also test our
predictions for an additional nine new compounds with
different cations occupying the B-sublattice of the RP structure
(shown in Fig. 1a). Among them, seven were validated to have an
NCS ground state structure—NaLaZrO4, NaLaHfO4, KBaNbO4,
NaLaIrO4, NaCaTaO4, SrYGaO4 and SrLaInO4. These results
establish our computational framework as a powerful tool for
crystal symmetry classification, structure-based property design
and control.

Results
Approach. Our search for NCS oxides relies on a multifaceted
theoretical approach, which reformulates the discovery
objective into identifying structure—chemistry interrelationships
(as shown in Fig. 2). The design strategy focuses on three key
criteria obtained by subdividing the design process into unique
objectives with specific tasks:

� Structural: How can the atomic structure, or configuration of
oxygen octahedra BBUs, be designed to support the desired
interaction?

� Chemical: Which combinations of chemistries will promote
that structural configuration?

� Stability: Is the proposed composition the global ground state?

Following classification learning from informatics and
evaluation of the energetic stability from first principles methods,
the final design relies on response optimization by leveraging
additional degrees of freedom to further promote the targeted
behaviour. Some of the strategies include searching for micro-
scopic mechanisms and external conditions (such as epitaxial
strain) to energetically stabilize those geometries. We note that
this paper is a significant advancement from the earlier work of
Balachandran et al.15 where the emphasis was on enumerating
symmetry guidelines.

Group theory. In an earlier work, Balachandran et al.15

formulated symmetry guidelines for exploring and designing

NCS phases in the n¼ 1 RP structures based on group theory.
Therefore, we discuss only the key results here. Starting from the
centrosymmetric (CS) aristotype structure (shown in Fig. 3a),
various symmetry-allowed cooperative atomic displacements
(also referred to as ‘shuffles’) were enumerated that transform
the aristotype CS structure to a NCS structure of lower symmetry.
Particularly, the focus was on CS-NCS phase transitions that are
second order or weakly first order, where the symmetry-lowering
distortions arise from (i) non-polar octahedral distortions (tilting
or rotations) due to phonon softening at the zone boundaries
in the BZ of the I4/mmm space group, (ii) A/A0 cation ordering,
(iii) the interplay between two or more octahedral distortions and
(iv) the interplay between octahedral distortions and A/A0 cation
ordering. The necessity to search for alternative routes to
breaking inversion symmetry was motivated by the fact that
NCS phases are seldom seen in n¼ 1 RPs, which has been
explained by the disconnected octahedral layers destroying the
coherency required for cooperative off-centring displacements,
and thus ferroelectricity21.

Balachandran et al.15 found three important symmetry
guidelines (given in the rows of Table 1) for lifting parity in the
n¼ 1 RP structures. Note that all involve A/A0 cation ordering
(Fig. 3b) that transform as irreducible representation (irrep) M�

3
and couple with octahedral rotations or tilting (as shown in
Fig. 3c–e). The structural attributes may be satisfied by any of the
following approaches:

Route 1: Out-of-phase octahedral tilting that transform as irrep
Xþ
3 with order parameter direction (OPD) (Z1,Z1), which on

superposition with irrep M�
3 (Z1) would yield a piezoelectric

(P�421m) space group (Fig. 3c).
Route 2: Out-of-phase tilting that transform as irrep Xþ

3 with
OPD (Z1,Z2) on superposition with M�

3 (Z1) would yield a chiral
(P21212) and piezo-active space group (Fig. 3d).

Route 3: Coupled irrep Xþ
2 "Xþ

3 with OPD (0,Z1;Z2,0) when
superposed with irrep M�

3 (Z1) would yield a polar (Pca21)
space group (Fig. 3e), where the matrix elements of Xþ

2 and Xþ
3

irreps accommodate atomic displacements that correspond to
Jahn-Teller-like distortions and out-of-phase tilting, respectively.

Note that there is another type of A/A0 cation ordering,
transforming as irrep G�

3 , which lifts inversion solely from the
ordering (we refer to it as the trivial case). However, we do not
consider G�

3 A/A0 cation ordering here. Therefore, the key
materials design question is: What combinations of chemical
elements from the vast chemical space would stabilize these NCS
phases? We address this question using materials informatics.

Materials informatics. In Fig. 4, we show the frequency of
occurrence of experimentally known crystal symmetries in the
bulk n¼ 1 RPs. We report only the low temperature crystal
symmetries in Fig. 4 and do not explicitly consider temperature
dependence of the crystal structures in our informatics analysis.
Our definition of low temperature includes experimentally
observed structures r300K. Some RP compounds also undergo
structural transformation at a much lower temperature (for
example, La2NiO4 (ref. 22)). Under such circumstances, we take
the lower temperature crystal structure to be our label
for informatics. This simplification was necessary because 0 K
DFT calculations are used to validate the informatics-based
predictions. Balachandran et al.15 showed that as the temperature
increases, the propensity for forming high-symmetry phases also
increases. We anticipate those results to hold here.

Our literature survey shows that B45% of the compositions
are undistorted (denoted as f in Fig. 4). Similarly, there are also a
significant number of compositions that undergo symmetry-
lowering distortions, albeit preserving the spatial inversion
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symmetry. One of the key observations from Fig. 4 is that there
are only nine compounds with NCS space groups that conform
with our chemical search space (Fig. 1b). In the literature, the
family of cation-ordered NaRTiO4 and LiRTiO4 (found only
recently), where R¼ La, Nd, Dy, Gd, Sm, Ho, Eu and Y, have
been experimentally shown16,17 to have the piezoelectric P�421m
space group [Xþ

3 "M�
3 (Z1,Z1;Z1)]. The nominal electronic

configuration of Ti4þ in these compounds is d0. The coupling
between TiO6 octahedral tilting (that transform as irrep Xþ

3
(Z1,Z1) as shown in Fig. 3c) and Li/R or Na/R cation ordering

(that transform as irrep M�
3 (Z1) as shown in Fig. 3b) lifts the

inversion symmetry—in accordance with Route 1. The only other
experimentally known polar n¼ 1 RP oxide is the A- and B-site-
ordered (LaSr)(Li0.5Ru0.5)O4 compound, which is reported in the
NCS Imm2 space group23. In this compound, a combination of
A-site and B-site cation ordering work in concert to lift the
inversion symmetry. In addition to these compounds, Pb2TiO4,
Ca2IrO4, Sn2SnO4, cation-ordered LaANiO4 (A¼ Sr, Ca and Ba)
LaSrAlO4 and LaSrMnO4 have also been theoretically predicted
to have NCS structures15,24–28; however, these results have not
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Figure 2 | Predictive materials discovery framework. Synergistic integration of applied group theory, materials informatics and ab initio electronic

structure calculations for designing novel functional materials. Applied Group Theory determines the geometric rules, uncovers the crystallographic

symmetry restrictions and then subsequently shows how to lift them to achieve NCS structures for a given crystal structure topology. Materials informatics

uses the data from experiments, features (such as orbital radii) that capture the chemical trends in the constructed data set and statistical inference tools

to extract QCSR that guides selection of chemical compositions. DFTcalculations validate the predictions from materials informatics. We then recommend

the validated chemical compositions for experimental synthesis and characterization, eventually leading to its discovery. Experimentally synthesized

compositions augment the training set for a second materials informatics iteration and the process repeats until desired materials are discovered14.

In this paper, we focus on computational tasks 2 and 3 (boxed).
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Figure 3 | A/A0 cation ordering and octahedral tilting in the n¼ 1 RPs for NCS materials design. (a) High-symmetry aristotype structure (f, I4/mmm).

(b) One of the A/A0 cation ordering schemes (irrep: M�
3 (Z1); space group (s.g.): P4/nmm). (c) Out-of-phase octahedral tilting (oxygen displacements

indicated using arrows) (irrep: Xþ
3 (Z1,Z1); s.g.: P42/ncm) and lattice constants a and b are of equal length. (d) Out-of-phase octahedral tilting (irrep:

Xþ
3 (Z1,Z2); s.g.: Pccn) and lattice constant aab. (e) Coupled distortions (irrep: Xþ

2 "Xþ
3 (0,Z1;Z2,0); s.g.: Pbca), where Xþ

2 (0,Z1) and Xþ
3 (Z2,0) represent

Jahn–Teller-like out-of-plane compression and out-of-phase octahedral tilting, respectively.
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been experimentally verified. Recently, the metastable Ca2IrO4

was epitaxially grown on a YAlO3 substrate in the n¼ 1 RP phase
using pulsed laser deposition29. However, the authors did not
report its crystal symmetry. Therefore, we do not consider these
chemistries in our informatics analysis.

In the family of n¼ 1 RPs with relatively simple stoichiome-
tries such as AA0BO4, where A and A0 are two chemical species
(similar or dissimilar) occupying the A-site and B is a cation with
6-fold octahedral coordination, there are B3,200 potential
chemical compositions that satisfy crystal chemistry and
stoichiometric guidelines (for example, charge neutrality), and
therefore are, in principle, amenable for experimental synthesis.
However, only 3% have been experimentally synthesized,
and among these, only nine have NCS phases. The objective of
our informatics analysis is to utilize statistical inference and
machine learning (ML) methods for establishing quantitative
chemistry-symmetry relationships (QCSR) of known materials in
Fig. 4. These QCSRs, in turn, serve as a guide to rapidly screen the
vast chemical space and identify new, previously unexplored
compositions that favour the distortions given in the Table 1.

Data set. In our ML approach, we build a data set of
experimentally known materials that includes both CS and NCS
structures. Even though our computational design focuses on
AA0BO4 stoichiometries, our training data set includes RP
compositions that deviate from the AA0BO4 stoichiometry (see
data set in the Supplementary Information). We describe each
n¼ 1 RP composition uniquely in terms of its crystal symmetry
or irrep (referred to as ‘class label’ in the ML jargon) and a set of
features. We use Waber–Cromer orbital radii as features for
ML30. Orbital radii and distortion modes have been utilized in the
past for predicting structures and formabilities of complex
oxides31,32. Our ML objective is to build a classification model
that predicts crystal symmetries or irrep labels from orbital radii.
All 83 experimentally known RP chemical compositions (after
removing (LaSr)(Li0.5Ru0.5)O4, because we do not consider the
element Li in our chemical space, see Fig. 1b) were written in the
simplified A2BO4 stoichiometric form, where the A- and B-sites
can have two or more elements with partial site occupancies.
We used a total of 12 and 10 orbital radii features to describe the
A- and B-sites, respectively. If there were two or more elements
occupying either the A- or B-sites, then linear combinations
weighted by their relative stoichiometric proportions were used
to build the features.

We constructed two data sets for classification learning that
uses: (i) space groups as class labels (an obvious choice) and
(ii) irreps corresponding to octahedral tilting, rotations, or lack
thereof as class labels. Here, we focus mainly on the ML results
from the latter data set (case (ii)) that uses irreps as class labels,
which allows us to elegantly isolate octahedral rotations or tilting
from cation ordering. As a result, we can group or combine two
space groups under the same label. For example, we combine
compositions with the I4/mmm and P4/nmm space group
together (under the label, f), because in both cases there are no

octahedral rotations or tilting. One of the key differences between
I4/mmm and P4/nmm is that in P4/nmm the A-site Wyckoff orbit
is split into two unique crystallographic sites15. Similarly, we can
combine space groups P�421m and P42/ncm into a single irrep, Xþ

3
(Z1,Z1). Such data transformation reduces the number of unique
class labels from 9 to 7 (see inset in Fig. 4) for classification
learning. The main disadvantage with such grouping is that our
QCSR model now cannot distinguish between ordered and
disordered structures. This should not affect our NCS materials
design goal because of advancements in the nonequilibrium
synthesis and processing of these oxides. Recently, there have
been experimental demonstrations of layer-by-layer growth of
A/A0 cation-ordered n¼ 1 RPs using molecular beam epitaxy
with unprecedented control33. We also tested the predictive
power of our ML models by intentionally leaving out 14
compounds during training (which reduces the size of our
training set from 83 to 69 compounds). One of our informatics
goals is to validate whether our classification learning can identify
the labels correctly for the left out compounds, before using them
for making new predictions.

Even after reducing the number of unique class labels from 9 to
6 (since there is only one chemical composition with irrep G�

3 ,
which we do not consider for ML), we must still address the
problem of class imbalance, where some irrep class labels are
found more frequently than others. This kind of class imbalance
is problematic for ML. To test the implications of class imbalance,
we trained a decision tree classification model using the
imbalanced data set and found that compositions with space
group Pccn or Xþ

3 (Z1,Z2) were 100% misclassified. As shown in
Table 1 and Fig. 3, Pccn or Xþ

3 (Z1,Z2) is one of the desired class
labels for designing NCS materials. Therefore, the class-imbalance
problem must be addressed.

A number of methods have been developed in the computer
science and artificial intelligence literature to overcome the class-
imbalance problem34,35. Some of them include: oversampling
(that is, randomly duplicating instances of the under-represented

40

35

30

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

Fr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e

25

20

15

10

5

0

40

Target

NCS

Γ
– 3

NCS

35

30

25

20

15

10

5

0

P 4

I4
/m
m
m

P
4/
nm

m

Pb
ca

Pb
cm

Pc
cn

Im
m

2

P
4 2

/n
cm

C
m
ca

I4
1
/a
cd

P
42

1
m

X
+ 3 
(0

,�
1

)

X
+ 3 
( �

1
, �

1
)

X
+ 3 
(�

1
,�

2
)�

X
+ 2
⊕

X
+ 3 
 

–

Figure 4 | Distribution of experimentally known RP oxides. Our survey

resulted in a total of 84 compounds, which we note represents only a small

fraction of the overall combinations of hypothetically feasible chemistries.

Except for the nine compounds indicated in space groups P�421m and Imm2,

there are no other experimental reports of NCS phases in n¼ 1 RP oxides.

Inset: The space groups are transformed into their corresponding

irreducible representations (irreps) and A/A0 cation ordering is not

explicitly considered. The symbol f denotes no octahedral rotation or

tilting. Irreps that we target for NCS materials design are indicated using the

dotted rectangle in the inset.

Table 1 | Irreps, OPDs, SGs and mode representation of
distorted structures arising from rotational modes (Xþ

2 and
Xþ
3 ) and A-site cation ordering (M�

3 ).

Irreps OPD SG MR

Xþ
3 "M�

3 (Z1,Z1;Z1) P�421m RotationþACO
Xþ
3 "M�

3 (Z1,Z2;Z1) P21212 RotationþACO
Xþ
2 "Xþ

3 "M�
3 (0,Z1;Z2,0;Z1) Pca21 RotationsþACO

ACO, A-site cation ordering; MR, mode representation; OPD, order parameter direction;
SG, space group; ", coupled distortions.
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class category), undersampling (random removal of instances of
the most frequently occurring class) and interpolation schemes.
In this work, we utilize an oversampling scheme referred to as
synthetic minority class oversampling technique (or SMOTE)34,
in which the under-represented class labels are oversampled by
creating ‘synthetic’ examples of extra or fictitious training data
points from the original imbalanced data. It is based on a
k-nearest-neighbour analysis and one of its main advantages
(relative to other algorithms) is that the extra data points, in
principle, informs the ML models to create larger and less specific
decision regions. Additional details about the algorithm are
described in the Methods section.

We took the data set that contained irreps as class labels and
applied SMOTE to construct synthetic data points for the two
irrep labels, P4 and Xþ

3 (Z1,Z2). We created a total of three and six
synthetic data points for the under-represented P4 and Xþ

3 (Z1,Z2)
labels, respectively. Our training data set size now increased to
78 compounds (69 originallyþ 9 from SMOTE) for classification
learning. We confirmed using principal component analysis
(PCA) that SMOTE did not affect our data manifold
(Supplementary Fig. 1).

Data preprocessing. Our NCS materials design is initiated
by exhaustively enumerating, at first, all possible AA0BO4

combinations that satisfy crystal chemistry and stoichiometric
rules (for example, charge neutrality). As noted before, we use
Waber–Cromer orbital radii as features. We then augment this
exhaustive data set with the 78 n¼ 1 RPs. Note that at this point,
we do not include the irrep class labels in our data set. Now, we
have a total of 3,253 chemical compositions and 22 orbital radii
features.

We autoscaled the data (normalized to zero mean and unit
variance) and applied PCA, which constructs linear combinations
of weighted contributions of orbital radii (see Supplementary
Figs 2 and 3). In a recent work, Balachandran et al.36 showed
that in a data set containing orbital radii as features, PCA
removes redundancy of information, reduces data dimensionality
and constructs physically meaningful linear combinations of
orbital radii (see Supplementary Note 1). In addition, principal
components (PCs) are also independent of one another
(assuming Gaussian or Normal distribution). After PCA, we
reduced the dimensionality of our data set from 22 orbital radii
features to 8 PCs, which together capture 490% of total variance
in the data set. We then identify and isolate 78 chemical
compositions for which the irrep labels are experimentally

known; we refer to this data set as the training set. The
remaining compositions are referred to as the ‘virtual set’ defining
the vast chemical search space yet to be explored for new NCS
materials design.

Classification learning. We utilized the J48 decision tree
classification learning algorithm, as implemented in WEKA,
for establishing QCSR37,38. The reasons for choosing the J48
algorithm are discussed in the Methods section. We constructed
five bootstrapped samples of 78 compositions each from the
original training set. We then trained the decision tree algorithm
using the five bootstrapped samples and constructed five decision
tree models (Supplementary Figs 4–8). The classification
accuracies for the five decision tree models were evaluated on
the training data set and by 10-fold cross-validation. The results
are given in Supplementary Table 1 and Supplementary Note 2.
The average classification accuracy from the five bootstrapped
decision trees using the 10-fold cross-validation is B80%. These
results indicate that more accurate QCSR models could
potentially be formulated either through alternative feature
selection methods39 or by utilizing other (kernel-based) ML
algorithms (which we do not address here). Furthermore, we also
tested our decision trees to determine whether they could
correctly identify the irrep labels for 14 compounds, which
were intentionally held out during the training process. Results
are given in Table 2. Our ensemble of decision trees correctly
labelled with Z60% accuracy (except for YSrCrO4 and Ca2CrO4)
12 out of 14 compounds in the independent test set, giving
confidence in our classification learning.

Using the five bootstrapped decision trees, we screened a total
of 3,175 compositions in the virtual set and filtered 242 new
compositions that showed potential for NCS ground state
structures. At this stage, we retained only those compositions
that were identified to be NCS, that is, belonging to either Xþ

3
(Z1,Z1), Xþ

3 (Z1,Z2) or Xþ
2 "Xþ

3 (0,Z1;Z2,0), by at least three out
of the five decision trees. We then created additional filters to
remove data points that contained (i) toxic elements, such as Pb,
Hg and Cd, (ii) compositions where both A and A0 sites were
occupied by the same element and (iii) compositions with A or A0

site elements that were not part of the original training data set
(for example, Cs, Rb, Tl, Ag and Mg).

We note that some disagreement is expected between our
predictions and experiments (or calculations), particularly when
concerned with the transition metal elements whose valence state
falls within the strong electron correlations regime (for example,

Table 2 | A comparison between experimental and predicted irreps to independently validate the classification models.

RP oxides Experimental irrep Predicted irrep Prediction accuracy (in %)

CaSrRuO4 (ref. 74) P4 P4 60
LaSrFeO4 (ref. 75) f f 100
LaSrCoO4 (ref. 76) f f 100
NdSrCoO4 (ref. 76) f f 100
GdSrCoO4 (ref. 76) f f 100
LaSrCrO4 (ref. 77) f f 100
YCaCrO4 (ref. 77 Xþ

3 (Z0,Z1) Xþ
3 (Z0,Z1) 80

YSrCrO4 (ref. 77) Xþ
3 (Z1,Z2) f 0

SmCaCrO4 (ref. 78) Xþ
3 (Z0,Z1) Xþ

3 (Z0,Z1) 100
LaCaFeO4 (ref. 79) Xþ

3 (Z0,Z1) Xþ
3 (Z0,Z1) 80

Ca2CrO4 (ref. 80) P4 P4 and Xþ
3 (Z0,Z1) 40

NaDyTiO4 (ref. 16) Xþ
3 (Z1,Z1) Xþ

3 (Z1,Z1) 100
NaSmTiO4 (ref. 16) Xþ

3 (Z1,Z1) Xþ
3 (Z1,Z1) 100

NaHoTiO4 (ref. 16) Xþ
3 (Z1,Z1) Xþ

3 (Z1,Z1) 100

Prediction accuracy (in %) is the ratio of the number of trees that correctly predicted the irrep label to the total number of trees (¼ 5) used for prediction. All experimentally reported compounds have
disordered A-site arrangement. In Ca2CrO4, our classifier predicts with 40% confidence that both P4 and Xþ

3 (Z0,Z1) labels are equally likely and experimentally, P4 is observed.
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Ti3þ , Cr3þ , V3þ , Mn3þ and so on), mainly because there were
very few instances of chemical compositions with these transition
metal cations in our training set. Our refined results, after
screening through various filters and removing chemical
compositions that could fall in the strongly correlated regime,
included a total of 242 new chemical compositions that show
promise for NCS structures.

The following octahedral B-site cations in the virtual set are
predicted to have NCS structures in the n¼ 1 RP oxides: Ga3þ ,
In3þ , Ti4þ , Zr4þ , Ru4þ , Sn4þ , Hf4þ , Ir4þ , Nb5þ and Ta5þ .
We could also exclude In3þ , because of the experimental
difficulties in forming n¼ 1 RP structures using equilibrium
synthesis and processing techniques40 (although we do not
preclude stabilizing In-based n¼ 1 RPs using non-equilibrium
methods). The chemical compositions for all predicted NCS
materials are listed in Table 3. Additional details can be found in

Supplementary Table 2, Supplementary Note 3 and the data sets
can be downloaded from ref. 41. To summarize, using informatics
we identified 242 new n¼ 1 RP chemical compositions with
potential for NCS crystal structures, which significantly expands
the chemical space of NCS n¼ 1 RP oxides (B25-fold increase).

Density-functional theory. On the basis of the group theory and
materials informatics analysis, we first validate our predictions by
assessing the energetic stability component (Task 3 in Fig. 2) for
ten downselected NaRSnO4 and NaRRuO4 compounds, where
R is a rare-earth element (R¼ La, Pr, Nd, Gd and Y) using DFT
calculations. In our calculations, Na1þ and R3þ cations were
ordered in accordance with the irrep label M�

3 (Z1), as shown in
Fig. 3b. To the best of our knowledge, no previous experimental
or theoretical data exists for either NaRSnO4 or NaRRuO4 com-
pounds. In addition, stannates have implications in the design of
transparent conducting oxides18 and ruthenates are potential
materials for investigating metal–insulator transitions42.

We choose especially NaRSnO4 and NaRRuO4 for validation,
motivated (albeit naively) by the adaptive design paradigm14,
where the objective is to iteratively improve the predictions of
the classification model. Typically, the improvements are made
by choosing chemical compositions for experiment that show
promising characteristics (such as NCS crystal classes as discussed
here), yet have large uncertainties. Here, NaRSnO4 and NaRRuO4

satisfy these criteria, because the predictions from the five
decision trees were Xþ

2 "Xþ
3 (NCS), Xþ

3 (Z1,Z2) (NCS),
Xþ
3 (0,Z1) (CS), Xþ

2 "Xþ
3 (NCS) and Xþ

3 (Z1,Z2) (NCS),
corresponding to Pca21 (polar), P21212 (chiral), Pbcm
(centrosymmetric), Pca21 (polar) and P21212 (chiral) space
groups, respectively. Four out of the five decision trees predict
these compounds to have a chiral or polar structure, making them
promising NCS candidates, yet the irrep labels or space groups
are different, indicating uncertainty. Furthermore, with stannates
the nominal electronic configuration of Sn4þ (4d10) is different
from that of SOJT-cation Ti4þ (3d0), thereby presenting an
interesting case for comparison between the two B-site octahedral
cations. The Shannon ionic radii for Sn4þ and Ti4þ in the six-
fold coordination are 0.69 and 0.605Å, respectively43, making
their ionic sizes within the hard-sphere model also different.
Similarly, ruthenates (with Ru in nominally 4þ ionic state) have
partially filled 4d electrons with four electrons occupying the t2g
orbital manifold and are quite distinct from the 3d0 titanates.

Stannates. We performed full structural relaxations for
NaRSnO4 (where R¼ La, Pr, Nd, Gd and Y) within the
generalized gradient approximation (cf. Methods). The phonon
dispersions are given in Supplementary Fig. 9, from which we
identify a common set of six candidate crystal symmetries from
‘freezing in’ the imaginary phonon modes of the high-symmetry
paraelectric reference phase (P4/nmm) for determining the
ground state structure. They include Pmn21, Pc, P�421m, P�42m,
I�42m and Pnma. In addition to these six crystal symmetries, we
also considered three more symmetries, namely P21212, Pbcm and
Pca21, as recommended by ML to unambiguously confirm the
ground state. Therefore, in total, we considered nine distorted
candidate structures. The total energy data from DFT calculations
is given in Table 4, which shows that all stannates exhibit a strong
energetic competition between the NCS piezoelectrically active
P�421m [Xþ

3 (Z1,Z1)] and chiral P21212 symmetries [Xþ
3 (Z1,Z2)].

We find that the total energy difference is o0.1meV per f.u.
(Table 4) between the two NCS phases. A closer examination of
the two converged crystal structures revealed that they differ
mainly in the in-plane lattice parameters (in P�421m a¼ b,
whereas in P21212 aab and this is shown in Fig. 3c,d,
respectively). Furthermore, in P21212 the in-plane lattice constant

Table 3 | Full list of 242 predicted AA0BO4 RP compounds
from classification learning that show propensity towards
NCS structures.

B-cation [A; A0 cation combinations]

Ga3þ [A¼ Sr; A0 ¼Y, Er, Tm and Yb]
[A¼Ba; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]

In3þ [A¼Ca; A0 ¼Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]
[A¼ Sr; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu]
[A¼Ba; A0 ¼Y and Bi]

Ti4þ [A¼Na; A0 ¼Bi, Ce, Pm, Tm, Yb and Lu]
Zr4þ [A¼Na; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,

Er, Tm, Yb and Lu]
[A¼K; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]
[A¼Ca, Sr; A0 ¼Ba]

Ru4þ [A¼Na; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu]
[A¼K; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]
[A¼Ca, Sr; A0 ¼Ba]

Sn4þ [A¼Na; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu]
[A¼K; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]
[A¼Ca; A0 ¼Ba]

Hf4þ [A¼Na; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu]
[A¼K; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]
[A¼Ca; A0 ¼Ba]

Ir4þ [A¼Na; A0 ¼Y, Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu]
[A¼K; A0 ¼ Bi, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu]

Nb5þ [A¼Na; A0 ¼Ca, Sr and Ba]
[A¼K; A0 ¼Ca and Ba]

Ta5þ [A¼Na; A0 ¼Ca, Sr and Ba]
[A¼K; A0 ¼Ca and Ba]

NCS, noncentrosymmetric; RP, Ruddlesden-Popper.
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a was found to be not equal to b only in the fourth or fifth
decimal point. Therefore, we assign the ground state structure to
be NCS P�421m space group for the stannates. We conclude from
our DFT calculations that the RP stannates are NCS, in good
agreement with the insights from ML and the inversion symmetry
is broken due to the coupled action of SnO6 oxygen octahedral
tilting and Na/R cation ordering (Route 1).

We then computed the bandgaps (Eg) for each of the
compounds using the HSEsol exchange-correlation functional
(which often more accurately reproduces experimental results44)
and found them to be in the range 4.3 to 4.5 eV (Table 5), similar
to Ba2SnO4 (Eg¼ 4.41 eV)18. The amount of exact exchange used
in the calculations was tuned using the known experimental
bandgap of BaSnO3 (ref. 45).

We next computed the piezoelectric strain coefficients (dij) for
each compound in P�421m space group (Fig. 5); the dij response is
marginally smaller than that reported for the titanates16, but
follows the same trend (increasing with decreasing atomic radius,
up to R¼Gd and then decreases).

Ruthenates. All DFT calculations were performed using the
spin-polarized DFTþU method, where an effective Hubbard-U
of 1.5 eV was used to treat the correlated Ru 4d electrons
(cf. Methods). The phonon dispersions are given in
Supplementary Fig. 10 and show some similarities with the
stannates. We explored a total of nine distorted crystal
symmetries to determine the ground state (six from phonon
calculations and three from ML). The total energies from DFTþU
for NaRRuO4 in different crystal symmetries and ferromagnetic
spin order are given in Table 4; the ground state is determined to
be NCS for NaLaRuO4, NaPrRuO4 and NaNdRuO4 with two
competing structures, P21212 and P�421m. Moreover, in the P21212
symmetry, a was found to be not equal to b only at the fourth
decimal point (similar to the stannates). We also performed
additional DFTþU calculations for the top two lowest energy
structures (namely P�421m and Pca21), where we now impose
antiferromagnetic spin order on the in-plane Ru atoms (shown
schematically in Supplementary Fig. 11). The total energy results
are given in Table 6, from which we conclude that the NCS

P�421m space group with ferromagnetic Ru4þ–O2�–Ru4þ

interactions is the likely ground state for these compounds
(Route 1).

In the case of NaGdRuO4 and NaYRuO4, the ground state
structure is also determined to be NCS, but in polar Pca21 crystal
symmetry (see Table 4). Furthermore, in both NaGdRuO4 and
NaYRuO4, the Pca21 structure with in-plane antiferromagnetic
Ru4þ–O2�–Ru4þ interactions (Supplementary Fig. 11) were
found to be 1.44 and 5.54meV per atom lower in energy,
respectively, than that for the ferromagnetic structures. The total
energy data along with Ru-atom magnetic moments are given in
Table 6. Thus, we predict NaGdRuO4 and NaYRuO4 to have
polar Pca21 ground state structures (Route 3) with antiferromag-
netic spin order.

We also calculated the electronic band structures for all five
NaRRuO4 in their respective ground states. The results are shown
in Supplementary Fig. 11. We find that NaLaRuO4 is metallic
with bands crossing the Fermi level in both the spin-up and
spin-down electron channels. On the other hand, the NaPrRuO4

and NaNdRuO4 are found to be half-metals, that is, bands cross
the Fermi level only in the spin-down channel and a gap appears
for the spin-up channel. Moreover, the size of the gap increases as
the rare-earth cation size decreases. This occurs because the
relative amplitude of RuO6 octahedral tilting also increases
with decreasing rare-earth cation size, impacting the electronic
bandwidths of the Ru-t2g orbitals. Note that this is not the first
time ferromagnetic metals or half-metals are reported in
ruthenium-based oxides46,47. However, our intriguing finding is
that NaLaRuO4, NaPrRuO4 and NaNdRuO4 RP oxides are also
NCS with piezo-active symmetries. Thus, these compounds
add to the growing list of NCS metals19,20 or half-metals with
unusual coexisting properties (broken inversion symmetry and
metallic-like conduction).

In contrast, the NCS NaGdRuO4 and NaYRuO4 are found to
be insulating with a gap appearing in both spin-up and spin-
down electron channels (see Supplementary Fig. 11). We note
that ruthenium oxides with antiferromagnetic insulating ground
states are also not uncommon. For example, RP Ca2RuO4 is a

Table 4 | The total energy difference and thermodynamic stability for different known and predicted RP phases from Quantum
ESPRESSO63.

RP oxides Crystal symmetries from phonon calculations (DE) Machine learning (DE) DED

P4/nmm Pmn21 Pc P�421m P�42m I�42m Pnma P21212 Pbcm Pca21

Known composition
Ca2IrO4 (Pbca) — — — — — — — — — — þ 34
Ca2IrO4 (I4/mmm) — — — — — — — — — — þ 156

New predictions
Stannates
NaLaSnO4 2.3 1.7 1.7 0 2.4 2.1 2.3 0 0.9 0.3 þ 68.6
NaPrSnO4 9.5 9.3 9.3 0 9.5 3.4 9.5 0 3.4 2.9 þ 79.9
NaNdSnO4 14.7 14.7 15.4 0 14.4 3.9 14.7 0 5.4 1.3 þ81.2
NaGdSnO4 40.2 34.8 34.5 0 28.0 5.4 35.2 0 14.6 10.9 þ 75.6
NaYSnO4 46.8 37.1 36.4 0 32.5 5.9 37.6 0 16.6 11.7 þ 73.6

Ruthenates
NaLaRuO4 5.7 5.1 5.1 0 4.9 2.6 5.1 0 0.5 0.4 þ 72.2
NaPrRuO4 15.5 14.9 14.9 0 10.9 4.6 14.9 0 1.8 0.7 þ 78.3
NaNdRuO4 21.1 20.4 20.4 0 13.8 5.0 21.1 0 2.8 0.3 þ 53.3
NaGdRuO4 46.1 41.7 41.7 1.0 26.6 7.1 43.2 1.03 8.9 0 � 14.1
NaYRuO4 179.9 47.6 47.6 2.6 32.7 8.8 49.2 2.6 11.4 0 � 1.3

DFT, density-functional theory; RP, Ruddlesden-Popper; OQMD, Open Quantum Materials Database.
The total energy difference DE (in units of meV per atom) is taken with respect to the lowest energy phase. Crystal symmetry with DE¼0 is identified as the ground state structure. For all ruthenates, we
imposed ferromagnetic spin order on the Ru atom. DED in meV per atom is the total energy difference calculated from DFT for a decomposition reaction obtained from OQMD50,51. Negative and positive
values for DED indicate that the compound is thermodynamically stable and unstable, respectively. Corresponding decomposition reactions are given in Supplementary Note 4. For Ca2IrO4, space groups
Pbca and I4/mmm are the theoretical ground state and high-symmetry structures15, respectively. Furthermore, in stannates structures initialized with Pnma symmetry converged to P21/m when R¼ La,
Pr or Nd. Similarly, in ruthenates Pc structure converged to P1 when R¼ Pr, Gd or Y.
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known antiferromagnetic insulator in the CS Pbca space group
(Fig. 3e) at low temperatures48,49. Thus, we predict NaGdRuO4

and NaYRuO4 as potential multiferroics with polar symmetry,
antiferromagnetic spin order and a bandgap. Are these stannates
and ruthenates also thermodynamically stable? We address this
question in the next section.

Thermodynamic stability. We use grand canonical linear
programming50 to determine the thermodynamic stability for
the predicted RP stannates and ruthenates. The ‘reservoir’ of
stable compounds present in the Open Quantum Materials
Database51 were chosen to describe the theoretical convex hull.

The process involves calculation of the total energy change (DED)
for a chemical reaction involving reactants that are known to be
thermodynamically stable and a product, which is the ground
state structure of our predicted RP compounds. Compounds with
negative DED are identified to be thermodynamically stable.

It is also important to note that compounds with positive DED

(metastable) have also been synthesized. Commonly, when DED is
oþ 25meV per atom above the convex hull, it is suggested
that the composition could be potentially synthesized under
appropriate experimental conditions52. To evaluate this criterion
for our design problem, we first calculated the DED for Ca2IrO4

that was recently epitaxially grown in the RP structure-type using
the pulsed laser deposition method29. It is well known in the
literature that Ca2IrO4 in RP structure type is a metastable
phase29. Our main motivation is to compare the DED for Ca2IrO4

with our newly predicted compounds (especially those with
positive DED) and glean additional insights. The results are given
in Table 4. The DED for RP Ca2IrO4 in the theoretical ground
state and high-symmetry structures are þ 34 and þ 156meV per
atom, respectively, above the convex hull, yet it was successfully
synthesized. We give the DED data for both the theoretical ground
state and high-symmetry structures, because Souri et al.29 do not
report the crystal symmetry of their thin film, and therefore the
reference point is unclear.

Having benchmarked the DED data for Ca2IrO4, we return to
our predicted NCS stannates and ruthenates. In Table 4,
we provide the DED data for both stannates and ruthenates.
The associated decomposition reactions are given in the
Supplementary Note 4. Two out of 10 compounds—NaGdRuO4

and NaYRuO4—have negative DED, and therefore, we identify
them to be thermodynamically stable and promising for
synthesis. The remaining eight compounds have DEDrþ 82
meV per atom.
Additional predictions. In Table 7, we report our results for

nine additional randomly chosen compounds that were predicted
to have NCS ground state structures from ML. The total energy
data, along with the different crystal symmetries obtained
from both phonon calculations and ML, are given in the
Supplementary Table 3. Seven out of nine compounds are found
to have NCS ground state structures, in good agreement with our
classification learning. Note that some of them (for example,
KBaNbO4 and NaCaTaO4) have space groups that are not seen in
any known or reported RP compounds (see Fig. 4). This is
because we did not constrain our DFT calculations to only known
structures or those from ML, but performed phonon calculations
and full structure relaxations. The decomposition energies,
DED, for all nine compounds are also given in Table 7. Six out
of nine predicted compounds have either a negative DED

(thermodynamically stable) or DEDr34meV per atom (that is,
stable relative to Ca2IrO4), indicating promise. Experimental

Table 5 | Bandgap (Eg in eV) at the HSEsol level for each
NaRSnO4 compound from VASP69,70 in the NCS P�421m
space group.

Compound Eg (eV)

NaLaSnO4 4.35
NaPrSnO4 4.45
NaNdSnO4 4.42
NaGdSnO4 4.34
NaYSnO4 4.34

HSE, Heyd–Scuseria–Ernzerhof; NCS, Noncentrosymmetric; VASP, Vienna ab initio Simulation
Package.
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Figure 5 | Calculated piezoelectric coefficients. Piezoelectric strain

coefficients (y axis) for the P�421m NaRSnO4 structures as a function of the

rare-earth cation ionic size in Å, rRE (x axis). There are three symmetry-

allowed dij components (d14, d25 and d36) and two of which are equivalent

(d14¼ d25).

Table 6 | Total energy difference (DE in meV per atom) with respect to the lowest energy structure for NaRRuO4 in two P�421m
and Pca21 structures with both FM and AFM spin configurations.

Compound DE lRuB

P�421m FM P�421m AFM Pca21 FM Pca21 AFM

NaLaRuO4 0 7.3 0.4 6.0 0.91
NaPrRuO4 0 6.8 0.7 1.8 0.91
NaNdRuO4 0 6.7 0.3 0.5 0.91
NaGdRuO4 2.5 8.7 1.4 0 0.85
NaYRuO4 8.1 14.1 5.5 0 0.84

AFM, antiferromagnetic; FM, ferromagnetic.
All compounds initialized with AFM P�421m converged to AFM P21212 structures indicating evidence of spin–lattice coupling. Constraining AFM configuration in P�421m structures (where we fixed the
lattice constants to that of FM P�421m) only resulted in total energies higher than that for AFM P21212. Structures with DE¼0 represent the ground state configuration. mRuB is the absolute value for the
magnetic moment per Ru-site (in Bohr magnetons) in the corresponding ground state structures.
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results are necessary to confirm these predictions. In Table 3,
chemistries for all 242 predicted RP oxides that show potential for
NCS structures are listed. The DFT optimized ground state
crystallographic information files for all 19 compounds can be
downloaded from ref. 53.

As a general observation, we note that the NCS P�421m space
group that we predict for 13 out of 19 compositions from DFT is
also one of the most commonly observed experimental ground
states16,17 (also see Fig. 4) for the n¼ 1 RP compounds.

Discussion
We developed a computational strategy built on the foundations
of applied group theory, ML and DFT to design NCS RP
compounds. In terms of the novelty of our informatics approach,
we note that the use of irreps as class labels for ML is new to
materials science. Normally, space groups are utilized. The role of
group theory in our framework was to transform the space groups
into irreps. From using irreps as class labels for ML, we were able
to reduce the complexity of our classification problem from 9 to
6 class labels. Even after reducing the complexity, we found
that our data set suffered from class imbalance. To address
this deficiency, we applied the SMOTE algorithm to generate
synthetic data points and then constructed an ensemble of
decision trees for irrep classification. Our decision trees identified
242 new compositions (from screening B3,200 compositions)
that show potential for NCS ground state. We tested our
prediction for 19 compositions using DFT, among which 17 were
validated to have an NCS ground state structure. We thus find

good agreement between our informatics-based predictions and
DFT ground state structures. One of the major design outcomes is
the identification of two new multiferroics (NaGdRuO4 and
NaYRuO4), which were also determined to be thermodynamically
stable.

It is also important to recognize that not all our ML predictions
agreed with the DFT calculations. For example, KLaIrO4 and
BaLaGaO4 were predicted to be NCS but our frozen-phonon
calculations and full structural relaxations from DFT indicate
disagreement (Table 7). Moreover, the inconsistencies are found
to be pronounced when both A/A0 cations have relatively large
ionic sizes (for example, K, Ba or La). Our DFT calculations
reveal that the presence of large A/A0 cations significantly reduces
the amplitude of octahedral tilting, which we ascribe to the
steric effects. Our ML models appear to incorrectly classify them
as NCS.

There are several ways to reduce such misclassification errors
and improve our ML prediction accuracies. We list some of them
here: First, one of the most promising directions is to synthesize
the predicted materials and determine the crystal structure for
each compound, which will allow us to augment our data set with
new data points and retrain our ML models. We anticipate our
ML models to learn rapidly from these new data points and
improve their prediction accuracy in subsequent iterations32.
Second, our current ML models are based on five decision tree
classifiers; one of the natural extensions would be to construct
more than five bootstrapped samples and generate additional
decision trees (or apply a random forest algorithm with hundreds
of classifiers) that could, in principle, reduce the misclassification

Table 7 | DFT aided validation for nine randomly selected RP oxides that were predicted to have an NCS ground state structure
from ML.

RP oxides DFT ground
state

NCS ground
state (in %)

Predicted space groups from ML [irrep label] DED

as predicted
from ML

Tree 1 Tree 2 Tree 3 Tree 4 Tree 5

NaLaHfO4 P�421m (NCS) 100 Pca21
[Xþ

2 "Xþ
3 ]

P21212
[Xþ

3 (Z1,Z2)]
P�421m

[Xþ
3 (Z1,Z1)]

Pca21
[Xþ

2 "Xþ
3 ]

P21212
[Xþ

3 (Z1,Z2)]
� 17.9

NaLaZrO4 P�421m (NCS) 80 Pca21
[Xþ

2 "Xþ
3 ]

P21212
[Xþ

3 (Z1,Z2)]
Pbcm

[Xþ
3 (0,Z1)]

Pca21
[Xþ

2 "Xþ
3 ]

P21212
[Xþ

3 (Z1,Z2)]
� 22.6

NaLaIrO4

(FM)
P�421m (NCS) 100 Pca21

[Xþ
2 "Xþ

3 ]
P21212

[Xþ
3 (Z1,Z2)]

P�421m
[Xþ

3 (Z1,Z1)]
Pca21

[Xþ
2 "Xþ

3 ]
P21212

[Xþ
3 (Z1,Z2)]

þ 204.6

KLaIrO4

(FM)
Pbcm (CS) 80 Pca21

[Xþ
2 "Xþ

3 ]
P�421m

[Xþ
3 (Z1,Z1)]

Pca21
[Xþ

2 "Xþ
3 ]

Pca21
[Xþ

2 "Xþ
3 ]

Ibca [P4] þ 135.4

KBaNbO4 P21 (NCS) 100 Pca21
[Xþ

2 "Xþ
3 ]

P�421m
[Xþ

3 (Z1,Z1)]
Pca21

[Xþ
2 "Xþ

3 ]
Pca21

[Xþ
2 "Xþ

3 ]
Pca21

[Xþ
2 "Xþ

3 ]
�832

NaCaTaO4 Pca21 (NCS) 100 Pca21
[Xþ

2 "Xþ
3 ]

Pca21
[Xþ

2 "Xþ
3 ]

P�421m
[Xþ

3 (Z1,Z1)]
Pca21

[Xþ
2 "Xþ

3 ]
P21212

[Xþ
3 (Z1,Z2)]

þ 15.9

SrLaInO4 P�421m (NCS) 100 Pca21
[Xþ

2 "Xþ
3 ]

P21212
[Xþ

3 (Z1,Z2)]
P21212

[Xþ
3 (Z1,Z2)]

P21212
[Xþ

3 (Z1,Z2)]
P21212

[Xþ
3 (Z1,Z2)]

þ 38.9

SrYGaO4 P21 (NCS) 80 P21212
[Xþ

3 (Z1,Z2)]
f P21212

[Xþ
3 (Z1,Z2)]

P21212
[Xþ

3 (Z1,Z2)]
Pca21

[Xþ
2 "Xþ

3 ]
þ 26.4

BaLaGaO4 P4/nmm (CS) 60 Pbcm
[Xþ

3 (0,Z1)]
P21212

[Xþ
3 (Z1,Z2)]

Pbcm
[Xþ

3 (0,Z1)]
P21212

[Xþ
3 (Z1,Z2)]

P21212
[Xþ

3 (Z1,Z2)]
� 51.1

CS, centrosymmetric; DFT, density-functional theory; FM, ferromagnetic spin order imposed on the Ir-atom; ML, machine learning; NCS, noncentrosymmetric structures.
Note that in a vast majority of compounds the DFTenergy difference between space groups P21212 and P�421m is of the order of few tenths of meV per atom. Additional details are given in Supplementary
Table 3 and Supplementary Note 4. For KBaNbO4, the structure initialized with Pca21 symmetry converged to P21 in our DFT calculations. DED (in meV per atom) is the decomposition energy for a
chemical reaction given in Supplementary Note 4. Negative and positive values for DED indicate that the compound is thermodynamically stable and unstable, respectively.
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errors. Also, exploring kernel-based ML algorithms, such as
support vector machines and semisupervised learning schemes
represent alternative informatics-based avenues to gain
confidence or reduce uncertainties in our predictions.

Furthermore, we demonstrated the use of the SMOTE
algorithm for the first time in materials design problems; recently,
a number of new algorithms35 have been developed for
addressing similar class-imbalance problems, which could also
be explored. We note that class-imbalance problems are
ubiquitous in materials design and remains an unchartered
territory in materials informatics54. Finally, the choice of more
robust features could also improve the prediction accuracies.
Further computational efforts aimed at exhaustively evaluating
the potential energy surface of related phases55 or alternatively,
data-driven approaches56 involving inference models could
further refine the predictions by addressing issues related to
compound formability and order-disorder transitions.

Notwithstanding the limitations, our approach provides a
rational framework for structure-based design of novel functional
materials with implications beyond the layered RP oxides. For
instance, our methodology can be extended to explore NCS
structures in Dion–Jacobson, Aurivillius, Brownmillerite or any
crystal family. In principle, our strategy could also guide the
search for materials with intriguing functionalities such as
ferroaxiality57. The key component to realize such predictions
will be the database construction process and more importantly,
the nature of available data (including features) would determine
the type of questions that can be addressed. In terms of ML
methods, off-the-shelf classification learning with class-imbalance
algorithms (such as those demonstrated in this work) has the
potential to provide insights necessary for guiding the accelerated
search of new materials with targeted crystal symmetry or
functionality. Advanced learning strategies (for example,
semisupervised learning, algorithms beyond SMOTE and
Bayesian methods) may be necessary, but the choice and its
formulation will hinge critically on the available databases and/or
prior domain knowledge.

Methods
Group theory. The group theoretical analysis was performed using the ISO-
TROPY58 tool and electronic resources available from the Bilbao Crystallographic
Server59.

Materials informatics. We used the following inference and ML methods in this
paper: PCA for data-dimensionality reduction and feature extraction60, sampling
techniques such as bootstrap method that constructs multiple data sets from our
experimental data set via sampling with replacement, decision tree classification
learning61 for formulating QCSR design rules and SMOTE34 to rectify the
class-imbalance problem. We chose the decision tree classification learner for the
following reasons62: (i) they are interpretable making the model transparent to
domain experts; (ii) the splitting criteria (for example, Shannon entropy) serves to
accomplish feature selection without the need for using any additional ML
methods; (iii) they are scalable; and (iv) they have the capability to match the
prediction accuracies of state-of-the-art ML methods. ML calculations were
performed using RSTUDIO and WEKA. The decision tree algorithm as
implemented in WEKA was used. The data set was constructed using the
Waber–Cromer orbital radii as features.

The class-imbalance problem was rectified using the SMOTE algorithm. When
there is class-imbalance, these ML models could ignore the less frequently observed
class labels and group them with other class labels in the nearest-neighbor high-
dimensional data space that occur more frequently. This is not desirable for this
work, because the frequency of occurrence of the NCS space groups, to begin with,
are already under-represented. The input to SMOTE is our data set and three
additional parameters: (i) the under-represented or minority class label that we
intend to oversample, (ii) the number of nearest neighbours (k) and (iii) the
number of extra synthetic data samples (in %) to be created. The SMOTE
algorithm functions as follows: it takes the difference between the feature vectors
(that is, orbital radii) of the under-represented irreps and its k nearest neighbours
and multiplies the difference by a random number between 0 and 1 to create a new
feature vector. This new feature vector is augmented to the original data set. As a
result, the selection of a random data point is made along the line segment

(a simplified visual representation of the process based on our data set is given in
Supplementary Fig. 1). We used PCA to ensure that SMOTE did not affect
the manifold of our data set. We use the SMOTE algorithm as implemented
in WEKA37.

Electronic structure calculations. DFT calculations for all RP compounds were
performed using the planewave pseudopotential code, Quantum ESPRESSO (QE)63

to obtain the total energies. We used ultrasoft pseudopotentials64 with the PBEsol
exchange-correlation functional65 taken from the PSlibrary66. A plane-wave cutoff
of 60 Ry was used during the ionic and electronic relaxation steps. Electron
correlations in Ru-4d and Ir-5d electrons were treated using the Hubbard-U
method within the Dudarev formalism67. Spin-polarized calculations with collinear
ferromagnetic spin order were imposed on the Ru and Ir atoms. An effective
Hubbard-U of 1.5 eV was chosen in both cases. Frozen phonon calculations were
performed using PHONOPY code68 that uses the forces from QE as input for
calculating the dynamical matrices and interatomic force constants. We employed
a supercell of size 2� 2� 2 with 112 atoms for the frozen phonon calculations.

All calculations to obtain bandgaps and piezoelectric coefficients for NaRSnO4

were performed using DFT as implemented in the Vienna ab initio Simulation
Package69,70. The crystal structures were taken from converged QE calculations.
We used projector augmented-wave potentials71 with the PBEsol functional. The
piezoelectric and elastic tensors were computed within the density-functional
perturbation theory72,73 with a plane-wave cutoff of 800 eV. The density of states
were computed first with PBEsol, and then with different amounts of exact
exchange using HSE (Heyd–Scuseria–Ernzerhof). By comparing the experimental
bandgap of BaSnO3 with our computed values, we selected the amount of exact
exchange to use (here 35%).

Data availability. The data sets for the informatics study and the DFT optimized
crystallographic information files are deposited at figshare (refs 41,53.).
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