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Observing coherence effects in an overdamped
quantum system
Y.-H. Lien1,2, G. Barontini1,2, M. Scheucher1,3, M. Mergenthaler1,4, J. Goldwin2 & E.A. Hinds1

It is usually considered that the spectrum of an optical cavity coupled to an atomic medium

does not exhibit a normal-mode splitting unless the system satisfies the strong coupling

condition, meaning the Rabi frequency of the coherent coupling exceeds the decay rates of

atom and cavity excitations. Here we show that this need not be the case, but depends on the

way in which the coupled system is probed. Measurements of the reflection of a probe laser

from the input mirror of an overdamped cavity reveal an avoided crossing in the spectrum

that is not observed when driving the atoms directly and measuring the Purcell-enhanced

cavity emission. We understand these observations by noting a formal correspondence with

electromagnetically induced transparency of a three-level atom in free space, where our

cavity acts as the absorbing medium and the coupled atoms play the role of the control field.
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T
he oscillatory dynamics intrinsic to quantum systems can
be harnessed in a number of ways for advanced
applications in metrology and sensing. Coherent

oscillations among quantum states are at the heart of
existing time-frequency standards1,2, atom interferometers3,4

and quantum information processors (see, for example, ref. 5).
Coherence in these systems is ultimately limited by dephasing
that arises from the coupling of the isolated quantum system to
the vast reservoir of states representing the environment.
In some cases the system is open by design, for example, to
allow communication of information into and out of the
system; in other cases it is unavoidable, due to losses or the
influence of uncontrolled fluctuations in the reservoir. In
either case the question naturally arises—to what extent can the
effects of quantum coherence survive in the presence of damping
and decay?

Here we study a system comprising cold atoms coupled to a
high finesse optical microcavity. The relatively small cavity mode
volume results in a large electric dipole coupling between a single
photon and an atom. This comes at the price of a fast optical
decoherence rate due to transmission and losses from the cavity
mode into external modes. Despite this, we show how the
Hamiltonian eigenfrequencies of the system can be revealed
through spectroscopic measurements. By probing the cavity with
an incident field, we realise an analogy to electromagnetically
induced transparency (EIT) in which the coherent atom–cavity
coupling plays the role of the control field. The effective three-
level system is formed by the lowest triplet of dressed states
of the coupled atom–cavity complex. We refer to this as
dressing-induced transparency (DIT), and it is complementary
to the cavity-induced transparency first proposed in ref. 6, with
the roles of cavity and atom here reversed. As described most
systematically in ref. 7, a wide variety of physical systems exhibit
formally similar dynamics, where destructive interference inhibits
excitation under weak coupling (see also Table 1 of ref. 8).
A quantum dot in a photonic crystal cavity has been used for
optical switching between a pair of coupled waveguides9,10, giant
optical nonlinearities have been predicted11, and a recipe for
entangling atom pairs has been described12.

Our experiment differs from most realisations through the
clear separation of the rates of coherent and incoherent
processes—there are three orders of magnitude between the
atom and cavity decay rates, with the Rabi frequency near the
geometric mean. This leads to a transparency linewidth that is
deeply sub-natural, in the sense of being far below the bare cavity
absorption linewidth. On top of this, we exploit a feature of the
dark state that so far appears to have gone unnoticed—the
full spectral response reveals the normal-mode frequencies
of the undamped system. Because of this, we are able to go
beyond previous work to observe an avoided crossing in the
dressed cavity spectrum, which is usually taken as evidence of
strong coupling, despite the complete overdamping of Rabi
oscillations in our experiment. We also control the width of the
DIT window through the density dependence of the atomic
dipole. The analogy to EIT also highlights the existence of steep
dispersion present in the system13. In contrast with conventional
EIT of three-level atoms in optical cavities14–19, it is possible in
our system to swap the roles of longitudinal and transverse
dephasing rates, corresponding to decay of populations and
coherences, respectively. When the probe laser is incident on the
atoms directly (from the side of the cavity), DIT per se is
not present. However, the spectral width of the narrow feature
in this case is the same as for the dressing-induced transparency
window with the same parameters, giving insights on the well-
known Purcell effect describing coherent scattering into the cavity
mode20.

In the following, we study both theoretically and experimen-
tally the reflection spectra of our system when the cavity mode
is probed and the fluorescence spectra when the atoms are
probed. In each case we measure the system response when the
cavity–atom and laser–atom detunings are varied. We show that
the reflection spectra exhibit an avoided crossing while the
fluorescence spectra do not. However the measured resonance
linewidths are the same. Our results show that even in a highly
overdamped regime, quantum interference can be used to reveal
aspects of the coherent coupling.

Results
Theoretical framework. A single two-level atom coupled to a
single mode of an ideal optical cavity is described in the dipole
and rotating wave approximations by the Jaynes–Cummings
Hamiltonian21 (‘¼ 1),

Ĥ ¼ ocâyâþoaŝyŝ� gðŝyâþ ŝâyÞ: ð1Þ
Here the operator â annihilates a photon from the cavity field and
ŝ ¼ j #ih" j is the Pauli isospin operator lowering the atom
from the excited state |mi to the ground state |ki, oc (oa)
is the angular frequency of the uncoupled cavity resonance
(atomic transition), and the atom-field coupling constant, g, is
proportional to the atomic dipole moment and inversely
proportional to the square root of the cavity mode volume.
The Hamiltonian (1) conserves the total excitation number
N̂exc ¼ âyâþ ŝyŝ, and the simultaneous eigenstates of
Ĥ and N̂exc consist of a dark ground state, |k,0i obeying
Ĥ j #; 0i ¼ 0 ¼ N̂exc j #; 0i, and a ladder of doublets consisting of
superpositions of |m, n� 1i and |k, ni with hN̂exci¼n¼1; 2; 3 and
so on.

Figure 1a shows the eigenvalues for the lowest doublet (n¼ 1)
of the coupled system:

o� �oa ¼
oc�oa

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ oc�oa

2

� �2r
: ð2Þ

The interaction lifts the degeneracy at oc¼oa, splitting the two
levels in the eigenspectrum by 2g at this point. In the time
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Figure 1 | Lowest-lying normal modes of the atom–cavity system.

(a) Eigenfrequencies o� of the undamped Hamiltonian Ĥ. Dashed lines:

uncoupled atom (blue) and cavity (red). Solid lines: avoided crossing of the

eigenfrequencies o� of the dressed system, as given by equation (2)

with g/(2p)¼95 MHz. Colour indicates the relative amplitudes of

the bare states |m,0i (more blue) and |k,1i (more red) in the eigenstate.

(b) Complex eigenvalues ~o� , given in equation (3) for the non-Hermitian

effective Hamiltonian Ĥeff ¼ Ĥ� ikâyâ� igŝyŝ, taking oc¼oa and

fk; gg=ð2pÞ ’ f3000; 3gMHz. Solid curves: eigenfrequencies Reð~o� Þ.
Dashed curves: damping rates � Im ~o�ð Þ. Zones (i), (ii) and (iii)

correspond respectively to the Purcell regime, the intermediate regime and

the strong coupling regime.
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domain, this splitting corresponds to the Rabi oscillation between
the states |m,0i and |k,1i.

To describe real systems, we need to account for decoherence
processes affecting both the atom and cavity field. The probability
for the bare atom to be in the excited state decays irreversibly
through spontaneous emission at a rate 2g, and the mean number
of photons in the bare cavity decays at a rate 2k due to
transmission and losses at the mirrors. The three rates {g,k,g}
quantify the strength of the light–matter interactions through the
dimensionless cooperativity C¼ g2/(kg). The cooperativity repre-
sents the effective optical depth of the atom22, or the ratio of
coherent scattering into the cavity mode to scattering into free
space20. When C\1, single-atom detection is therefore possible
either through the modified cavity spectrum or through laser-
induced fluorescence driven from the side of the cavity22–27. In
the experiment we discuss here, g/(2p)¼ 3 MHz, k/(2p) varies
from 2.2–3.2 GHz depending on mirror alignment (see Methods),
and g/(2p) is continuously adjustable from zero up to 345 MHz as
explained below, so the cooperativity C can be large even though
the Rabi frequency is much smaller than one of the decay rates.

Intuitively, one might expect that the avoided crossing of
Fig. 1a would not be resolved in an experiment with k � g
because the underlying Rabi oscillation between |m,0i and |k,1i
would be interrupted by fast, irreversible cavity decay from |k,1i
to |k,0i. To describe this quantitatively, we restrict ourselves to
the Hilbert sub-space spanned by the three lowest uncoupled
states, {|k,0i,|k,1i,|m,0i}, which is valid for weak excitation
(in the sense hN̂exci � 1), and we account for dissipation
through an effective Hamiltonian28, Ĥeff ¼ Ĥ� ikâyâ� igŝyŝ.
The eigenvalues, ~o� , of this non-Hermitian Hamiltonian are
complex:

~o� �oa ¼
oc�oað Þ� i kþ gð Þ

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ ðoc�oaÞ� iðk� gÞ

2

� �2
s

:

ð3Þ

The real parts of ~o� give the resonance frequencies of the
coupled atom–cavity system, while the imaginary parts give the
corresponding linewidths. These are plotted in Fig. 1b as a
function of g for the case of oc¼oa. Note that Reð~o� Þ depends
on the difference between the two uncoupled damping rates, so it
is not generally the same as o± from equation (2).

In Fig. 1b, we identify three distinct parameter regimes. In (i),
g4

ffiffiffiffiffi
kg
p

, that is, the cooperativity C41, but go(k� g)/2. Here
the real parts of ~o� are unshifted at oc and oa, and have widths
of approximately k� g2/k and g(1þC). These eigenmodes are
primarily photonic and atomic, respectively, as reflected by the
colouring of the lines in Fig. 1b. The appearance of C in the
linewidth of the atomic feature is a direct signature of the
enhanced spontaneous emission rate of the atom, as first
predicted by Purcell20. We therefore refer to this as the Purcell
regime; this is the operating regime for all of the experiments
described here. In region (ii), above g¼ (k� g)/2 where there is
an exceptional point29, the eigenfrequencies separate and the
damping rates merge to the mean value (kþ g)/2. Some authors
call this strong coupling, but the normal modes are not resolved
until the splitting exceeds the width. This consideration gives rise
to a second, more stringent definition of strong coupling, namely,
(iii): g24(k2þ g2)/2. In this regime, multiple Rabi oscillations
occur on average before the excitation decays. This definition of
strong coupling is reminiscent of Rayleigh’s criterion defining
the resolution limit of an imaging system under incoherent
illumination, and is the definition that we adopt here.

Probing the dressed system. We now show that, when a coherent
field probes the coupled system, quantum coherence between the
atom and cavity can lead to quantum interference and narrow
spectral features even in regime (i), where our experiment lies.
That is the main focus of this article.

In the laboratory, we excite the coupled atom–cavity system in
two different ways. First, we probe the dressed cavity with coherent
(laser) light through one of the mirrors, as illustrated in Fig. 2a.
This adds a driving term to Ĥeff equal to � iZðâ� âyÞ. Here
Z2¼ 2kTj, where j is the number of photons per unit time driving
the cavity mode and kT is the contribution of k due to transmission
through the input mirror22. In the interaction picture rotating at
the probe frequency op, the equation of motion for the operator ŝ
can be derived from the modified Heisenberg evolution equation,
dŝ=dt ¼ i½Ĥeff ; ŝ�, and similarly for â:

d
dt

s ¼ � g� iDað Þsþ iga ð4Þ

d
dt

a ¼ �ðk� iDcÞaþ igsþ Z; ð5Þ
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Figure 2 | Schemes for probing the dressed atom–cavity system.

(a) Experimental configuration for driving the cavity mode. The field is probed

through the cavity reflection. (b) Experimental configuration for driving the

atoms. The field inside the cavity is probed by measuring light emitted

through one of the cavity mirrors. (c) Number of intracavity photons, |a|2,

versus detuning for configuration (a). The narrow dip (blue) is for C¼ 1 (that

is, g/(2p)¼ 95 MHz, k/(2p)¼ 3 GHz, g/(2p)¼ 3 MHz), while the wide one

(red) is for strong coupling—g/(2p)¼ 2.5 GHz—which lies in zone (iii) of

Fig. 1b. We scale the photon number by (k/Z)2 (a very large number in our

case) to obtain a curve that is independent of the probe strength Z.

(d) Intracavity photon number (suitably scaled again) as a function of

detuning for configuration (b). The narrow peak (blue) is for CB1. The wide

peak (red, g/(2p)¼ 2.5 GHz) is only just beginning to exhibit a dip at strong

coupling. (e,f) Effective three-level systems corresponding to configurations a

and b, respectively. The cavity is assumed to be red-detuned from atomic

resonance (ocooa), leading to a ladder system in e and a L system in f; for

blue detuning the configurations are reversed. For either detuning, the system

supports a DIT coherence window in e and does not in f.
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where a ¼ hâi and s ¼ hŝi, and the detunings are defined
by Da,c¼op�oa,c. Here we have assumed weak excitation of
the atom, so that hŝyŝi � 1. The steady-state solution for the
amplitude of the (coherent state) field in the cavity a has been given
in ref. 7,

a ¼ Z
ðk� iDcÞþ g2=ðg� iDaÞ

: ð6Þ

So far, we have been considering a single atom with a fixed
coupling g to the cavity field, and therefore a fixed cooperativity. In
the experiments, however, there is an ensemble of atoms
simultaneously coupled to the cavity, and this results in a
collective coupling geff ¼ g

ffiffiffiffiffiffiffiffi
Neff
p

, where Neff is the volume
integral of the atom number density, weighted by the intensity
distribution of the cavity mode27,30. The expression for a in
equation (6) remains valid as long as we understand g to mean geff.

Figure 2c shows the mean number of photons in the cavity as a
function of laser-cavity detuning Dc. The photon number |a|2 is
scaled by (k/Z)2 to obtain a curve that is independent of the probe
strength Z. The atom–cavity coupling is most pronounced when
the atom and the cavity resonate simultaneously with the driving
field, so we have set oc¼oa here. The wide double peak (red) is
calculated for g/(2p)¼ 2.5 GHz, which lies in the region of strong
coupling, indicated by (iii) in Fig. 1b. This curve shows the two
spectroscopically resolved, coupled atom–cavity states. The curve
with a narrow central dip (blue) has the coupling reduced to
g/(2p)¼ 95 MHz (C¼ 1), which places it at the left of zone (i) in
Fig. 1b. The two eigenvalues are not spectroscopically resolved in
the sense of region (iii), but they are still apparent as a broad peak
with a narrow hole, made visible by quantum coherence.

The spectra in Fig. 2c can also be understood in the language
of EIT, as was previously noted for the complementary case
where k � gog (ref. 6). Interest in the transition from EIT to
Autler–Townes splitting has recently grown8,31, and in a cavity
QED system this transition is manifest as a crossover from
DIT to vacuum Rabi splitting. The analogy between DIT and
conventional EIT is further illustrated in Fig. 2e. Depending on
the detuning between the cavity and atomic resonances, the three
lowest dressed states of the cavity QED system form either
ladder- or L-type configurations. In this analogy, the cavity plays
the role of the absorber, with the atomic dipole (proportional to
sþs*) acting as the coupling field that induces the transparency.
The cavity field (proportional to aþ a*) drives the |k,0i2|k,1i
transition, whose ‘natural’ linewidth is set by the cavity damping
rate, k, and the vacuum-induced coupling on |k,1i2|m,0i is
subject to dephasing at the rate g, returning the system to the
absolute ground state |k,0i. Whether the dressed system maps
onto a ladder or L configuration depends on the cavity–atom
detuning and the method of probing. For our case, where
ðg=kÞ2 � 1, direct cavity probing exhibits a narrow DIT window
with sub-natural linewidth equal to g(1þC), which is much
narrower than the natural width k of the cavity being probed. In
this expression, we can identify gC as the coherent scattering rate
predicted by Purcell and g as an effective dephasing rate. As
long as the former exceeds the latter, meaning precisely that C
exceeds 1, a transparency window emerges in the cavity spectrum.
Similarly, the depth of this window depends on C, and we are able
to observe these effects experimentally because we can adjust the
cooperativity in the regime where CZ1 by varying the density of
atoms in the cavity.

In a second method of probing the coupled system, we drive
the atoms—rather than the cavity—by illuminating them with a
near-resonant beam propagating transverse to the cavity axis, as
illustrated in Fig. 2b. This amounts to setting Z¼ 0 and adding a
term �ðO=2Þðŝþ ŝyÞ to the Hamiltonian Ĥeff , with O being the
probe Rabi frequency. The corresponding steady-state solution

for the cavity field is then,

a ¼ � gO=2
ðk� iDcÞðg� iDaÞþ g2

: ð7Þ

Figure 2d shows the calculated number of photons in the cavity
for this configuration as a function of the same laser frequency
scan, again with oc¼oa. In this case we have scaled the
photon number by (g2þkg)2/(gO/2)2 to obtain a curve that is
independent of the probe strength O. The narrow resonance at
g/(2p)¼ 95 MHz (C¼ 1, blue) does not reveal that the system has
two modes, and even with strong coupling at g/(2p)¼ 2.5 GHz
(red), the normal modes are barely resolved, in contrast with the
cavity-probed case. In the DIT language, the roles of atom and
cavity are interchanged here, with the atoms acting as the
absorber. Now the cavity field in Fig. 2d,f shows no DIT effect
even when the condition C41 is satisfied, because the dephasing
rate is equal to k and the condition k� g prevents the formation
of a transparency window in the |k,0i2|m,0i transition32.

Experimental observations. In the experiment, we measure the
flux of photons travelling from the cavity to a single-photon
counting module (see Methods). This flux, jout, is related to the
intracavity field amplitude, a:

jout ¼ �
ffiffiffiffiffiffi
R1j

p
þ

ffiffiffiffiffiffiffiffi
R2k
p

a
�� ��2; ð8Þ

where R1 is the power reflection coefficient of the intput–output
coupling mirror and R2 is that of the back mirror. Here we have
used the fact that R1ER2E1, and that losses at mirror 1 are
negligible compared with transmission in our experiment.

We first consider the case of Fig. 2a, where the cavity is probed
directly. The upper row in Fig. 3 shows the number of photons
detected per ms versus Da and Dc for values of cooperativity
ranging from 0.4 to 13.4. The cooperativity was varied by
changing the intracavity density of atoms, and C was determined
by fits to the spectra (shown in the bottom row), with the
amplitude as the only other fit parameter. For these measure-
ments, resonances of the coupled system are manifest as minima
in the detected photocount rate as described by equations (6) and
(8). Note that the vertical axis covers a frequency range
B1,000� smaller than that of the vertical; the DIT resonances
are much narrower than the bare cavity linewidth. Despite always
operating in a regime where the cavity damping rate exceeds the
Rabi frequency by an order of magnitude, the coherent effect of
the atomic dipole is evident as soon as CB1. In particular, it is
seen that the reflection minima trace out the avoided crossing of
the eigenvalues (2) of the undamped Hamiltonian, satisfying the
condition Da¼ g2/Dc. That the locations of these features are
described independently of the decoherence rates g and k
emphasizes the fact that the underlying coherent properties of
the system have been revealed, despite the absence of Rabi
oscillations.

In the experimental configuration depicted in Fig. 2b the
coupled system is probed via scattering of incoming radiation by
the atoms: the atomic dipole is driven by the probe beam from the
side of the cavity and emits radiation at the same frequency into
the resonator. According to equation (8), with j¼ 0, the built-up
cavity field is transmitted through the coupling mirror, producing
a steady-state flux of 2kT|a|2 photons per unit time, with a given
by equation (7) and kTEk/2 in our system. The detected photon
count rate is shown in the upper row of Fig. 4. The values of
C here are lower than in reflection for comparable atomic
densities because the side-driven atoms are more weakly coupled
to the cavity mode27. For values of Ct1, the emission spectrum
is localized around the origin of the Dc–Da plane. Comparing
equations (6) and (7), we see that the driven atoms act as a
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secondary probe source exciting the cavity field with relatively
small linewidth, g:

Z! � gO=2
g� iDa

: ð9Þ

As C is increased, the atom–cavity coupling leads to a
characteristic ‘butterfly’ shape in the cavity emission spectrum.
The central feature is split into two broad maxima along the
scaled diagonal defined by (Da/g)¼ (Dc/k)� d, centred around
d ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
C� 1
p

. As outlined above, in contrast with the reflection
measurements, when the atoms are driven directly no DIT
signature is expected. Therefore the resonance features no longer
follow the eigenvalues of the undamped Hamiltonian (black
curves). With the cooperativity and the amplitude of the signal as
the only free parameters, we fit equation (7) to our experimental
data. The results are shown in the bottom row of Fig. 4.

Despite the fact that fluorescence measurements do not exhibit
DIT, both probe configurations exhibit the same spectral width
when the cavity resonance frequency is tuned to that of the atom
in free space (Da¼Dc). This corresponds to nearly vertical traces
through the plots in Figs 3 and 4. Along these traces, both types of
spectra are well approximated by simple Lorentzians, and the
spectral width w is obtained as the half-width at half-maximum of
a fit to such. The results are shown in Fig. 5, plotted against the
cooperativity C obtained from the full surface fits. The solid curve
is the expectation w¼ g(1þC) with no free parameters. This is
just the imaginary part of ~o� , plotted in Fig. 1b as the lower
(blue dashed) branch. For the reflection measurements we
understand this peak as the dressing-induced transparency
window described above, having a deeply sub-natural line width
(� k) dependent on the coherent coupling rate g. For
fluorescence, the atoms scatter coherently into the cavity mode
at a rate equal to gC through the Purcell effect. Following the
abrupt shut-off of a resonant probe laser, one would observe that
the intracavity power would decay exponentially at a rate 2w for
times longer than 1/k. The fact that this decay is much slower
than the bare cavity ring-down rate shows that the relatively long
coherence time of the atoms effectively inhibits the decay of the
coupled system.

Discussion
We have presented an experimental study of coherence within an
overdamped quantum system consisting of two-level atoms
coupled to an optical microcavity. Despite the absence of Rabi
oscillations in our system, the cavity reflection signal reveals the
avoided crossing associated with the eigenvalues of the undamped
Hamiltonian. We note that the response of the intracavity field to
a probe beam is formally identical to that of a three-level atom in
free space exhibiting electromagnetically induced transparency.
This provides insight into the persistent role of coherence in the
so-called bad cavity regime of cavity QED. We prefer to call this
the fast cavity regime. We have also shown that, although
this DIT effect is intrinsically absent when the atoms are
driven directly from the side of the cavity, both experimental
configurations produce a split spectrum when the cooperativity
becomes large enough.

The formal mapping onto EIT also suggests a range of
applications for fast cavity QED with cold atoms on hybrid
atomic–photonic chips. These include dipole-induced switch-
ing9,10 and optical pulse lag/lead circuits11,13,33. In the absence
of atoms, a resonant cavity provides a group delay of 1/k
in transmission; as the coupling g is increased, the delay is
reduced and becomes a superluminal advance approaching 1/g
for g2 � g2 (see Methods). This can be understood by
considering the phase evolution of light propagating through
the atomic medium in the absence of the cavity. For an
absorption resonance, the shape of the imaginary part of the
optical susceptibility is inverted relative to a transmission
resonance. Then the Kramers–Kronig relations imply that the
dispersion must be anomalous to preserve causality. For our
experiment, operating deep in the Purcell regime, this anomalous
phase evolution leads to a narrow region of negative group
delay within the DIT window. In some ways this is reminiscent
of the anti-resonance observed in ref. 34. However there are
two essential differences between that work and ours. First,
observation of the anti-resonance relies on strong coupling to
scatter enough light into the cavity mode to interfere destructively
with the incident probe. In contrast, it is a Fano-type interference
between two decay channels coupled to a single reservoir which
underlies the DIT resonance8,31,32. Second, the characteristics of
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Figure 3 | Probing the system by driving the cavity mode. Two-dimensional scans of the cavity reflection signal in the configuration of Fig. 2a as a

function of the detuning from the cavity (Dc) and from the atomic (Da) resonances for different values of the cooperativity C. Upper row: experimental

spectra. Note that the axes are normalized to the respective damping rates. The colour scale indicates the measured number of counts per ms. Every
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Lower row: theory of equations (6) and (8) after fitting to the data in the upper row. The fitting parameters are C and the off-resonant amplitude.
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the anti-resonance depend solely on the atomic properties, while
we have shown that the DIT resonance mirrors the avoided
crossing of the normal modes. This makes DIT attractive for the
detection of coherence in systems where strong coupling is either
not feasible or undesired.

Methods
Experiment. The apparatus has been described previously26,27, so will only be
summarized here. A magneto-optical reflection trap (reflection-MOT), formed
above a gold mirror, collects a few million 87Rb atoms in a cloud of approximate
size 1� 1� 2 mm. The cloud is released, cooled further in sub-Doppler optical
molasses, then pushed with a pulsed resonant laser beam through a 1-mm
hole in the mirror and into the optical microcavity, which lies B5 mm below.

The microcavity itself is a plano-concave Fabry–Pérot resonator, built as
described in ref. 35. The plane mirror is a multi-layer dielectric stack that we have

glued onto the tip of a cleaved single-mode optical fibre. This mirror serves
as the input–output coupling mirror. The second mirror is one of an array of
approximately spherical micro-mirrors with 185mm radius of curvature on an
etched and dielectric-coated silicon wafer. The cavity length is tuned around
127 mm using a shear piezo on which the fibre mirror is mounted, and is stabilised
with a side-of-fringe technique using light from a single-frequency Ti:sapphire laser
(Coherent, MBR-110) operating at 800 nm. The wavelengths of both locking and
probing lasers are monitored with a wavemeter (HighFinesse, WS6). The cavity
finesse varies slightly throughout the measurements presented here due to a slow
drift in the mirror alignment. The finesse (linewidth k/(2p)) is 260 (2.2 GHz) in
Fig. 3, and 180 (3.2 GHz) in Fig. 4. The fringe contrast, defined by 1� (min
power)/(max power) throughout a cavity scan, is above 95% for all of the
measurements.

Near-resonant signal light from the cavity is separated from the locking light
and incoming probe light using a 90/10 beam splitter and a series of dichroic filters,
and detected on a single-photon counting module (Perkin-Elmer, SPCM-AQR-14).
The detected counts are corrected for dead time at high flux rates with a
polynomial formula as specified by the manufacturer.

Group delay. The group delay Tg corresponding to transmission through a cavity
can be obtained from the cavity transfer function via

Tg ¼
@

@op
argða=ZÞ: ð10Þ

Taking a in equation (6) with Da¼Dc, and Taylor expanding around resonance,
one obtains

Tg ¼
1
k

1� g2=g2

1þ g2=ðkgÞ ; ð11Þ

giving the limits

Tg !
1=k; g � g

0; g ¼ g
� 1=g; g � g

8<
: : ð12Þ

The sign of the group delay for the dressed cavity in DIT is opposite to that in
conventional EIT, where Tg becomes large and positive as the transparency is
increased. In the strong DIT limit (with k � g � g), one recovers the relatively
large group advance, equal to 1/g, that an atomic medium with equivalent optical
depth would produce in free space. As in free space, there is an intrinsic com-
promise between group dispersion and transmission in this limit of DIT, due to the
suppression of the latter when C becomes large.

Data availability. The data presented here are available from the research
data management system of the University of Birmingham, accessible online at
http://epapers.bham.ac.uk/2213/.
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