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Neuroanatomy accounts for age-related changes
in risk preferences
Michael A. Grubb1,2, Agnieszka Tymula3, Sharon Gilaie-Dotan4,5, Paul W. Glimcher2,6 & Ifat Levy7

Many decisions involve uncertainty, or ‘risk’, regarding potential outcomes, and substantial

empirical evidence has demonstrated that human aging is associated with diminished

tolerance for risky rewards. Grey matter volume in a region of right posterior parietal cortex

(rPPC) is predictive of preferences for risky rewards in young adults, with less grey matter

volume indicating decreased tolerance for risk. That grey matter loss in parietal regions is a

part of healthy aging suggests that diminished rPPC grey matter volume may have a role in

modulating risk preferences in older adults. Here we report evidence for this hypothesis and

show that age-related declines in rPPC grey matter volume better account for age-related

changes in risk preferences than does age per se. These results provide a basis for

understanding the neural mechanisms that mediate risky choice and a glimpse into the

neurodevelopmental dynamics that impact decision-making in an aging population.
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I
n just over 30 years, adults over the age of 60 are expected to
globally outnumber children for the first time in history1.
A mechanistic understanding of how healthy human aging

impacts decision-making will be critical in tackling the challenges
inherent in such an unprecedented demographic shift. Most
decisions involve uncertainty, or ‘risk’, regarding potential
outcomes. Understanding age-related changes in risk prefere-
nces is, therefore, an important first step in forecasting how
decisions made by an aging population might impact, for better
or worse, political and economic processes at the global and local
levels.

When older adults choose between certain and risky monetary
rewards whose outcome probabilities are explicitly stated (that is,
decisions from description), substantial empirical evidence
supports the common intuition that aging is associated with
increased aversion to risk2–6. Which neurobiological markers of
aging might be associated with this change in preference? We
recently identified a region in right posterior parietal cortex
(rPPC) whose grey matter volume (GMV) accounts for individual
variation in risk preferences in young adults, such that decreased
rPPC GMV is predictive of increased risk aversion7. Grey matter
loss is part of healthy aging, with parietal regions showing
particularly enhanced local declines8. Therefore, an intriguing
possibility is that reduced rPPC GMV, rather than age per se, may
best account for the increased risk aversion empirically observed
during aging. Here we tested this hypothesis in a sample of urban
adults whose ages span seven decades.

Though both older age and decreased rPPC GMV are asso-
ciated with risk tolerance, when the independent contributions of
these factors are assessed, rPPC GMV still accounts for changes in
risk tolerance, whereas age does not. These results refine and
extend our existing understanding of the relationship between
aging and risk tolerance by attributing behavioural changes to an
age-related process (that is, changes in grey matter thickness)
rather than to chronological age itself.

Results
Tolerance for risk. Risk preferences were assessed using a
well-validated, incentive-compatible procedure4,9–13. Fifty-two
participants (18–88 years old, mean: 54.7, s.d.:22.1; 30 females)
made 60 binary choices between a certain gain of $5 and a lottery
whose monetary value and probability of payout were
systematically manipulated (Fig. 1). We modelled the expected
utility (EU) of each option using the functional form:

EU v; pð Þ¼p � va

where v¼ value (amount), p¼ probability, and a (alpha)¼ the
risk preference parameter, with larger alpha values indicative of
increased risk tolerance (that is, risk aversion increases as alpha
decreases). Choice data were fit, and alpha estimated, using
maximum likelihood, with the probability of choosing the lottery

(Plottery) given by a logistic function:

Plottery¼
1

1þ e EUsafe � EUlotteryð Þ=s

where EUsafe (EUlottery) indicates the EU of the certain (lottery)
option, and s indicates the slope of the choice function. To
account for within and between participant variabilities in an
assumption-free and statistically rigorous manner, we fit choice
data from all participants simultaneously, clustering the standard
errors to account for participant-level correlations7,14,15.

rPPC grey matter volume. Using voxel-based morphometry
(VBM), we sampled GMV in the rPPC region-of-interest, which
was defined independently based on an earlier study (Fig. 2a;
MNI coordinates 27, � 78, 48; spatial extent, 1,232 mm3; from
ref. 7, Study 1; mask download available at https://yale.box.com/
v/levylab-gilaie-dotan-etal-2014). In Fig. 2b, rPPC GMV is plot-
ted as a function of age and confirms that GMV in our parietal
region-of-interest does indeed decrease with age in our lifespan
sample (Pearson correlation, n¼ 52, r¼ –0.66, P¼ 1.1–07).

Brain-behaviour relationships. To assess the relationship
between risk preferences and our variables of interest we
allowed alpha, the risk preference parameter, to vary during the
estimation procedure as a linear function of age (Model 1:
a¼b1� ageþ b0) and rPPC GMV (Model 2: a¼ b1� rPPC
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Figure 1 | Experimental design. (a) Example lotteries representing a 25,

50, 75% chance of gaining $15, $7, $30, respectively. (b) Example trial

sequence.
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Figure 2 | rPPC grey-matter volume accounts for risk tolerance after

controlling for age. (a) A priori defined region of interest: right posterior

parietal cortex (rPPC). (b) rPPC grey matter volume plotted as a function of

age for individual participants (n¼ 52). (c) rPPC grey matter volume

plotted as a function of risk tolerance for individual participants. (d) Risk

tolerance as a function of age, controlling for rPPC grey matter volume,

plotted for individual participants. (e) Risk tolerance as a function of rPPC

grey matter volume, controlling for age, plotted for individual participants.
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GMVþb0). As predicted by previous research4,7, we found a
significant negative relationship between alpha and age (Z-test,
n¼ 3,077, s.e.’s clustered on 52 participants, z¼ –2.58, P¼ 0.01;
Table 1, Model 1) and a significant positive relationship between
alpha and rPPC GMV (Z-test, n¼ 3,077, s.e.’s clustered on 52
participants, z¼ 3.51, P¼ 0.0004; Table 1, Model 2). Controlling
for gender in each model revealed no effect of gender on risk
tolerance and did not qualitatively change the relationship
between risk tolerance and age/rPPC grey matter (Table 2). To
illustrate the positive correlation between risk tolerance and
parietal grey matter, choice data were modelled at the individual
level and the risk tolerance parameter derived from those fits
(alpha) is plotted as a function of each individual participant’s
rPPC GMV in Fig. 2c.

Does the decline of rPPC GMV in fact account for the age-
related increase in risk aversion? To answer this question we
employed a standard econometric approach to obtain an
unbiased estimate of the degree to which age-related variation
in risk attitude can be attributed more parsimoniously to GMV:
we allowed alpha to vary with both age and rPPC GMV (Model 3:
a¼ b1� ageþb2� rPPC GMVþb0) and again found a sig-
nificant positive relationship between alpha and rPPC GMV (Z-
test, n¼ 3,077, s.e.’s clustered on 52 participants, z¼ 2.13,
P¼ 0.033). Critically, however, when the linear regression was
computed in this manner, age no longer had any influence on
alpha (Z-test, n¼ 3,077, s.e.’s clustered on 52 participants, z¼ –
0.24, P¼ 0.81), indicating that rPPC GMV, and not age per se,
modulates risk preferences (Table 1, Model 3). To illustrate this
effect for individual participants, we plot the independent
contributions of these two factors on risk preferences: alpha as
a function of age after regressing out the contribution of rPPC
GMV (Fig. 2d) and as a function of rPPC GMV after regressing

out the contribution of age (Fig. 2e). A schematic of the main
results is presented in Fig. 3.

Two additional models confirmed that these results are specific
to local grey matter decline in the rPPC, rather than global, age-
related changes in grey matter thickness. When global GMV
(Model 4: a¼ b1� rPPC GMVþb2� global GMVþb0) and
global GMVþ age (Model 5: a¼ b1� ageþb2� rPPC GMVþ
b3� global GMVþb0) were included, increased rPPC GMV still
predicted increased risk tolerance (Z-tests, n¼ 3,077, s.e.’s
clustered on 52 participants, z¼ 2.09, P¼ 0.037, Model 4;
z¼ 1.95, P¼ 0.051, Model 5), whereas neither global GMV nor
age did (Table 1). Bayesian Information Criteria16 values indicate
that these final two neurobiologically comprehensive models best
characterize the choice process, despite the penalties incurred for
additional parameters (Table 1). Finally, to ensure that our results

Table 1 | Estimated coefficients and Bayesian Information Criteria values for each model.

Model 1 Model 2 Model 3 Model 4 Model 5

Risk tolerance (a)
Age �0.003** (0.001) — –0.0004 (0.0017) — 0.001 (0.002)
rPPC GMV — 1.338*** (0.382) 1.247* (0.585) 0.974* (0.466) 1.106� (0.567)
Global GMV — — — 0.0007 (0.0005) 0.0009 (0.0007)
Constant 0.669*** (0.064) 0.152 (0.112) 0.200 (0.241) –0.162 (0.277) –0.357 (0.517)

Logistic slope (s)
Constant 1.016*** (0.168) 0.986*** (0.156) 0.985*** (0.156) 0.971*** (0.158) 0.970*** (0.158)

Bayesian Information Criteria
Value 3,084 3,024 3,031 3,011 3,016
Rank 5 3 4 1 2

Standard errors, s.e.’s, in parentheses; s.e.’s clustered on participant. Coefficients significantly different from zero indicated by asterisks: ***Po0.001; **P¼0.01; *Po0.05; �P¼0.051.

Table 2 | Estimated coefficients for each model.

Model 1 Model 2 Model 3 Model 4 Model 5

Risk tolerance (a)
Age �0.003* (0.001) — –0.0006 (0.0019) — 0.0008 (0.002)
rPPC GMV — 1.37*** (0.417) 1.252* (0.585) 1.017* (0.474) 1.111� (0.566)
Global GMV — — — 0.0008 (0.0005) 0.0009 (0.0007)
Gender 0.014 (0.070) 0.011 (0.057) 0.020 (0.062) 0.032 (0.055) 0.027 (0.058)
Constant 0.700*** (0.063) 0.137 (0.138) 0.200 (0.241) –0.238 (0.305) –0.380 (0.517)

Logistic slope (s)
Constant 1.015*** (0.168) 0.986*** (0.156) 0.984*** (0.156) 0.969*** (0.157) 0.969*** (0.157)

Standard errors, s.e.’s, in parentheses; s.e.’s clustered on participant. Coefficients significantly different from zero indicated by asterisks: ***Po0.001; **Po0.01; *Po0.05; �P¼0.050.

Age

Age

Risk tolerance

Risk tolerance

rPPC GMV

Age-related declines in risk tolerance
accounted for by age-related declines in

rPPC grey matter volume

Figure 3 | Overview. Schematic presentation of results.
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do not depend on the functional form of the model, we used
multiple regression to determine if individual age and rPPC GMV
can predict the proportion of lottery choices that each participant
made, with fewer lottery choices indicative of greater risk
aversion: proportion of lottery choice¼ b1� ageþb2� rPPC
GMVþb0. We found converging evidence that rPPC GMV, but
not age, accounts for changes in risk preferences using
this model-free approach (T-tests, n¼ 52, b1¼ 0.00, t¼ 0.77,
P¼ 0.78; b2¼ 1.31, t¼ 1.85, P¼ 0.035; ps one-tailed in predicted
directions).

While the primary aim of the current study was to test a
specific hypothesis regarding the rPPC’s role in modulating age-
related changes in risk tolerance, we also conducted an
exploratory whole-brain VBM analysis to evaluate whether
GMV is predictive of risk tolerance in any additional brain
regions. In a voxel-wise manner, multiple regression was used to
compute the linear relationship between risk tolerance and GMV,
controlling for age, gender and global GMV. No clusters showed a
significant relationship between GMV and risk tolerance after the
stringent corrections needed to combat false discoveries in
exploratory whole-brain analyses. Given that this is the third
independent data set showing a significant relationship between
rPPC GMV and risk tolerance, the likelihood that we are
reporting a repeated false discovery is extremely low. While we
cannot definitively rule out the possibility that additional regions’
structure and function contribute to age-related changes in risk
tolerance, our a priori hypothesis-driven ROI analyses point to a
clear role of the rPPC in these processes.

Choice data were collected in a magnetic resonance imaging
(MRI) scanner during the acquisition of functional scans
(manuscript in preparation). Although in theory the scanner
environment may affect individual risk attitudes, we note that
age-based estimates of risk tolerance derived from Model 1 are
comparable to those obtained outside the scanner: the risk
tolerance parameter (alpha) is predicted to drop slowly with each
passing year, from 0.61 at 21 years of age to 0.42 by 90 years old.
These estimates of risk tolerance fall within the 95% confidence
intervals for age-specific alpha values reported previously by our
group4 in a task where choices were made on a desktop computer.

Discussion
To advance a neurobiological understanding of age-related
changes in decision-making, we must link changes in behaviour
to neurobiological processes that unfold across the lifespan rather
than to chronological age itself17. That the loss of GMV in rPPC
better accounts for changing risk preferences than does age
provides a remarkably simple explanation of this type at the level
of brain macrostructure. This finding also furthers our
understanding of the neurobiological basis of risk preferences at
large. While the general relationship between structural MRI
measures and the neural microstructure is unclear18, in aging
there are multiple changing factors that can account for GMV
decline, such as changes in synaptic density, neuronal distribution
size, dendritic arborization, molecular shifts and others19–22.
These could all affect efficient neural coding and thus are
compatible with computational theories suggesting that risk
aversion results from limited neural computational capacity23.

The current study only includes adults over 18 years old. As in
our previous study4, risk tolerance decreases monotonically
within this age range. When adolescents are taken into account,
however, the lifespan trajectory for risk tolerance may be
described by a U-shaped function, with adolescents showing
higher risk aversion compared with young and midlife adults9.
This raises an intriguing hypothesis for future research—that
increased risk aversion in adolescence might be parsimoniously

accounted for by changes in rPPC GMV during childhood and
adolescent development.

Finally, it should be emphasized that risk taking in real life
involves multiple, dissociable components10,24–26 (for example,
attitudes to ‘ambiguity’, or unknown risks, loss aversion, learning
of implicit probability structures). Future research will need to
address the relationship between changes in neuroanatomy,
changes in neural patterns of activity, computational models of
the decision-making process and risk-taking behaviours.

Methods
Participants. Fifty-two adults (18–88 years old, mean: 54.7, s.d.: 22.1; 30 females)
participated in the study. Based on the effect sizes observed in our previous studies,
our sample size should provide adequate statistical power to detect significant
relationships between age and risk tolerance4, as well as rPPC risk tolerance and
GMV7. Participants were right-handed, had normal or corrected to normal vision,
were not taking medication for any psychiatric condition or developmental
disorder, provided informed consent in accordance with the NYU IRB, and were
recruited via bulletin boards and community centers. Three additional participants
(ages: 31, 38, 48) completed the study but were excluded from the analyses
presented here: these participants chose the objectively worse option (for example,
some chance of $5 over $5 for sure, see Task section below) 450% of the time,
which indicates a preference for less, rather than more money or a
misunderstanding of the task; we could not, in principle, estimate risk preferences
for these participants4.

For participants aged 65 and older, we used the Mini Mental State Examination
(Psychological Assessment Resources) to exclude overt cognitive impairment; all
participants received scores between 27 and 30 (mean: 28.9, s.d.:1.06), indicating no
overt cognitive impairment. Participants received $50 for taking part in the study,
as well as a bonus payment (see below).

Task. Participants received detailed explanations of the task and of the bonus
payment procedure and were required to pass task comprehension questions before
completing practice trials. In the experiment itself, participants made 60 binary
choices between a certain gain of $5 and a lottery whose monetary value (20
amounts: $5–$120) and probability of payout (3 levels: 0.25, 0.5, 0.75) were sys-
tematically manipulated. Each lottery was represented by an image of a bag con-
taining 100 coloured poker chips, some red and some blue (Fig. 1); these images
corresponded to physical bags that were present in the experimental room. The size
of the coloured areas and the numbers written inside indicated the number of chips
of each colour in the bag. Above and below each colour, a number indicated how
much a chip of that colour would be worth if it were drawn from the bag. These
pure risk choices were made as part of a larger study that included an additional
60 choices between a certain gain of $5 and ambiguous lotteries (20 amounts:
$5–$120) whose exact probabilities were unknown (see ‘Ambiguous Lotteries’
below).

All choices were made in the scanner during functional MRI scans whose data
are not part of this study. An additional four trials were included to accommodate
functional MRI analyses. Functional data from the first trial of each run would be
discarded, and for most participants (44 of 52), we started each block with a choice
between the same certain gain of $5 and 50% chance of $4. The additional four
trials for the remaining eight participants were lotteries of $140 in value (two risky:
25% and 50%; and two ambiguous) and were randomly intermingled with the
other trials. Only the 60 pure-risk trials described above were included in the
analyses presented here, and thus, the choice set used to assess risk preferences is
identical across all participants. Trial order was randomized independently for each
participant.

Bonus payment. One trial was randomly selected at the end of the experiment,
and the choice made on this trial determined a participant’s bonus earnings: $5 if
the certain amount was chosen, $0 or some larger amount if the lottery was chosen.
For lottery realizations, participants reached into a physical bag with the correct
number of red and blue chips inside; the colour of the drawn chip corresponded to
a value amount on each trial (Fig. 1) and determined the bonus payment.

Individual risk preferences. Choice data were fit, separately for individual par-
ticipants, using the maximum likelihood procedure described in the main text. The
slope of the logistic choice function was held constant during the estimation
procedure using the estimate obtained for the corresponding population-level
analysis (Fig. 2c: Table 1, Model 2; Fig. 2d,e: Table 1, Model 3).

Structural MRI. Anatomical images were collected using a Siemens Allegra 3T
head-only scanner at the NYU Center for Brain Imaging. High-resolution
T1-weighted anatomical images (1� 1� 1 mm3) were acquired with an MPRAGE
pulse sequence (TI¼ 900 ms, sagittal slices, 256� 256 matrix).
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VBM analysis. VBM analyses were performed with SPM12 (http://www.fil.ion.
ucl.ac.uk/spm/). Using the VBM8 toolbox (http://www.neuro.uni-jena.de/vbm/),
structural images were normalized to MNI stereotactic space, segmented into grey
matter, white matter and cerebrospinal fluid, and spatially smoothed with a
Gaussian kernel (FWHM¼ 8 mm). For each participant, GMV in our rPPC region-
of-interest (MNI coordinates 27, � 78, 48; 1,232 mm3; ref. 7, Study 1) was sampled
using the MarsBaR toolbox (http://marsbar.sourceforge.net).

For the whole-brain VBM analysis, the covariate of interest in our multiple
regression model was risk tolerance as assessed by alpha. Age, gender and global
GM volume (following analysis of covariance normalization) were included in the
design matrix. F contrasts were applied first with Po0.001 (uncorrected) as the
criterion to detect voxels in which GMV significantly correlated with individual
risk attitudes. Nonstationary whole-brain cluster-level correction27 was then
applied to correct for multiple comparisons at a threshold of Po0.05.

Ambiguous lotteries. Pure risk choices were made as part of a larger study that
included an additional 60 choices between a certain gain of $5 and ambiguous
lotteries (20 amounts: $5–$120) whose exact probabilities were unknown (24, 50
and 74% of the chips were covered by an occluder). Consistent with previous
results4,7, we found no evidence that ambiguity aversion was linked to age and/or
rPPC grey matter (see Supplementary Methods).

Data availability. All relevant data and analysis code are available from
the authors upon reasonable request. rPPC ROI mask download available at
https://yale.box.com/v/levylab-gilaie-dotan-etal-2014.
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