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JAK/STAT controls organ size and fate
specification by regulating morphogen
production and signalling
Carles Recasens-Alvarez1,*, Ana Ferreira1,* & Marco Milán1,2

A stable pool of morphogen-producing cells is critical for the development of any organ or

tissue. Here we present evidence that JAK/STAT signalling in the Drosophila wing promotes

the cycling and survival of Hedgehog-producing cells, thereby allowing the stable localization

of the nearby BMP/Dpp-organizing centre in the developing wing appendage. We identify the

inhibitor of apoptosis dIAP1 and Cyclin A as two critical genes regulated by JAK/STAT and

contributing to the growth of the Hedgehog-expressing cell population. We also unravel an

early role of JAK/STAT in guaranteeing Wingless-mediated appendage specification, and a

later one in restricting the Dpp-organizing activity to the appendage itself. These results

unveil a fundamental role of the conserved JAK/STAT pathway in limb specification and

growth by regulating morphogen production and signalling, and a function of pro-survival

cues and mitogenic signals in the regulation of the pool of morphogen-producing cells in a

developing organ.
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D
espite the great differences in size and shape across the
animal phyla, the body plan of most organisms is built up
by a limited and conserved number of developmental

toolkit genes that follow the same principles of animal design.
Studies of limb development, both in vertebrates and inverte-
brates, have been instrumental to our current understanding of
the interplay between morphogen function, growth and pattern-
ing1–5. Morphogens of the BMP/Dpp, Sonic Hedgehog/Hedgehog
and Wnt/Wingless families play a conserved role in promoting
growth and fate specification within growing limbs, which emerge
as outgrowths perpendicular to the major axes of the developing
animal. Morphogens are signalling molecules produced and
released from a localized source that spread throughout the tissue
to form a concentration gradient. These gradients provide a series
of concentration thresholds along the tissue that set the
transcriptional state of downstream target genes in discrete
domains of expression as a function of their distance from the
source. These genetic subdivisions are ultimately used to define
cell identity and tissue pattern. A complex set of interactions
between morphogens and their corresponding signalling
pathways contributes to patterning and organizing limb growth
along the dorsal–ventral, anterior–posterior and proximal–distal
axes.

The developing limbs of Drosophila have proved a valuable
model system to genetically and molecularly identify morphogens
and members of their corresponding signalling pathways.
They have also been instrumental to functionally dissect the
interplay between morphogens and their biological functions
and to unravel the genetic logic of pattern formation. In the
wing primordium, Wingless (Wg) plays an instructive role in the
specification of the wing appendage6 and restricts the expression
of Vein (Vn), a ligand of the epidermal growth factor receptor
(EGFR) involved in the specification of the body wall7, to the
proximal domain. Interestingly, tissue growth contributes to the
specification of the wing versus the body wall by modulating
the range of Vn and Wg activities8. Asymmetric interactions
between posterior (P) Hh-producing and anterior (A) Hh-
receiving cells induce the expression of Dpp in the centre of
the wing field, and Dpp organizes growth and patterning of
the developing appendage9–12. Symmetric interactions between
dorsal (D) and ventral (V) cells, mediated by the complementary
and compartment-specific expression of two different ligands of
the Notch receptor, induce the expression of Wg at the DV
boundary, and Wg organizes the growth and pattern of the
developing wing13–16.

The Unpaired cytokines are interleukin-6-like secreted proteins
produced and released from a localized source that spread along
the tissue to activate the conserved JAK (Janus Kinase)/STAT
(Signal Transducer and Activator of Transcription) signalling
pathway17. This pathway is involved in the proximal–distal
patterning of limb primordia18–20, and regulates growth and the
competitive status of proliferating cells21,22. No developmental
role of the conserved JAK/STAT pathway has been described so
far in vertebrate limbs. Here we present evidence that JAK/STAT
is required in a sequential manner in the developing Drosophila
wing to guarantee the correct fate- and growth-promoting
activities of Wg, Hh and Dpp morphogens. Interestingly, JAK/
STAT mediates these activities by three distinct mechanisms.
Early in development, localized expression of Unpaired and
graded activity of the JAK/STAT pathway along the proximal–
distal axis restrict the expression of genes regulated by the
Vn/EGFR pathway to the body wall, thus ensuring wing
fate specification by the activity of Wg. Later in development,
JAK/STAT controls organ growth by promoting the survival and
cycling of Hh-producing cells, thereby allowing stable expression
of the Dpp stripe in the centre of the wing appendage. Finally, the

building of the wing hinge—a cell population that isolates the
growing appendage from the surrounding body wall and that is
maintained by the activity of JAK/STAT18,19,23—contributes to
delimiting the organizing activity of Dpp to the growing
appendage. Overall, these data reveal a novel role of the JAK/
STAT signalling pathway in the control of organ size and fate
specification by regulating the production and activity of
morphogens and by spatially restricting their organizing and
growth-promoting functions. These findings add a new member
to the ample repertoire of signalling molecules and corresponding
pathways involved in limb development and unveil a role of pro-
survival cues and mitogenic signals in limb development.

Results
JAK/STAT restricts EGFR to ensure wing specification. In
second instar wing discs, localized expression of Wg and Vn in
opposing domains subdivides the primordium into the pre-
sumptive wing field and body wall/notum regions, respectively
(Fig. 1a,b; refs 6,7). We first monitored at this developmental
stage the expression of Unpaired 1 (Upd) using upd-gal4, a
P-element insertion in the upd locus carrying the Gal4
transcriptional activator24, and the activity of the pathway using
the 10xSTAT-GFP reporter25. Upd expression was restricted to
the most distal domain of the wing disc, in a broader domain
than Wg (Fig. 1c and Supplementary Fig. 1), and activation of the
pathway was observed throughout the disc, although GFP levels
were clearly lower in the most proximal region of the primordium
(Fig. 1d and Supplementary Fig. 1). Restricted expression of
upd to the distal domain of young discs was confirmed by in situ
hybridization (Supplementary Fig. 1). We next analysed the
developmental role of JAK/STAT at this stage of wing
development. We used the scalloped-gal4 (sd-gal4) driver, which
is expressed at high levels in the entire early wing primordium8,
to drive expression of RNA interference (RNAi) forms against the
Drosophila Upd receptor (Domeless), JAK kinase (Hop) and
STAT transcription factor (STAT92E). Remarkably, the resulting
adult wings were either vestigial or absent, and body wall
structures were often duplicated (Fig. 1e,f, red arrows, and
Supplementary Fig. 1). This phenotype is reminiscent of the wg
mutant adult phenotype26. In the wing disc, expression of the
homeodomain protein Homothorax (Hth) is restricted to the
presumptive body wall, while the POU homeodomain protein
Nubbin (Nub) is expressed in the presumptive wing territory
(Fig. 1h,i, refs 27,28). Wg is expressed in the body wall and wing
territories of late third instar discs in a characteristic pattern
(Fig. 1h). In mature discs in which JAK/STAT signalling had been
compromised, Nub was absent or residual in a small group of
cells, and the characteristic expression pattern of Hth and Wg in
the notum showed a mirror-image duplication (Fig. 1j,k). These
results indicate that JAK/STAT is required for proper wing fate
specification.

We next checked the expression and activity of Wg and
Vn/EGFR in JAK/STAT-depleted wing discs. First, we analysed
whether JAK/STAT controls the expression or activity of Wg, or
whether it collaborates with the Wg pathway during wing fate
specification. While blocking Wg signalling by overexpression of
Shaggy/GSK3 in a stripe along the anterior-posterior (AP)
compartment induced the cell-autonomous loss of Nub (Fig. 2a,
ref. 8), JAK/STAT depletion in the same domain did not have the
same effect (Fig. 2b). The early expression of Wg was not affected
by JAK/STAT depletion either (Fig. 2c,d). These observations
indicate that JAK/STAT does not have an active role in inducing
wing fate or in regulating Wg expression. The Drosophila
Iroquois complex (Iro-C) consists of three genes encoding
homeobox transcription factors (araucan, caupolican and
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mirror), which are expressed in the most proximal region of the
wing primordium by the activity of Vn/EGFR (Fig. 2c,h) and
specify notum structures29. Recent experimental evidence has
revealed a late role of JAK/STAT in repressing the expression
of these transcription factors in the wing hinge of mature
primordia18,19. We analysed whether JAK/STAT has an earlier
and more extensive role in restricting the expression of Vn/EGFR
targets such as the Iro-C genes and apterous, a gene encoding for
a homeodomain-containing transcription factor that specifies the
D compartment30. Interestingly, mirror expression was expanded
distally in JAK/STAT-depleted second instar primordia
(Fig. 2c,d) and this expansion was even more evident in mature
wing discs (Fig. 2h–j). In JAK/STAT-depleted primordia,
apterous expression was also expanded distally (Fig. 2k–m). The
expansion in the expression domains of mirror and apterous was
not always accompanied by the loss of the presumptive wing field

(Fig. 2i,l). We found that the initial expression of Vn, which
depends on Dpp activity31, was unaffected in JAK/STAT-depleted
early wing primordia (Fig. 2e,f). However, the later expression of
Vn, which is reinforced by a positive feedback amplification loop
through the activation of the EGFR pathway7,31, was expanded in
JAK/STAT-depleted late second instar (Fig. 2g) and late third
instar wing primordia (Fig. 2n–p). The distal expansion in the
expression of EGFR target genes contributed to the resulting
duplication of notum structures, as halving the doses of the EGFR
gene or of the whole iro-C reduced the frequency of duplicated
nota observed in adults (Fig. 1g). This frequency was increased in
wg heterozygous animals (Fig. 1g).

Interestingly, ectopic expression of Upd to the most proximal
side of the wing primordium reduced the expression levels of
mirror throughout development (Fig. 3a–c), caused a reduction in
the size of the notum (Fig. 3d, compared with the inset in Fig. 3d)
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Figure 1 | Failure to specify wing fate in the absence of JAK/STAT signalling. (a,c,d) Wing primordia of second instar larvae labelled to visualize

expression of Wg protein (red or white (a,c,d)), vn (cyan (a), in vn-gal4, UAS-GFP), upd (green or white (c), in upd-gal4, UAS-myrGFP), the activity of the

JAK/STATpathway (green or white (d), in 10xSTAT-GFP larvae) and 4,6-diamidino-2-phenylindole (DAPI; blue). The contour of the wing discs is marked by

a white line. (b) Cartoon depicting the roles of Wg and Vn in the specification of wing and notum territories. (e,f,h–k) Adult thoraxes (e,f) and mature wing

primordia (h–k) of wild-type male individuals (e,h,i) or male individuals expressing domeRNAi under the control of the sd-gal4 driver (f,j,k). Wing primordia

were stained for Wg (red, h,j,k), Nub (blue, h,j,k) and Hth (green or white, i–k). Wing territory (W), endogenous nota (N) and duplicated nota territories

(N0) are marked. Red arrows in f point to the duplicated nota (N0). Adult thoraxes are illustrative examples of complete or partial duplications of the notum

structures. Scale bars, 20mm (a,c,d) or 50mm (h–k). (g) Histogram plotting the percentage of duplicated nota in the following genotypes: (1) sd-gal4/Y;

UAS-domeRNAi/þ ; UAS-dcr2/þ (79.4%, n¼ 102 heminota). (2) sd-gal4/Y; UAS-domeRNAi/wgCX4; UAS-dcr2/þ (91.5%, n¼ 106 heminota). (3) sd-gal4/Y;

UAS-domeRNAi/egfrF2; UAS-dcr2/þ (39.1%, n¼ 197 heminota). (4) sd-gal4/Y; UAS-domeRNAi/þ ; iroEGP7/UAS-dcr2 (2.8%, n¼ 180 heminota). Only male

individuals were scored for each genotype.
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and very often induced ectopic wing structures emerging from the
notum (Fig. 3e,f, white arrows). Ectopic wing structures were also
observed in discs and adult flies upon overexpression of Hop in
the P compartment (Supplementary Fig. 1). These results are
reminiscent of the effects caused by local reduction of Vn/EGFR
activity in the notum, as expression of a chimeric protein between
Vn and the secreted EGFR antagonist Argos (Vn::Aos) also
induced ectopic wing structures in the same location (Fig. 3g, see
also ref. 7). All these results indicate that Upd has an early role in
restricting Vn/EGFR targets to the most proximal region of
the wing primordium and, by doing so, JAK/STAT ensures
Wg-mediated wing fate specification (Fig. 3n).

JAK/STAT restricts the expression of Upd. We observed that
RNAi-mediated depletion of Domeless or STAT92E in the A
compartment of the wing caused in the nearby P compartment a
non-autonomous increase in the levels of the 10xSTAT-GFP
reporter (Fig. 3h,i, red arrow), a downregulation ofmirror (Fig. 3j,
red arrow) and the induction of wing structures, monitored by
the ectopic expression of Nub (Fig. 3k, see also ref. 18). Depletion
of wg did not rescue the non-autonomous induction of wing
structures caused by stat92ERNAi (Supplementary Fig. 1). Inter-
estingly, expression of a truncated Domeless receptor (DomeDN),

lacking the intracellular domain but able to trap Upd, did not
have any non-autonomous effect (Fig. 3l). These observations and
the fact that ectopic activation of JAK/STAT generates ectopic
wings suggest that Upd might be either ectopically expressed or
its levels increased upon JAK/STAT depletion. Consistently,
expression of DomeDN fully rescued the non-autonomous
induction of wing structures caused by domeRNAi (Fig. 3m,
domeRNAi targets the region encoding for the C-terminal intra-
cellular domain and should not affect the expression levels of the
domeDN transgene, see Methods). We then analysed the expres-
sion of upd by in situ hybridization in wild-type and JAK/
STAT-depleted discs. The early expression of upd in the distal
domain of second instar wing discs (Supplementary Fig. 1) is later
repressed in the wing pouch and restricted to five dots located in
the wing hinge of mature discs (Fig. 3o). In JAK/STAT-depleted
discs, the restriction of upd expression to these five dots was
impaired and upd expression levels were increased (Fig. 3o, red
arrows). Consistently, clones of cells mutant for stat92E failed to
lose upd expression in the wing pouch (Supplementary Fig. 1).
Taken together, these observations indicate that the negative
feedback loop between JAK/STAT and its ligand contribute to
restrict the expression levels and pattern of Upd to the maturing
wing hinge (Fig. 3n) and that a failure to do so interferes with the
wing versus body wall subdivision. In second instar discs,

T
hird instar

wild type

m
irr

-la
cZ

ap
-la

cZ

N′

N N

N′
W

N

W

h i j

k l m

sd>domeRNAi

W
g 

m
irr

-la
cZ

wild type sd>domeRNAi

ve
in

-la
cZ

n o p

S
econd instar

wild type sd>domeRNAi

ve
in

-la
cZ

e f g

wild type sd>domeRNAi

W
g 

m
irr

-la
cZ

c d

T
hird instar

a

N
ub

 G
F

P

Nub

ptc>GFP, sgg

b

N
ub

 G
F

P

Nub

ptc>GFP, domeRNAi

Figure 2 | JAK/STAT restricts the expression of Vn/EGFR target genes to the body wall. (a,b) Wing primordia of late third instar larvae expressing

shaggy (sgg, a) or domeRNAi (b) under the control of the ptc-gal4 driver and labelled to visualize Nub protein (red or white) and GFP (green). (c,d,h–j) Wing

primordia from wild-type larvae (c,h) or from larvae expressing domeRNAi under the control of the sd-gal4 driver (d,i,j) labelled to visualize mirror (mirr-lacZ,

antibody against b-gal, green or white) and Wg protein (red) expression in second (c,d) and late third instar (h–j) stages. Wing territories (W),

endogenous nota (N) and duplicated nota territories (N0) are marked. (e–g,n–p) Wing primordia from wild-type larvae (e,n) or from larvae expressing

domeRNAi under the control of the sd-gal4 driver (f,g,o,p) labelled to visualize vn expression (vein-lacZ, X-Gal staining, blue) in second (e–g) and late third

instar (n–p) stages. (k–m) Wing primordia from late third instar wild-type larvae (k) or from larvae expressing domeRNAi under the control of the sd-gal4

driver (l,m) labelled to visualize apterous expression (apterous-lacZ, X-Gal staining, blue). Scale bars, 20mm (c–g) or 50mm (a,b,h–p).
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restricted Upd expression and JAK/STAT activity to the most
distal part of the wing do not rely on Wg and Vn/EGFR path-
ways, as they were largely unaffected by wg loss or by ubiquitous
EGFR activation (Supplementary Fig. 1). JAK/STAT depletion
did not induce the ectopic expression of upd in the body wall of
early instar discs either (Fig. 3o and Supplementary Fig. 1). Thus,
the mechanism by which the early expression of upd is restricted
to the distal wing primordium remains to be elucidated.

JAK/STATmaintains the size of the Hh-expressing compartment.
Upd expression evolves as wing development proceeds and
becomes restricted to the presumptive wing hinge—a region
that connects the developing wing to the surrounding body
wall18,19,22,23 (see also Figs 3o and 8a). The 10xSTAT-GFP
reporter is consequently activated in the hinge region (Figs 3h
and 8b). Interestingly, mild activation of 10xSTAT-GFP was also
observed in the whole wing field and this expression depended on
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antibody against b-gal, red or white, j), Nub (blue, j) and GFP (green, j). Red arrows point to non-autonomous ectopic activation of 10xSTAT-GFP (i) and

non-autonomous reduction of mirror expression levels (j). (k–m) Late third instar wing primordia from larvae expressing the indicated transgenes under the

control of the ci-gal4 driver labelled to visualized Nub (red or white), GFP (green, k,l) and Ci (green, m). In k, the endogenous (W) and ectopic (W0) wing
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JAK/STAT activity, as Domeless depletion induced a cell-
autonomous downregulation of the reporter (Fig. 3i and
Supplementary Fig. 2). These observations prompted us to
analyse whether JAK/STAT has a broader developmental role
during limb development, besides its reported activity in defining
and promoting wing hinge growth19,23. For this purpose, and in
order to bypass the earlier requirement of JAK/STAT in wing fate
specification, we used genetic tools with a milder effect on the
pathway. Expression of DomeDN in the sd-gal4 domain gave rise
to a reduction in the size of the wing disc (Fig. 4a,b) with a clear
impact on the size of the P compartment (Fig. 4b, white arrow).
A similar phenotype was observed in domeRNAi-expressing wing
discs (Supplementary Fig. 2). In some cases, the P compartment
was completely lost, giving rise to a stronger decrease in the size
of the wing pouch (Fig. 4c, white arrow). A similar undergrowth
of the wing disc was observed in hop27 mutant animals (Fig. 4d,
see also ref. 21), and in this background the size of the P

compartment was also reduced (Fig. 4d, white arrow). While
depletion of Dome activity in A cells (with the ci-gal4 driver) did
not have any noticeable impact on the size of the A compartment
(Fig. 3i–m, Supplementary Fig. 2 and Fig. 8d), expression of
DomeDN in P cells (with the en-gal4 driver) caused a strong
reduction in the size of the P compartment (Fig. 4e, white arrow).
This reduction was also observed with RNAi forms of dome, hop
and stat92E, as well as in JAK/STAT-depleted early third instar
wing discs and mature haltere and leg primordia (Supplementary
Fig. 2). To analyse whether JAK/STAT is required to maintain the
size of the P compartment throughout development, we used
the thermosensitive version of the Gal4 repressor, Gal80ts, to
temporally control JAK/STAT activity. The reduction in the size
of the P compartment observed in early third wing primordia
grown at the restrictive temperature (29 �C) was restored when
larvae were shifted to the permissive temperature (18 �C) during
third instar (Supplementary Fig. 2). These results indicate that
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STATdepletion in P cells. Wing disc was stained for Engrailed (En, red or white), Ci (blue and white) and GFP (green or white). Dashed red line marks the

AP boundary. Scale bars, 50mm.
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JAK/STAT is required to maintain the size of the P compartment
throughout development.

To further characterize the requirement of JAK/STAT in the
maintenance of P compartment size, we analysed the size and
distribution of clones of cells mutant for a stat92E null allele
(stat92E85c9). Since cells mutant for JAK/STAT are eliminated
through cell competition22—a process by which slow-growing
cells are removed through apoptosis by fast-growing cells32—we
gave the stat92E85c9 mutant cells a relative growth advantage
using the Minute technique to impair growth of the surrounding
non-mutant cells. In a Minute/þ background, wild-type clones
were similarly recovered in A and P compartments (Fig. 4f), and
the average percentage of each compartment covered by these
clones was largely similar (Fig. 4h). In contrast, a low number of
stat92E85c9 mutant cells were recovered in the P compartment
(Fig. 4g). The average percentage of each compartment covered
by stat92E85c9 mutant clones was smaller when compared with
wild-type clones, and this difference was highest in the case of the
P compartment (Fig. 4h). The asymmetric recovery of stat92E85c9

mutant cells was not caused by changes in AP identity, as
P mutant cells continued to express the P-selector gene engrailed
(Fig. 4g,i). Neither was it a consequence of cells crossing from the
P to the A compartment, since clones mutant for stat92E85c9 born
in the P territory respected the AP compartment boundary
(Fig. 4i). We also carried out a lineage-tracing experiment to
irreversibly label all cells born in the P compartment upon
DomeDN expression. Although a small number of cells with a P
compartment origin crossed to the A compartment under these
circumstances (Fig. 4j), this violation does not explain the
observed reduction in the size of the P compartment. This cellular
behaviour resembles the boundary transgressions observed in
regenerating wing discs upon transient pro-apoptotic gene
induction33, thereby suggesting that reduced survival cues
might explain the size reduction of the P compartment (see
below). This reduction was not due to the transformation of the
posterior wing to the posterior notum, as the characteristic
expression pattern of wing and body wall markers (Nub and Tsh,
respectively) was unaffected in hop27 hemizygous mutant animals
(Fig. 4d) and in DomeDN-expressing wing discs (Supplementary
Fig. 2). Altogether, these results reveal a cell-autonomous and
compartment-specific requirement of JAK/STAT in promoting
the growth, proliferation and/or cell survival of P cells during
development.

JAK/STAT promotes the cycling and survival of P cells. On the
basis of the cell-autonomous requirement of JAK/STAT in P cells,
we monitored the activity of the major growth-promoting path-
ways, the expression of cell cycle markers and the activity of the
apoptotic pathway in P wing cells upon JAK/STAT depletion.
Growth of the developing wing relies, among others, on the
activity of Dpp expressed along the AP compartment boundary,
on the activity of the Hippo/Yorkie signalling pathway and on the
proto-oncogene dMyc. The levels of dMyc protein, and the
activity of Dpp and Hippo/Yorkie signalling pathways, monitored
by the expression of its targets Spalt34 and Expanded35,
respectively, were unaffected in P cells expressing DomeDN

(Supplementary Fig. 3). These results are consistent with the
fact that JAK/STAT mutant cells are eliminated through cell
competition in a Yorkie- and dMyc-independent manner22 and
that stat92E85c9 mutant clones were hardly recovered in the
P compartment in spite of being conferred a growth advantage
with the Minute technique (Fig. 4g,h). We thus monitored the
activity of the apoptotic pathway. A TdT-mediated dUTP nick
end labeling (TUNEL) assay revealed an increase in the number
of apoptotic cells in the P compartment of hop27 wing discs

during development when compared with wild-type controls
(Fig. 5a–d). The Drosophila inhibitor of apoptosis dIAP1 protects
cells from apoptosis by inhibiting active caspases, and STAT92E,
when activated, regulates dIAP1 expression in imaginal discs36.
Consistently, overexpression of Hop led to a cell-autonomous
increase in the expression of a dIAP1 enhancer trap (Fig. 5e,g).
However, the role of JAK/STAT in maintaining physiological
levels of dIAP1 is specific to the P compartment, as JAK/STAT
depletion gave rise to a clear reduction in the levels of dIAP1
in P (compare Fig. 5h,e and Fig. 5i,f) but not in A cells
(Supplementary Fig. 4). Most interestingly, overexpression of
dIAP1 or an RNAi against the initiator Caspase Dronc rescued
the DomeDN-mediated size reduction of the P compartment
(Fig. 5j–l and Supplementary Fig. 4) and the amount of cell death
(Supplementary Fig. 4). A similar rescue of P compartment size
was observed upon expression of the effector Caspase inhibitor
P35 (Supplementary Fig. 4). We next analysed the expression of
G1/S and G2/M rate-limiting Cyclins in P cells expressing
DomeDN. Although CycE levels were not affected (Supplementary
Fig. 3), CycA and B were visibly reduced in P cells depleted of
Dome activity (Fig. 5m and Supplementary Fig. 3, see also
ref. 21). Expression of DomeDN in A cells did not cause any overt
downregulation of these two G2 cyclins (Supplementary Fig. 3).
Interestingly, overexpression of CycA was able to largely rescue
the reduction in the P compartment size caused by DomeDN

(Fig. 5n). This observation therefore indicates that the
downregulation of this G2 cyclin is partially responsible for
the reduction in the size of the P compartment caused by loss of
JAK/STAT. Surprisingly, CycB overexpression did not rescue the
size reduction of this compartment (Supplementary Fig. 3).
Altogether, these results indicate that JAK/STAT maintains the
size of the P compartment by regulating CycA and dIAP1 levels.

JAK/STAT counteracts the activity of Engrailed. Stable sub-
division of the wing primordium into A and P compartments is a
consequence of asymmetric signalling by Hh from P to A cells.
The activity of En in P cells helps to generate this asymmetry by
inducing the expression of Hh in the P compartment and at the
same time repressing the essential downstream component of the
Hh pathway Cubitus interruptus (Ci, ref. 9). Thus, only A cells
that receive the Hh signal across the compartment boundary will
respond by stabilizing Ci. We thus analysed whether the specific
requirement of the P compartment for JAK/STAT to drive cell
cycling and survival can be explained by the absence of Hh
signalling or the presence of En in these cells. In the first case, the
combined activities of two signalling molecules (Upd and Hh)
might promote survival and proliferation of A cells, whereas the
sole action of Upd through JAK/STAT might exert a similar role
in P cells. However, depletion of Hh signalling together with JAK/
STAT in A cells did not cause any obvious phenotype in terms of
compartment size (Supplementary Fig. 5). We next addressed the
alternative hypothesis and tested whether JAK/STAT counteracts
the negative effects of the En transcriptional repressor in cell
cycling and survival. A reduction in the levels of En in P cells
(Supplementary Fig. 5), either by expression of two independent
enRNAi transgenes or by halving the doses of en and invected
genes (in Df(2)enE/þ individuals), substantially rescued the
reduction in the size of the P compartment caused by DomeDN

(Fig. 6b–d and Supplementary Fig. 5). Most interestingly, the
reduction in CycA levels and the amount of cell death observed in
JAK/STAT-depleted P compartments were both largely rescued
upon expression of enRNAi (Fig. 6a–c and Supplementary Fig. 5).
The rescue in tissue size, apoptosis and CycA protein levels
caused by expression of enRNAi was not an indirect consequence
of a reduction in the expression of the en-gal4 driver. If anything,
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the expression levels of this driver increased, monitored by an
UAS-GFP transgene and antibody to the Gal4 protein (Fig. 6e–g).
This observation is consistent with the reported capacity of
En to negatively regulate its own expression that is used to
finely modulate physiological En expression levels37. Moreover,

overexpression of En in its domain gave rise to a clear reduction
in dIAP1 and CycA protein levels, caused apoptotic cell death and
reduced the size of the P compartment (Fig. 6h–m). Collectively,
these results indicate that JAK/STAT counteracts the negative
impact of Engrailed on the cycling and survival of P cells.

Stable localization of the Dpp organizer relies on JAK/STAT.
Hh from P cells induces the expression of Dpp in A cells abutting
the P compartment, and Dpp organizes the growth and pat-
terning of the developing appendage3. We thus analysed whether
the strong reduction in the pool of Hh-expressing cells caused by
DomeDN expression had any impact on Dpp expression and,
consequently, on wing growth. As noted above, two distinct
growth phenotypes could be observed in wing discs expressing
DomeDN in the sd-gal4 domain (Fig. 4b,c). In most cases, a mild
but reproducible growth defect was accompanied by a clear size
reduction of the P compartment (Fig. 4b), and in all these cases
the expression of Dpp and its target gene spalt was maintained
(Fig. 7a,b). However, a certain fraction of wing discs showed a
complete loss of the P compartment, accompanied by a strong
reduction in the size of the wing pouch (Fig. 4c), resembling the
tissue size defects observed in dpp mutant wing discs12.
Consistent with the reduction in the number of Hh-producing
cells, the stripe of Dpp expression and its downstream target gene
Spalt were lost in these cases (Fig. 7c). These two distinct
phenotypes were also obtained by expressing DomeDN in the P
compartment (Fig. 7d and Supplementary Fig. 3). Remarkably,
the fraction of wing discs that lost Dpp activity, visualized by the
expression of Spalt, was clearly reduced upon overexpression of
Hh or dIAP1 in the P compartment (Fig. 7d–f). Thus, the
pro-survival and mitogenic activity of JAK/STAT signalling in
P cells contributes to the maintenance of a pool of Hh-producing
cells that induce Dpp expression in nearby A cells, thus giving rise
to well-sized and fully functional limb primordia (Fig. 7g).

JAK/STAT restricts the Dpp organizer to the developing limb.
High levels of Upd expression and JAK/STAT activity in the
hinge primordium (Fig. 8a,b) contribute to its growth18,19,23.
Consistently, expression of DomeDN in the A compartment gave
rise to a reduction in hinge size and to the close apposition of the
developing appendage and the surrounding body wall or notum
(Fig. 8c,d, red brackets). Dpp is expressed at the AP boundary;
however, it exerts its organizing activities only in the wing
appendage (Fig. 8e). We thus wondered whether the hinge region
acts as a fence that contributes to isolating the organizing activity
of Dpp to the developing appendage. Interestingly, in primordia
in which DomeDN was expressed in the hinge, the AP boundary
of the body wall became closer to the developing wing (Fig. 8c,f,
white arrows), the Dpp target gene Spalt was ectopically induced
in nearby wing cells (Fig. 8g, white star), the wing pouch was
expanded (Fig. 8h, white star) and pattern duplications in the
P compartment of the adult wings were frequently observed
(Fig. 8i–k, red stars). Altogether, these results indicate that JAK/
STAT signalling contributes, through its growth-promoting
activity in the hinge region, to isolate the body wall and
appendage sources of Dpp, thus restricting the organizing activity
of Dpp to the developing appendage.

Discussion
Morphogens of the Wnt/Wg, Shh/Hh and BMP/Dpp families
regulate tissue growth and pattern formation in vertebrate and
invertebrate limbs. Here we unravel a fundamental role of the
secreted Upd ligand and the JAK/STAT pathway in facilitating
the activities of these three morphogens in exerting their fate- and
growth-promoting activities in the Drosophila wing primordium.
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Early in wing development, two distinct mechanisms ensure
the spatial segregation of two alternative cell fates. First, the
proximal–distal subdivision of the wing primordium into the
wing and the body wall relies on the antagonistic activities of
the Wg and Vn signalling molecules. While Wg inhibits the
expression of Vn and induces the expression of the wing-
determining genes, Vn, through the EGFR pathway, inhibits the
cellular response to Wg and instructs cells to acquire body wall
fate7. Second, growth promoted by Notch pulls the sources
of expression of these two morphogens apart, alleviates
the repression of wing fate by Vn/EGFR, and contributes to
Wg-mediated appendage specification8. Expression of Vn is
reinforced by a positive amplification feedback loop through the
activation of the EGFR pathway (Fig. 3n, ref. 7,31). This existing
loop predicts that, in the absence of additional repressors, the
distal expansion of Vn/EGFR and its targets would potentially
impair wing development7. Our results indicate that Upd and
JAK/STAT restrict the expression of EGFR target genes and Vn to
the most proximal part of the wing primordium, thereby
interfering with the loop and allowing Wg to correctly trigger
wing development. We also present evidence that JAK/STAT
restricts the expression pattern and levels of its own ligand Upd
and that ectopic expression of Upd is able to bypass EGFR-
mediated repression and trigger wing development de novo. This
negative feedback loop between JAK/STAT and its ligand is of
biological relevance, since it prevents high levels of JAK/STAT
signalling in proximal territories that would otherwise impair the
development of the notum or cause the induction of
supernumerary wings, as shown by the effects of ectopic

activation of the JAK/STAT pathway in the proximal territories.
Thus, while Wg plays an instructive role in wing fate
specification, the Notch and JAK/STAT pathways play a
permissive role in this process by restricting the activity range
of the antagonizing signalling molecule Vn to the body wall
region (Fig. 3n).

Later in development, once the wing field is specified, restricted
expression of Dpp at the AP compartment boundary organizes
the growth and patterning of the whole developing appendage
(Fig. 7g; ref. 3). Dpp expression is induced in A cells by the
activity of Hh coming from P cells, which express the En
transcriptional repressor12,38. Here we show that JAK/STAT
controls overall organ size by maintaining the pool of Hh-
producing cells to ensure the stable and localized expression of
the Dpp organizer. JAK/STAT does so by promoting the cycling
and survival of P cells through the regulation of dIAP1 and CycA,
counteracting the negative effects of En on these two genes. Since
the initial demonstration of the role of the AP compartment
boundary in organizing, through Hh and Dpp, tissue growth
and patterning, it was noted that high levels of En interfered
with wing development by inducing the loss of the P
compartment38,39. The capacity of En to negatively regulate its
own expression was subsequently shown to be mediated by the
Polycomb-group genes and proposed to be used to finely
modulate physiological En expression levels37. Consistent with
this proposal, we observed an increase in the expression levels of
the en-gal4 driver, which is inserted in the en locus and behaves as
a transcriptional reporter, in enRNAi-expressing wing discs. The
negative effects of En on cell cycling and survival reported in our
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work might also contribute to the observed loss of the P
compartment caused by high levels of En. As is it often the case in
development, a discrete number of genes is recurrently used to
specify cell fate and regulate gene expression in a context-
dependent manner. We propose that the capacity of En to block
cell cycle and promote cell death might be required in another
developmental context and that this capacity is specifically
suppressed in the developing Drosophila limbs
by JAK/STAT, and is modulated by the negative autoregulation
of En, thus allowing En-dependent induction of Hh expression
and promoting Dpp-mediated appendage growth (Fig. 7g). It is
interesting to note in this context that En-expressing territories in
the embryonic ectoderm are highly enriched in apoptotic cells40.
Whether this apoptosis plays a biological role and relies on En
activity requires further study.

Specific cell cycle checkpoints appear to be recurrently
regulated by morphogens and signalling pathways, and this
regulation has been unveiled to play a major role in development.
Whereas Notch-mediated regulation of CycE in the Drosophila
eye and wing primordia is critical to coordinate tissue growth and
fate specification by pulling the sources of two antagonistic
morphogens apart8,41, our results indicate that JAK/STAT-
mediated regulation of CycA is critical to maintain the pool of
Hh-producing cells in the developing wing and to induce stable
Dpp expression. The development of the wing hinge region,
which connects the developing appendage to the surrounding
body wall and depends on JAK/STAT activity18,19,23, has been
previously shown to restrict the Wg organizer and thus delimit
the size and position of the developing appendage42. Our results
support the notion that JAK/STAT and the hinge region are also
essential to restrict the organizing activity of the Dpp morphogen
to the developing appendage. Taken together, our results reveal a
fundamental role of JAK/STAT in promoting appendage
specification and growth through the regulation of morphogen
production and activity, and a role of pro-survival cues and
mitotic cyclins in regulating the pool of morphogen-producing
cells in a developing organ.

The striking parallelisms in the molecules and mechanisms
underlying limb development in vertebrates and invertebrates
have contributed to the proposal that an ancient patterning
system is being recurrently used to generate body wall out-
growths43,44. Whether the conserved JAK/STAT pathway plays a
developmental role also in the specification or growth of
vertebrate limbs by regulating morphogen production or
activity is a tempting question that remains to be elucidated.

Methods
Drosophila Strains. The following stocks are described in Flybase: apterous-lacZ;
vein-lacZ8; UAS-domeDCYT (UAS-domeDN in the text45); UAS-vn:aos7; upd1-gal4
(ref. 24); UAS-dIAP1 (ref. 36); UAS-upd19; FRT82B stat92E85c9 (ref. 22); FRT82B
stat92E85c9 UbiRFP46; UAS-hop::myc47; UAS-hh::GFP48; iroEGP7 (ref. 49); UAS-en;
UAS-CycB::HA50; UAS-EGFRlTOP4.2 (ref. 51); sd-gal4; ci-gal4; hth-gal4; ptc-gal4;
hh-gal4; vn-gal4; dpp-lacZ; ex.lacZ. The following strains were provided by the
Bloomington Drosophila Stock Center (BDSC) or the Vienna Drosophila RNAi
Center (VDRC): UAS-domeRNAi (VDRC 106071 and BDSC 34618); UAS-hopRNAi

(BDSC 32966); UAS-stat92ERNAi (BDSC 33637 and VDRC 106980); UAS-
droncRNAi (VDRC 23033); UAS-enRNAi (VDRC 105678 and BDSC 26752);
hop27 (BDSC 8493); 10xSTAT-GFP (BDSC 26197 and 26198); mirror-lacZ (BDSC
10880); UAS-CycA (BSDC 6633); diap1-lacZ (BDSC 12093); wgCX4 (BDSC 2980);
wgCX3 (BDSC 2977); EGFRF2 (BDSC 2768); UAS-sgg (BDSC 5255); en-gal4 (BDSC
30564); UAS-myristoylated-Tomato (UAS-myrT, BDSC 32222); UAS-GFP (BDSC
4775, 6658 and 6874); UAS-myristoylated-GFP (UAS-myrGFP, BDSC 32196);
UAS-RFP (BDSC 30556); UAS-dcr2 (BDSC 24644 and 24651); ubi-FRT-stop-
FRT-GFP (BDSC 32250); UAS-FLP (BDSC 4539); UAS-wgRNAi (BDSC 33902);
UAS-p35 (BDSC 5072); UAS-smo5A (UAS-smoDN in the text, BDSC 23943);
Df(2)enE (BDSC 2216).

Following the protocol described in ref. 52, RNAi strains from the VDRC KK
stock collection were routinely tested for the existence of unwanted second site
insertions by a diagnostic PCR and cleaned by a genetic recombination scheme.
According to the VDRC, the UAS-domeRNAi line used in Fig. 3m (VDRC 106071)

does not target the mRNA encoding the truncated form of domeDCYT. Larvae were
grown in standard fly food at 29 �C to enhance RNAi-mediated gene depletion. In
the case of strong gal4 drivers (for example, ci-gal4, ptc-gal4, hth-gal4, sd-gal4)
larvae were generally grown at 25 �C to decrease larval and pupal lethality.
See Supplementary Table 1 for fly genotypes.

Immunohistochemistry. Mouse anti-Wg (1:10-50; 4D4, DSHB); goat anti-Hth
(1:50; sc-26187, Santa Cruz Biotechnology); mouse anti-Nub (1:10; gift from
S. Cohen); rabbit anti-Nub (1:600; gift from X. Yang); mouse anti-bgal (1:50; 40-1a,
DSHB); mouse anti-En (1:5; 4D9, DSHB); rat anti-Ci (1:10; 2A1, DSHB); mouse
anti-Ptc (1:50; Apa1, DSHB); mouse anti-CycA (1:50; A12, DSHB); mouse
anti-CycB (1:50; F2F4, DSHB); rabbit anti-CycE (1:100; sc-481, Santa Cruz
Biotechnology); mouse anti-Diap1 (1:200; gift from B. Hay); rabbit anti-Tsh (1:600,
gift from S. Cohen); rabbit anti-Sal (1:500, gift from R. Barrio34), guinea pig anti-
dMyc (1:1,000; gift from G. Morata16); rabbit anti-Gal4 (1:100; sc-577, Santa Cruz
Biotechnology); sheep anti-DIG-AP (1:2,000; 11093274910, Roche Diagnostics).
Secondary antibodies Cy2, Cy3, Cy5 and Alexa 647 (1:400) were obtained from
Jackson ImmunoResearch. TUNEL staining was adapted from ref. 53 with the
In Situ Cell Death Detection Kit, TMR Red (Roche Diagnostics). In situ
hybridization with an upd RNA probe (gift from F. Serras) was performed as
in ref. 54.

Quantification of tissue size. P/A ratio measurements of wing discs: in the case of
wing discs in which JAK/STAT was depleted in the P compartment, flies were
allowed to lay eggs at 25 �C overnight, resulting larvae were transferred to 29 �C
and wing discs were dissected in late third instar stages. In the case of wing discs
overexpressing Engrailed in the P compartment, flies were allowed to lay eggs at
18 �C overnight, larvae were shifted to 29 �C in early second instar (4 days after egg
laying, AEL) and wing discs were dissected 72 h later in late third instar stages.
The size of the A compartment and of the whole wing primordium were measured
using the Fiji Software55. The size of the P compartment was obtained by
subtracting the A compartment size from the size of the whole wing disc. Number
of wing discs analysed for each experiment are indicated in the corresponding
figure legends. Since the P/A ratio of late third instar wing discs is largely constant,
the same data set for the wild-type controls was used in the experiments with en-
gal4 (en-gal4, UAS-GFP/þ ; n¼ 36) or with hh-gal4 (UAS-GFP/þ ; hh-gal4, tub-
gal80TS/þ ; n¼ 17). For each independent experiment, a control using the same
number of UAS-transgenes was raised in parallel. Clonal area measurements: the
Fiji Software55 was used to measure the size of the A compartment and of the
whole wing primordium. The size of the P compartment was obtained by
subtracting the A compartment size from the size of the whole-wing disc.
The clonal area that covers each compartment was obtained by measuring the area
devoid of GFP expression in each domain with a macro for the Fiji Software
provided by the Advanced Digital Microscopy Facility at the IRB Barcelona.
The clone area/compartment area ratios were calculated. The corresponding mean
and s.d.’s were calculated, and a two-tailed unpaired t-test assuming equal
variances was carried out in Microsoft Excel. *Po0.05; **Po0.01; ***Po0.001.
Graphical representations of data were made using GraphPad Prism version 6.07.

Quantification of cell death. Images from basal planes were considered for the
determination of the number of cells labelled by TUNEL in the P compartment,
and absolute numbers of apoptotic cells were quantified with the Fiji Software55.
All genotypes were analysed in parallel. The corresponding mean and s.d. were
calculated, and a two-tailed unpaired t-test assuming equal variances was carried
out in Microsoft Excel. *Po0.05; **Po0.01; ***Po0.001. Graphical
representations of data were made using GraphPad Prism version 6.07.

Quantification of signal intensity. Control (n¼ 18) and experimental (n¼ 23)
wing discs were fixed and stained together to avoid variability between discs.
Samples were imaged under identical settings using a Leica SP5 confocal micro-
scope. Confocal conditions were adjusted to minimize saturated pixels with max-
imal intensity. To quantify GFP and Gal4 expression levels in the P compartment,
average signal intensity per pixel was obtained from raw images using the histo-
gram function of the Fiji Software. The corresponding mean and s.d. were calcu-
lated, and a two-tailed unpaired t-test assuming equal variances was carried out in
Microsoft Excel. ***Po0.001. Graphical representations of data were made using
GraphPad Prism version 6.07.

Mosaic analysis and lineage tracing. Loss-of-function clones for the stat92E85c9

allele were generated in the following genotypes: hs-FLP; FRT82B stat92E85c9/
FRT82B M(3)95A2 UbiGFP (Minuteþ clones), hs-FLP; FRT82B stat92E85c9/
FRT82B arm-lacZ (twin/clone analysis) and upd-gal4, UAS-myrGFP/hs-FLP;
FRT82B stat92E85c9 UbiRFP/FRT82B. Flies were allowed to lay eggs for 4 h at 25 �C
in 55mm Petri dishes with standard food. Hatched larvae were synchronized at
early first instar and allowed to grow at 25 �C in standard fly food. Sixteen hours
later (40 h after egg laying, AEL), larvae were heat-shocked at 38 �C for 1 h, and
wing discs were dissected B100 h after clone induction for the Minute clones,
B85 h after clone induction for the twin/clone analysis and 24–48 h after clone
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induction to monitor upd expression in stat92E mutant cells. The following gen-
otype was used to lineage-trace the P compartment upon domeDN expression: UAS-
FLP/ubi-FRT-stop-FRT-GFP; UAS-domeDN/hh-GAL4.

Temporal and regional control of targeted gene expression. Transgene
expression was temporally controlled in the following experiments using the
tub-GAL80TS transgene: (1) Ectopic expression of Upd. To monitor mirror-lacZ
expression, flies were allowed to lay eggs at 25 �C overnight and ptc-gal4,
UAS-GFP/UAS-upd; mirror-lacZ/tub-gal80TS larvae were raised at 29 �C until
dissection in second or third instar larval stages. To visualize ectopic wings
emerging from the notum, larvae were maintained at 18 �C, shifted to 29 �C in late
second instar (5 days after egg laying, AEL) and dissected at late third instar stages.
(2) Overexpression of Shaggy. Flies were allowed to lay eggs at 18 �C overnight,
ptc-gal4, UAS-GFP/ UAS-sgg; tub-gal80TS/þ larvae were shifted to 29 �C in early
second instar stage (4 days after egg laying, AEL) and wing discs were dissected at
late third instar stages. (3) Temporal depletion of JAK/STAT in the P compartment.
Flies were allowed to lay eggs at 25 �C overnight, control (UAS-GFP/þ ; hh-gal4,
tub-gal80TS/þ ) and experimental (hh-gal4, tub-gal80TS/UAS-domeDN) larvae were
transferred to 29 �C and wing discs were dissected at early and late third instar
stages (3 and 5 days AEL, respectively). To address the capacity of the wing disc to
recover P compartment size, experimental (hh-gal4, tub-gal80TS/UAS-domeDN)
larvae were grown at 29 �C, shifted to 18 �C at early third instar (3 days AEL) and
kept at this temperature for 4 days until wing disc dissection (at late third instar).
(4) Overexpression of Engrailed. Flies were allowed to lay eggs at 18 �C overnight,
and hh-gal4, tub-gal80TS/UAS-en larvae were shifted to 29 �C in early second
(4 days AEL) or mid third instar (7 days AEL) and wing discs were dissected
72 or 24–48 h later, respectively.

Data availability. The authors declare that all data supporting the findings of
this study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request.
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