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Heritability of the shape of subcortical brain
structures in the general population
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The volumes of subcortical brain structures are highly heritable, but genetic underpinnings

of their shape remain relatively obscure. Here we determine the relative contribution of

genetic factors to individual variation in the shape of seven bilateral subcortical structures:

the nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus.

In 3,686 unrelated individuals aged between 45 and 98 years, brain magnetic resonance

imaging and genotyping was performed. The maximal heritability of shape varies from 32.7 to

53.3% across the subcortical structures. Genetic contributions to shape extend beyond

influences on intracranial volume and the gross volume of the respective structure. The

regional variance in heritability was related to the reliability of the measurements, but could

not be accounted for by technical factors only. These findings could be replicated in an

independent sample of 1,040 twins. Differences in genetic contributions within a single

region reveal the value of refined brain maps to appreciate the genetic complexity of brain

structures.
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S
ubcortical brain regions are important for a multitude of
biological processes, including cognitive and motor func-
tions1,2. There is substantial structural variation in these

regions, both within the normal range3 and in the context of
various neuropsychiatric diseases4,5. Factors driving individual
variation could provide insight into brain development, healthy
ageing and pathological states, but these remain largely unknown.
Variation in subcortical brain structures is affected by
environmental factors, such as education, diet and stress, but a
considerable proportion of the variation is determined by
genes6,7. A recent twin study of gross subcortical volumes
found heritability estimates ranging between 0.44 and 0.88
(ref. 8), which were especially high for the caudate and thalamus.

Even so, aggregate measures such as volume do not capture the
complexity of subcortical structures. The hippocampus, for
example, is made up of several subfields, each with partially
independent functional roles. More recently, image processing
methods have been developed to characterize brain structure
beyond purely volumetric measures, and yielding a range of shape
descriptors9–13. The high-dimensionality allows the detection of
more localized differences in brain structure, and shape can
provide relevant biological information in addition to aggregate
measures14–17. Several genetic variants that influence the volume
of subcortical structures have been identified18–20, but their effect
could be localized to certain sub-regions using shape
analyses19,20. However, the extent to which genes contribute
to the variability in shape of subcortical structures has yet to be
determined.

Here we quantify genetic influences on shape variability of
14 subcortical brain structures in 3,686 unrelated individuals
from the population-based Rotterdam Study. We compare the
heritability of vertex-wise shape measures to gross volumes as
well as other aggregate measures of shape obtained through
dimension-reduction techniques. We show that the shape of
subcortical structures is under genetic control, and investigate the
relation of the resulting profiles with the gross volume and
measures of reproducibility.

Results
Study population. The characteristics of the study population are
shown in Table 1. The mean age of the Rotterdam study popu-
lation was 65.9±10.9 years, and 55.0% were women. For the 14
subcortical structures, the mean volumes were between 0.49 and
6.25 ml. For the Queensland Twin IMaging (QTIM) study, mean
age was 22.9±2.8 years, and 61.6% were women. Mean sub-
cortical volumes were higher than in the Rotterdam study across
the board, ranging from 0.79 and 7.82 ml.

Heritability of volume and shape of subcortical structures. The
structure of subcortical brain regions was quantified by calcu-
lating their gross volume as well as two measures of their shape.
Age- and sex-adjusted heritability estimates for the gross volume
of each of the subcortical structures were between 1.6 and 43.4%
(Table 2). For the two vertex-wise shape measures, the maximal
heritability estimates per structure ranged from 32.7 to 53.3%
(Table 2). Both the radial distance (Fig. 1a–c) and the Jacobian
determinant (Fig. 1d–f) showed clusters of high heritability under
various models. Further adjustment for intracranial volume did
not influence results (Fig. 1), and estimates were highly correlated
between both models (Supplementary Fig. 1). The addition of the
structure-specific gross volume to the model, however, did
affect the heritability distribution across the structures (Fig. 1),
particularly for the shape measures that are highly correlated with
the gross volume (Supplementary Fig. 2).

Reproducibility of subcortical shape. Next, we investigated the
relation between our heritability estimates and the reproducibility
of subcortical shape. In a subset of 83 persons who were scanned
twice within 1–9 weeks, we quantified the reproducibility by
calculating intraclass correlation coefficients for the vertex-wise
shape measures (Supplementary Fig. 3). There was considerable
overlap between heritability and reproducibility (Fig. 2a,b), and
both were correlated within hemisphere (Fig. 2c,d). Poorly
reproducible shape measures were generally not heritable,
whereas high reproducibility included the full range of heritability
estimates (Fig. 2c,d).

Heritability of shape measures through data reduction. Finally,
we explored whether high-dimensional shape data could be
reduced to a smaller set of variables with a larger genetic con-
tribution. We performed principal component analyses on the
two vertex-wise shape measures for each structure and computed
the heritability of the resulting components. Except for the
Jacobian determinant of both hippocampi, the maximal herit-
ability was lower than for the vertex-wise measures (Table 2).
Similarly, the components were in general less heritable than
the vertex-wise measures (Fig. 3). Furthermore, the order of the
components based on the eigenvalues did not correlate well with
the order based on the heritability (r ranges from � 0.038 to
0.096; Supplementary Table 1).

Replication of heritability in twins. The maximum heritability
estimates for the two vertex-wise shape measures per structure
ranged from 48.9 to 78.3%. Both the radial distance
(Supplementary Fig. 3A–C) and the Jacobian determinant
(Supplementary Fig. 4D–F) showed clusters of high heritability
under various models. Further adjustment for intracranial volume
did not influence the results (Supplementary Fig. 4C,E).
The addition of the structure-specific gross volume to the model,
however, did affect the heritability distribution across the struc-
tures (Supplementary Fig. 4C,F). Comparing the results of the
twin-based and population study, we found a considerable

Table 1 | Characteristics of the study population.

Characteristic Rotterdam Study
(N¼ 3,686)

QTIM
(N¼ 1,040 )

Age, mean (s.d.), years 65.9 (10.9) 22.9 (2.8)
Female sex, n (%) 2,029 (55.0%) 641 (61.6%)
Intracranial volume, mean
(s.d.), cm3

1,478.6 (161.3) 1,484 (157.1)

Left hemisphere, mean (s.d.), cm3

Accumbens 0.56 (0.10) 0.83 (0.15)
Amygdala 1.31 (0.21) 1.84 (0.25)
Caudate 3.40 (0.56) 3.76 (0.50)
Hippocampus 3.84 (0.62) 4.32 (0.46)
Pallidum 1.47 (0.24) 1.61 (0.25)
Putamen 4.62 (0.68) 6.60 (0.72)
Thalamus 6.25 (0.79) 7.82 (0.89)

Right hemisphere, mean (s.d.), cm3

Accumbens 0.49 (0.09) 0.79 (0.11)
Amygdala 1.39 (0.22) 1.88 (0.25)
Caudate 3.51 (0.58) 3.92 (0.53)
Hippocampus 3.85 (0.59) 4.32 (0.46)
Pallidum 1.41 (0.25) 1.53 (0.18)
Putamen 4.45 (0.65) 6.00 (0.65)
Thalamus 6.25 (0.79) 7.43 (0.88)

QTIM, Queensland Twin Imaging; SD, standard deviation.
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overlap and significant correlation (P value¼ 3.03� 10� 306) in
estimated heritability (Supplementary Fig. 5).

Discussion
Here we show that, in a general population of middle-aged and
elderly individuals, the shapes of subcortical structures are under

genetic control. The vertex-wise heritability is higher than for
aggregate measures such as volume and principal components.
Moreover, the heritability pattern underlines the importance of
reproducibility in deriving shape measures, but also reveals
that the extent of genetic influences is not uniformly distributed
across subcortical structures. We confirmed our findings in
an independent cohort of twins, suggesting that the genetic

Table 2 | Heritability estimates of various structural measures of subcortical brain regions.

Region Gross volume Radial distance Jacobian determinant PCA radial distance PCA Jacobian determinant

h2 P h2* P h2* P h2* P h2* P

Left hemisphere
Amygdala 8.1 0.18 47.7 1.72� 10�6 35.4 2.85� 10�4 29.9 4.40� 10�4 27.9 9.30� 10�4

Accumbens 11.6 0.099 34.0 4.71� 10�4 33.7 5.11� 10�4 28.7 7.04� 10�4 42.0 1.45� 10�6

Caudate 33.7 8.6� 10� 5 49.9 6.33� 10� 7 52.9 1.40� 10� 7 42.4 1.20� 10�6 35.1 4.73� 10� 5

Hippocampus 10.8 0.12 32.7 7.32� 10�4 29.2 2.23� 10� 3 28.9 6.59� 10�4 29.6 5.03� 10�4

Pallidum 32.2 1.7� 10�4 39.6 5.75� 10� 5 44.1 8.65� 10�6 30.8 2.96� 10�4 27.0 1.33� 10� 3

Putamen 43.4 6.8� 10� 7 49.4 7.43� 10� 7 52.7 1.45� 10� 7 34.1 7.16� 10� 5 40.7 2.92� 10�6

Thalamus 34.1 7.4� 10� 5 53.3 1.05� 10� 7 45.3 5.07� 10� 6 30.2 3.78� 10�4 29.4 5.26� 10�4

Right hemisphere
Amygdala 20.4 0.012 33.5 5.45� 10�4 31.5 1.08� 10� 3 30.5 3.45� 10�4 27.7 1.03� 10� 3

Accumbens 1.6 0.43 33.1 6.30� 10�4 35.1 3.13� 10�4 34.5 5.99� 10� 5 31.7 2.10� 10�4

Caudate 34.7 5.4� 10� 5 46.7 2.86� 10�6 47.5 1.95� 10�6 29.9 4.45� 10�4 33.8 8.75� 10� 5

Hippocampus 8.0 0.19 33.7 5.26� 10�4 17.7 4.23� 10� 2 30.8 3.00� 10�4 28.9 6.44� 10�4

Pallidum 36.6 2.3� 10� 5 46.4 3.12� 10� 6 44.5 7.22� 10� 6 41.4 1.97� 10� 6 29.2 5.77� 10�4

Putamen 37.1 1.8� 10� 5 42.6 1.70� 10� 5 37.5 1.32� 10�4 32.7 1.36� 10�4 33.4 1.01� 10�4

Thalamus 30.8 3.0� 10�4 46.2 3.50� 10� 6 50.4 4.50� 10� 7 37.1 1.78� 10� 5 31.8 2.02� 10�4

h2, heritability estimate in %; PCA, principal component analysis.
*Estimate indicates highest heritability among all vertices or principal components.
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Figure 1 | Heritability maps of shape measures of subcortical brain regions under various models. Maps show the heritability of seven bilateral

subcortical structures for the shape measures of radial distance (a–c) and the Jacobian determinant (d–f). Heritability estimates were obtained using three

different statistical models: a basic model with age and sex (a,d), and additionally adjusting for either intracranial volume (b,e) or the volume of the specific

structure (c,f).
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architecture of subcortical shapes is similar across populations,
despite differences in the sample, the study design, scanner types
and methods to compute the heritability.

The higher vertex-wise heritability could reflect true biological
differences in the degree of genetic contribution to the variability
in shape. For the cerebral cortex, it has already been shown that
different genes influence distinct parts of the brain and that the
heritability also differs between regions21–23. Subcortical
structures are also heterogeneous and consist of functionally
diverging sub-regions, such as the nuclei of the pallidum or the
head and tail of the caudate. Our results are in line with a recent
study by Whelan et al.24 showing that hippocampal subfields
differ in their heritability. However, methodological reasons for
this difference in heritability should also be considered.
Particularly, a lower signal-to-noise ratio in some of the
measures might have influenced the results, leading to low
heritability estimates. Issues in the segmentation or registration
steps will thus obscure true biological differences if these
systematically affect certain sub-regions of a structure. We

investigated whether this plays a role by overlapping our
heritability maps with maps of the technical reproducibility.
Indeed, shape measures that could be poorly reproduced were not
heritable. However, while high reproducibility was required for
detecting a substantial genetic component, it did not necessarily
translate into a high heritability. For example, for the shape
measures with a high reproducibility (intraclass correlation
coefficients 40.75), a wide range of heritability estimates was
observed (0–53%). Thus, even when the signal-to-noise ratio was
comparable, we still observed regional differences in the degree of
genetic contribution. The highly heritable measures are
interesting targets for more in-depth genetic studies.

Heritability estimates calculated in our analysis represent both
upper and low bounds of narrow-sense heritability. Our results
are consistent with the theory that twin-based heritability tends to
be higher than population-based estimates. However, we did not
find a high correlation between the results, which could be due to
several factors. Our population study consisted of relatively older
individuals, which may impact the heritability: the effects of non-
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Figure 2 | Concordance between the heritability of subcortical shape and reproducibility of the measures. Figure showing the concordance between

the heritability of the shape (radial distance) of subcortical structures and the reproducibililty of these measures. Maps illustrate heritability (high is red)

and reproducibility (high is blue) and their overlap (purple) from the anterior (a) and posterior (b) direction. Scatter plots between heritability and

reprodcubility of the left (c) and right (d) hemisphere for the seven subcortical structures. Colours indicate the different structures (see figure legends).
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genetic factors on subcortical structures (for example, lifestyle
factors) accumulate over an individual’s lifetime and the overall
contribution of genes might be reduced compared to younger
individuals. Causal variants not captured on the genotyping array
or through subsequent imputation also could lead to a different
distribution of the heritability. In addition, apart from array
limitations, non-additive genetic factors are not taken into account
when computing population based heritability. These factors should
be taken into account when interpreting our results.

An important question for future research on shape is which
variables need to be controlled for in a regression analysis. Here
we aimed to provide an answer by studying two controversial
adjustment variables: the total intracranial volume and the gross
volume of the structure under study. For the heritability estimates
of shape, adjustment for intracranial volume did not affect the
results, suggesting that the genes regulating shape are not general
brain growth genes, but rather more specific for a structure or its
sub-regions. The volume adjustments did change some of the
results, but more so for vertices whose shape measures correlate
most with the gross volume of the structure. Likely, the genes
underlying a structure’s gross volume are largely driven by these
vertices as they typically represent the widest parts of a structure
(highest mean radial distance), where radial measures tend to be
highly correlated with its volume. Our results are in agreement
with previous work25, where the heritability of region-specific
measures was reduced after adjustments for the total cortical
surface area and thickness.

The detailed information provided by shape measures being
their most attractive feature, the increase in dimensionality is
potentially counterproductive, especially in the case of genetic
homogeneity across a structure. We therefore also performed
principal component analyses to demonstrate that the amount
of variability explained by the components did not seem related
to the heritability: near-zero correlations were found between the
order of the components based on the eigenvalues and the
heritability estimates. Although the principal component analysis
captures most of the variation using fewer variables, methods,
which are based on the genetic correlation, may lead to
biologically more meaningful results.

While heritability provides an estimate of how much of the
variance is determined by genetics, it does not point to specific
genetic loci. The most commonly accepted method for gene
discovery is to perform an unbiased screen of all genetic variants,
that is, genome-wide association study (GWAS) to identify
specific genetic factors. However, such efforts require large-scale
collaborations in the order of tens of thousands of individuals to
identify a robust association18–20,26. Furthermore, additional
multiple testing correction should be considered when
performing GWAS of 54,000 shape measures. This could lead
to a loss of power if the effects are homogeneous across a
structure. However, if the effects are localized and mostly affect
specific vertices, then a GWAS of shape measures may actually
increase power since the effect sized will be larger compared with
a GWAS of an aggregate volume.
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Figure 3 | Difference in heritability between vertex-wise shape measures and PCA components. Plots illustrate the difference between heritability

estimates obtained from the vertex-wise shape measures and the heritability of the components obtained through principal component analysis for seven

bilateral subcortical structures. Separate panels are provided for the shape measures of radial distance (a,b) and the Jacobian determinant (c,d) and the left

(a,c) and right (b,d) hemisphere. All vertex-wise shape measures and principal components were first sorted in descending order of heritablility, and the

vertex-wise measures were substracted from the corresponding component’s heritability. Colours indicate the different structures (see figure legends).
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Data reduction methods always rely on assumptions and are
often aimed at resolving computational issues. However, with
the advent of big data collection, methods have been developed
to analyse such large data sets efficiently. Software packages
designed for high-dimensional data include MEGHA27, for
heritability analyses, BOLT-LMM28, for genetic correlation
analyses and HASE29, for genome-wide association studies.
These improvements in software, and also hardware, now pave
the way for full-scale analyses without reliance on data reduction
methods.

In conclusion, our work demonstrates that the shape of
subcortical brain structures is a relevant phenotype for genetic
studies, complementary to aggregated measures. Fine-scale maps
of genetic influences on the brain are likely to reveal a complex
mosaic of genetic modules, with partially divergent sets of genes
that drive them.

Methods
Study population. This work was performed in the Rotterdam Study30, a
population-based cohort study in the Netherlands including a total of 14,926
participants (aged 45 years or over at enrolment). The overall aim of the study is
to investigate causes and determinants of chronic diseases in elderly people, the
participants were not selected for the presence of diseases or risk factors. Since
2005, all participants underwent brain magnetic resonance imaging (MRI) to
examine the causes and consequences of age-related brain changes31. Between 2005
and 2013, a total of 5,691 unique persons were scanned. The Rotterdam Study has
been approved by the Medical Ethics Committee of the Erasmus MC and by the
Ministry of Health, Welfare and Sport of the Netherlands, implementing the Wet
Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study). All
participants provided written informed consent to participate in the study and to
obtain information from their treating physicians.

Replication was performed in 1,040 healthy young adult twins from the QTIM
project32. All participants of the imaging sample were Caucasian and right-handed
for throwing and writing (Annett’s Handedness Questionnaire). The genetic
analyses were conducted in the 350 complete twin pairs (n¼ 700): 148
monozygotic (100 male), 120 dizygotic (39 male), and 82 opposite-sex pairs. Self-
reported data were used to screen participants for contraindications for imaging as
well as any significant medical, psychiatric or neurological conditions, history of
substance abuse and current use of psychoactive medication. The study was

approved by the Human Research Ethics Committees of the Queensland Institute
of Medical Research, the University of Queensland,
and Uniting Health Care, Wesley Hospital. Informed consent was obtained from
each participant and parent or guardian for participants under 18 years of age.

Genotyping and imputation. Genotyping in the Rotterdam Study was performed
using the Illumina 550 and 550K duo arrays30. Subsequently, we removed samples
with call rate below 97.5%, gender mismatch, excess autosomal heterozygosity,
duplicates or family relations and ancestry outliers, and variants with call rate
below 95.0%, failing missingness test, Hardy–Weinberg equilibrium P value
o10� 6, and minor allele frequency o1%. Genotypes were imputed using MACH/
minimac software33 to the 1000 Genomes phase I version 3 reference panel
(all population).

For QTIM, genotyping of nine markers was used to determine the zygosity of
same-sex twins, which was later confirmed for 492% of the sample with the
Illumina 610K SNP array.

Image acquisition. For the Rotterdam Study, MRI scanning was done on a 1.5-T
MRI unit with a dedicated eight-channel head coil (GE Healthcare). The MRI
protocol consisted of several high-resolution axial sequences, including a T1-
weighted sequence (slice thickness 0.8 mm), which was used for further image
processing. In addition, 85 persons were rescanned within days to weeks after
the first scan to estimate the reproducibility of imaging-derived measures.
A detailed description of the MRI protocol was presented by Ikram et al.31

The twin pairs of QTIM were scanned on a 4T Bruker Medspec (Bruker,
Germany) whole body MRI system paired with a transverse electromagnetic (TEM)
head coil. Structural T1-weighted three-dimensional images were acquired
TR¼ 1,500 ms, TE¼ 3.35 ms, TI¼ 700 ms, 240 mm, field of view, 0.9 mm slice
thickness, 256 or 240 slices depending on acquisition orientation (86% coronal
(256 slices), 14% sagittal (240 slices)).

Image processing. The T1-weighted MRI scans were processed using FreeSurfer34

(version 5.1) to obtain segmentations and volumetric summaries of the following
seven subcortical structures for each hemisphere: nucleus accumbens, amygdala,
caudate, hippocampus, pallidum, putamen and thalamus (Fig. 4a).

Next, segmentations were processed using a previously described shape analysis
pipeline9,10. Briefly, a mesh model was created for the boundary of each structure.
Subcortical shapes were registered using the ‘Medial Demons’ framework, which
matches shape curvatures and medial features to a pre-computed template35.
To do this, a medial model of each individual surface model is fit following
Gutman et al.36, and medial as well as intrinsic features of the shape drive
registration to a template parametrically on the sphere. To minimize metric
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Figure 4 | Subcortical brain structures and the derivation of shape measures. Overview of the subcortical brain structures studied in this manuscript and

the derivation of the shape measures. (a) The seven structures with corresponding number of vertices: accumbens, amygdala, caudate, hippocampus,

pallidum, putamen and thalamus. (b,c) The two vertex-wise measures of shape: the radial distance is defined as the distance of a vertex to the medial curve

of the structure, for example, the hippocampus in b. The Jacobian determinant captures the deformation that is needed to map a subject-specific shape to a

template, which is shown with an example of the accumbens in c.
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distortion, the registration was performed in the fast spherical demons
framework10. The templates and mean medial curves were previously constructed
and are distributed as part of the ENIGMA-Shape package (http://enigma.usc.edu/
ongoing/enigma-shape-analysis/).

The resulting meshes for the 14 structures consist of a total of 27,120
vertices (Fig. 4a). For these vertices, two measures were used to quantify shape: the
radial distance and the natural logarithm of the Jacobian determinant. The radial
distance represents the distance of the vertex from the medial curve of the structure
(Fig. 4b). The Jacobian determinant captures the deformation required to map the
subject-specific vertex to a template and indicates surface dilation due to sub-
regional volume change (Fig. 4c). Detailed information is provided in the
Supplementary Material.

Finally, we performed 28 principal component analyses: for each of the 14
subcortical structures and for both types of shape measures (radial distance and
Jacobian determinant), we computed the full set of components. This yielded
the same number of principal components as the original number of vertices
that were used to describe shape (Fig. 4a). The components were sorted in
descending order of the eigenvalues, which corresponds to the amount of explained
variance of shape.

Heritability estimation. We used Massively Expedited Genome-wide Heritability
Analysis (MEGHA)28 to estimate heritability in our sample of unrelated
individuals. This method allows fast and accurate estimates of heritability across
thousands of phenotypes based on genome-wide genotype data of common
genetic variants from unrelated individuals. As previously described37, a genetic
relationship matrix was constructed using the 1000 Genomes imputed genotypes,
filtered on imputation quality (R2o0.5) and allele frequency (MAFo0.01).
We calculated pairwise genetic relatedness between all individuals. We removed
one person for pairs with more than 0.025 genotype similarity, resulting in a
final study population of 3,686 subjects.

Twin-based heritability was estimated using maximum-likelihood variance
components methods implemented in the SOLAR software (www.solar-eclipse-
genetics.org, version 6.6.2)38. To test the hypothesis that no variance can be
explained genetically, log likelihoods of models with no genetic components
were compared with those with genetic and environmental components. As twice
the log likelihood is distributed as a mixture of chi-squared distributions, the
hypothesis test and P value can be derived parametrically38.

To correct for multiple comparisons across all vertices and all structures, we
used the standard false discovery rate (FDR) threshold at q¼ 0.05 to localize
regions of significant heritability within each of the subcortical structures39.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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