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Critical exponents and scaling invariance
in the absence of a critical point
N. Saratz1, D.A. Zanin1, U. Ramsperger1, S.A. Cannas2, D. Pescia3 & A. Vindigni1

The paramagnetic-to-ferromagnetic phase transition is classified as a critical phenomenon

due to the power-law behaviour shown by thermodynamic observables when the Curie point

is approached. Here we report the observation of such a behaviour over extraordinarily many

decades of suitable scaling variables in ultrathin Fe films, for certain ranges of temperature

T and applied field B. This despite the fact that the underlying critical point is practically

unreachable because protected by a phase with a modulated domain structure, induced by

the dipole–dipole interaction. The modulated structure has a well-defined spatial period and is

realized in a portion of the (T, B) plane that extends above the putative critical temperature,

where thermodynamic quantities do not display any singularity. Our results imply that scaling

behaviour of macroscopic observables is compatible with an avoided critical point.
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and Analysis of Low Energy Electrons 2, Marie Sklodowska Curie FP7-PEOPLE-2013-ITN, CH-8093 Zürich, Switzerland. Correspondence and requests for
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M
agnetism, superconductivity and multiferroicity stand
as examples of technologically relevant properties of
matter resulting from a phase transition1,2. The

conventional understanding of ferromagnetism is based on
models of collective order in which atomic magnetic moments
interact via one single leading—typically short-ranged—exchange
interaction3–6. Yet, realistic ferromagnets suffer from the
unavoidable presence of dipole–dipole interaction that, albeit
weak, is long-ranged and frustrates the tendency to align
magnetic moments parallel to each other promoted by
the exchange interaction7–10. Probably, the most well-know
consequence of this competition is the formation of magnetic
domains, that is, a phase with modulated magnetization at low
temperature. In the early 1980s, Wasilevsky studied the loss of
modulated magnetic order with increasing temperature for an
idealized sample geometry and within the mean-field (MF)
approximation. He showed that the fluctuations of the local
magnetization above the MF Curie temperature TMF

c are also
modulated and their spatial period matches exactly the width of
domains entering the sample below Tc

MF. With his own words: ‘...
we can conclude that even in the paramagnetic phase [above
TMF

c ]... the demagnetizing field induces a domainization effect of
the fluctuations of magnetization’11,12. It is important to point
out that this domainization effect produced by the dipolar field is
not to be confused with the droplets that define the spatial extent
of statistical fluctuations by means of the correlation length in the
vicinity of an ordinary critical point3. In the prevailing
understanding of ferromagnetism—and of second-order phase
transitions in general—based on renormalization group, the
divergence of the correlation length lies behind scaling behaviour
and universality of critical exponents3–6. Within the theoretical
scenario depicted by Wasilevsky the critical point of a ferro-
magnet is replaced by a low-temperature phase with modulated
magnetization that persists above TMF

c . In particular, the spatial
period of the modulated phase provides, alongside the correlation
length, a second long length scale that transforms the critical
point into a so-called avoided critical point. The more general
theoretical framework of avoided criticality was developed in the
1990s (refs 13–15) and foresees that even a small amount of
frustration changes the critical point of an unfrustrated model of
collective order into a completely different object—generally not a
second-order transition point—depending on details like the
spatial range and the strength of the competing interactions
involved, the dimensionality of the system and the number of
components of the order parameter16–22. A non-exhaustive list of
pattern-forming systems for which the phenomenology of
avoided criticality has been proposed comprises magnetic films,
ferrofluids, diblock copolymers, amphiphilic solutions, systems
undergoing Turing-like phase separating chemical reactions and
charged stripes in cuprate high-Tc superconductors22–26.

Here we report two novel aspects of the ferromagnetic phase
transition, observed in perpendicularly magnetized ultrathin films
of Fe grown on Cu(001). First, partially in line Wasilevsky’s
hypothesis11,12, we found that the width of stripe domains
observed at low temperature remains finite at a presumed Tc—not
simply defined as the MF critical temperature introduced by
Wasilevsky—and evolves continuously with temperature, up to at
least 30� beyond Tc (that is, 10% of Tc itself), without displaying
any singularity. (Note that ref. 22 predicts a divergence of the
modulation length at some temperature.) This appears to
represent a kind of conservation law for the spatial period of
modulation in pattern-forming systems. Furthermore, it implies
that the divergence of the susceptibility as a function of
temperature expected for a standard ferromagnet at Tc is
replaced by an analytic behaviour. Second, we observe that the
conventional critical point itself is indeed eliminated by the

presence of domains in line with the avoided-criticality scenario.
However, the most distinctive feature of a second-order
phase transition, namely the conventional scaling à la
Kadanoff3–6, is recovered in a temperature and magnetic-field
range sufficiently away from the presumed critical point, over up
to 80 orders of magnitude of the suitable scaling variable. In this
respect—but only in this respect—the system behaves as if the
critical point existed.

Results
The model Hamiltonian. Since the most relevant experimental
outcomes of this work result from the analysis of the global
magnetization as a function of the applied magnetic field B and
temperature T, it is convenient to define from the outset the
theoretical framework underlying this analysis. We consider the
Hamiltonian27,28

H ¼ � J
X
hi;ji

SiSjþ g
X
ði;jÞ

SiSj

raij
� b

X
i

Si ð1Þ

where Si¼±1 are Ising spin variables disposed on a
two-dimensional (2D) lattice and associated with the two out-
of-plane directions along which magnetic moments preferentially
point. The first term on the right-hand side of equation (1)
represents the exchange interaction (the sum runs over all pairs of
nearest-neighbouring sites), while the second term represents a
long-ranged frustrating interaction decaying with a power a of
the distance between spin pairs. The third term represents the
Zeeman energy with b¼m �B, m being the atomic magnetic
moment. The equilibrium magnetization is defined as
m �¼

P
i
hSii=N , N being the total number of spins and hSii the

statistical average.
Let us first recall the essential aspects of the unfrustrated model

(g¼ 0). The familiar description of the ferromagnetic phase
transition foresees that m(T, b) develops a discontinuity at b¼ 0
below the Curie temperature, which defines a situation of
spontaneously broken symmetry1 (black curves in Fig. 1a).
Above the Curie temperature m(T, b) shows no discontinuity and
behaves linearly for small enough fields (red curve in Fig. 1a).
This behaviour is typically predicted by models in which
ferromagnetic order is stabilized by a short-ranged exchange
interaction, favouring parallel alignment of neighbouring
spins3–6. In the absence of field (b¼ 0), configurations obtained
by flipping all the spins have the same energy, that is, the
Hamiltonian possesses a Z2 symmetry (the symmetry elements
being the identity and the simultaneous change of sign of all
variables). The minimal energy is realized by the two
configurations with all the spin pointing along the same
direction (Fig. 1b). Passing from one of such configurations to
the other requires the creation of a domain wall. For finite
temperature and finite fields, the discontinuity obtained for ToTc

specifically reflects the spontaneous breaking of the Z2
symmetry3,29. In the neighbourhood of the transition point (T,
b)¼ (Tc,0) observables behave critically. One implication of
criticality is that the equation of state m as a function of (T, b) has
a scaling representation30,31:

m
jt j b ¼ g�

b
jt j bd

� �
ð2Þ

with g±(x) being scaling functions, t¼ (T–Tc)/Tc the reduced
temperature (gþ and g� referring to positive and negative values,
respectively, of t)31. b and d are two critical exponents
characteristic of a specific universality class, the 2D-Ising
universality class for the model defined by Hamiltonian (1)
with g¼ 0. Another implication of criticality is that m(T, b) and
the magnetic susceptibility wðT; bÞ �¼ @m

@b j b¼0—as well as other
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observables not considered in this study—become power-law
functions of t and b while approaching the critical point.

In the presence of frustration (ga0), for ar3 the configura-
tion with lowest energy is not the ferromagnetic phase but rather
a modulated phase, typically striped32,33 (Fig. 1c). In this case,
configurations obtained by a rigid translation of the whole striped
pattern have the same energy. Concrete realizations of this
model involve either Coulomb repulsion (a¼ 1) or dipole–
dipole antiferromagnetic interaction (a¼ 3) that competes with a
ferromagnetic short-ranged interaction22. This competition leads
to the formation of a striped ground state whose elementary
excitations are described by an elastic-like Hamiltonian associated
with the displacement of domain walls—as a result of the subtle
interplay between the two interactions17,21. The experimental
results presented in the next subsections refer to a ferromagnetic
model system representative of the Hamiltonian (1) with a¼ 3
(refs 18,19,27,33–36). Some unconventional behaviours observed
in these ferromagnetic films, such as the systematic occurrence of
inverse-symmetry-breaking transitions of magnetic-domain
patterns, have been explained theoretically starting from the
Hamiltonian (1)28,37. In the limit of Jcg, relevant for the
experimental system, the spectrum of the elastic-like excitations
mentioned above is gapless. In particular, a zero-energy mode
(Goldstone mode) connects any pairs of stripe patterns related
by a Z2 symmetry operation (Fig. 1c). Therefore, from the
perspective of elementary excitations, the frustrated model is
more akin to systems with continuous symmetry rather than to
the unfrustrated Ising model with discrete Z2 symmetry—whose
elementary excitations are domain walls with a finite energy.
These differences suggest that the loss of the magnetic order
realized in the ground state proceeds at finite temperature in a
completely different way with respect to the unfrustrated case: a
phase with finite spontaneous magnetization (m(T, b¼ 0)a0) is
never realized at thermodynamic equilibrium and the system
passes from a phase with domain patterns and global vanishing
magnetization to the paramagnetic phase without showing any
singularity related to the breaking of the discrete Z2 symmetry. As

a function of b, m does not develop any discontinuity, neither
below nor above the transition temperature (Fig. 1d). The label
‘avoided criticality’ is used to underline these major differences
with respect to the unfrustrated model.

The low-temperature patterned phase has been investigated
theoretically at different levels of approximation and focusing on
aspects that range from self-generated glassiness14,15,20,22 to
topological phase transitions17–19,27,33–36. All the literature we are
aware of supports the absence of long-range positional order of
domains at finite temperature17,18,21, thus suggesting that not
even a kind of staggered magnetization associated with the striped
pattern is expected to display the 2D-Ising critical behaviour
(nor the MF critical behaviour foreseen by Wasilevsky11,12). In
the prevailing understanding of critical phenomena the fulfilment
of equation (2) and other scaling relations is associated directly
with spontaneous breaking of a specific symmetry of the
Hamiltonian in b¼ 0. Since the arguments given above exclude
spontaneous breaking of the Z2 symmetry in the frustrated
model, one should not expect to observe scaling relations with
Ising critical exponents when ga0. With the present study we,
instead, demonstrate that the critical scaling laws obeyed by the
unfrustrated model are actually recovered in the frustrated case
sufficiently away from a putative critical point: numerical and
experimental evidence supporting this statement is provided in
the following.

Monte Carlo simulations. We performed a series of Monte Carlo
simulations using the Hamiltonian (1) with a¼ 3 (see the
subsection ‘Technical details of Monte Carlo simulations’ in
Methods). Several theoretical works investigated the modulated
phases of this model27,33–36. In this study we explored the
transition between those modulated phases and the phase with
uniform magnetization, specifically searching for a region of the
(T, b) plane, where the equations of state of ferromagnets were
obeyed. The resulting magnetization curves are plotted in Fig. 2a
and their scaling representation (2) in Fig. 2b. In Fig. 2b the upper
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Figure 1 | Properties of the model Hamiltonian. (a) Sketch of some equilibrium magnetization curves m(T, b) as a function of the applied field b

theoretically expected for an unfrustrated ferromagnet below Tc (black lines). The equilibrium curves are described coming from large fields, as indicated by

arrows. Note the jump when b¼0 is crossed for ToTc, highlighted by dots. A pictorial curve representing the paramagnetic behaviour, T4Tc, is also

displayed (red line). (b) Two ground-state configurations (linked by the Z2 symmetry) of the model defined by Hamiltonian (1) in the absence (g¼0) and

(c) in the presence (ga0) of frustration. (d) Sketch of some equilibrium magnetization curves m as a function of the applied field b for a frustrated system

at different temperatures (blue lines). The discontinuity expected in the unfrustrated case at b¼0 gives way to a linear behaviour, as a result of the

frustrating effect of dipolar interaction. The red line is the same as in the plot a.
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branch contains the Monte Carlo data for negative values of t, the
lower branch those for positive values of t (the two branches meet
at large values of the variable on the horizontal axis). Note that
the resulting Tc as a function of J/g can be expressed as the
transition temperature of the 2D-Ising model without frustration,
T Ising

c ¼ 2J=ln 1þ
ffiffiffi
2
p� �

(assuming kB¼ 1), subtracted by a value
which corresponds to about 11.2g (inset of Fig. 2b). This suggests
that in the limit of vanishing frustration (g-0), the temperature
Tc tends to T Ising

c . Collapsing could be indeed realized for b4bc

(coloured points in Fig. 2b), bc being a threshold field above
which the system is in a uniformly magnetized phase (see the
subsection ‘Technical details of Monte Carlo simulations’ in
Methods). Significant departure from collapsing was, instead,
observed for bobc (open and full grey points corresponding to b/
g¼ 0.1 and 0.2), that is, inside the region of the (T, b) plane where
a phase with modulated magnetization appears. Snapshots of
representative Monte Carlo configurations computed for
b/g¼ 0.1 are given in Fig. 2c, along with selected magnetic
configurations observed in the experimental system (Fig. 2d).
Note that the magnetization curves obtained for b4bc display
qualitatively the same spreading with increasing fields expected
for the unfrustrated model. The picture emerging from Fig. 2a,b
underlines that scaling and power laws of the Ising type are also
compatible with a scenario in which the Z2 symmetry is not
spontaneously broken in the magnetization of any sublattice.
Henceforth, we will use the wording ‘ferromagnetic scaling
region’ to indicate the region of the (T, b) parameter space in
which equations of state of standard ferromagnets are obeyed
even if a Curie transition point (Tc, b¼ 0), in the conventional
understanding, is not realized.

We now summarize the scenario emerging from the Monte
Carlo simulations. For large enough magnetic fields, the
magnetization as a function of T and B should obey a scaling
relation such as the one given in equation (2). This is the
ferromagnetic scaling region, delimited schematically by a dashed
violet line in Fig. 3a. The shape of the dashed line is not

compelling from the Monte Carlo simulations. For convenience,
we draw it in line with the experimental results presented in the
subsection ‘Experimental phase diagram’. For small enough fields
magnetic films are expected to be in the modulated phase,
in which ferromagnetic scaling should not be obeyed anymore
(dark grey in Fig. 3a). Instead, the relation between the
magnetization and the applied field B should be a linear one,
that is, the graph of the experimental magnetization as a function
of magnetic field at finite temperatures should be qualitatively
similar to the ones sketched in Fig. 1d, rather than the ones
obtained in the absence of frustration (Fig. 1a). Further
information about the expected phase diagram are sketched in
Fig. 3a on the basis of previous experimental studies (see the
subsection on ‘Experimental scaling plots’).

Experimental scaling plots. The ultrathin Fe films investigated
in this work are grown at room temperature by molecular-
beam epitaxy onto the (001) surface of a Cu single crystal
(see refs 38–40 for details). The samples extend macroscopically
along the directions defining the film plane and have a thickness
between 1.6 and 2.0 atomic monolayers (MLs). For this range of
thickness these films possess an out-of-plane magnetocrystalline
anisotropy—strong enough to overcome the shape anisotropy—
so that magnetic moments preferentially point perpendicularly to
the plane41. In this sense, these films represent an experimental
counterpart of Hamiltonian (1) with a¼ 3. Typically, modulated
phases in similar experimental systems consist of stripes and/or
bubble domains of opposite magnetization42–44 (some represen-
tative images are shown in Fig. 2d and later (Fig. 6a–f)). In
previous studies magnetic imaging of these films was performed
with scanning electron microscopy with polarization analysis
(SEMPA)39,40,45, see the subsection ‘SEMPA imaging’ in
Methods and Fig. 3b. SEMPA revealed, on one side, that
above a temperature T* (sketched in Fig. 3a) domains become
mobile44–47. On the other side, below T* static domains were
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Figure 2 | Monte Carlo simulations. (a) A family of m(T) isochamps obtained from Monte Carlo simulations for J/g¼ 10 (kB¼ 1 is assumed), Lx¼ Ly¼ 120

and different values of the Zeeman energy b¼ m � B. (b) Scaling plot m/|t|b versus b/|t|bd for the data shown in a using the 2D-Ising critical exponents:

collapsing is realized only when for b4bc (see the subsection ‘Technical details of Monte Carlo simulations’ in Methods). Inset: the characteristic

temperature Tc, used to optimize data collapsing in the Monte Carlo scaling plots, as a function of J/g. (c) Representative snapshots of Monte Carlo

configurations obtained for Lx¼ Ly¼ 200, J/g¼ 10, b/g¼0.1 and T/g¼ 10, 13, 16 (from left to right). (d) Sequence of selected SEMPA images recorded on

an Fe film of 1.9 MLs deposited on Cu(001) while increasing the temperature from 315.3 to 332.2 K in a constant field B¼0.61� 10�4 T. The length of the

bar is 10 mm.
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observed that transformed into a uniform state on cooling
(point ‘2’ along the re-entrance red horizontal line in Fig. 3a). To
complement the information about magnetic phases deduced
from SEMPA imaging, the present work adds the detection of the
spatially averaged magnetization as a function of B and T
(Fig. 3c), measured using the magneto-optical Kerr effect
(MOKE)48 (A full magnetization curve at constant T can be
recorded with MOKE within seconds or less, while the time
required to scan a SEMPA image is in the range of minutes.) We
anticipate that analysing the MOKE data we were able to
determine experimentally the line sketched as dashed violet in
Fig. 3a and to locate the putative critical point at (T, B)¼ (Tc, 0)
in spite of the fact that it fell in the region occupied by domains
(Fig. 3a). Technically speaking, MOKE (Fig. 3c) measures a signal
that is proportional to the spatially averaged magnetization
within the size of the light beam (typically about 1 mm2)48 and is
given in arbitrary units: we denote the measured quantity with the
letter M. From now on, all quantities involving M must be
considered in arbitrary units. On the basis of our Monte Carlo
simulations, we expect two types of M(T) curves, depending on
whether we vary the temperature in a situation of strong (dark
blue horizontal line in Fig. 3a) or weak (red horizontal line in
Fig. 3a) magnetic field. Along the blue line, the film is in a state of
uniform magnetization and the M(T) curve follows the blue
graph in the inset of Fig. 3c. Along the red line, at low
temperatures, on the left-hand side of the green line in Fig. 3a a
small magnetic field is enough to establish the uniform magnetic
state and M easily saturates. When the temperature is increased
and the green line in the (T, B) parameter space is crossed (point
2 in Fig. 3a), the macroscopic magnetization abruptly drops to
almost zero as the system enters the phase of static modulated
order: the local magnetization within the domains is still large but
M almost vanishes because of the cancellation of finite opposite
values of the local magnetization within the domains. The
corresponding M(T) is sketched in the inset of Fig. 3c with the
same colour. At the point 1 (Fig. 3a,c) the M(T) is small and
varies smoothly.

Figure 4a shows a measured M(T) family of isochamps for a
film with thickness of 1.75 MLs. The magnetic field was swept
with a frequency varying between 10� 1 and 1 Hz. M(B) curves
measured at fixed temperature within this range of frequencies
coincide, therefore we assume that we are observing properties
related to thermodynamic equilibrium. At higher frequencies the
shape of the magnetization curves depended of the sweeping rate

of B. Results of these studies will be reported in a separate paper.
We distinguish two extreme sets of M(T) curves. On the right-
hand side those corresponding to larger values of B, an example
of which is highlighted in the data with a dashed orange line
(the colour code used to label the values of B is indicated along
the vertical bar in Fig. 4b). The horizontal line in the (T, B)
parameter space, along which the orange M(T) curve was taken, is
given in orange in the inset of Fig. 4a. It resides above the blue
dotted curve, determined as explained in the subsection
‘Experimental determination of Tc’ in Methods, and belongs to
the set of curves illustrated in Fig. 3a by the horizontal blue line.
This means that for these values of (T, B) the film is in the
uniformly magnetized phase and, accordingly, the familiar
behaviour of M(T) curves separating out as B is increased, that
is, moving away from the critical point, appears. On the left-hand
side of Fig. 4a one finds the family of curves corresponding to low
B, an example of which is highlighted in the data with a thick, red
line also shown in the inset of Fig. 3a (and illustrated by the red
graph in the inset to Fig. 3c). At low temperatures, on the
left-hand side of the blue dotted line, a small magnetic field is
enough to establish the uniform magnetic phase and M easily
saturates. When the temperature is increased and the blue line in
the (T, B) parameter space is crossed, the macroscopic
magnetization abruptly drops to almost zero as the system enters
the phase of static modulated order: the local magnetization
within the domains is still large but M almost vanishes because of
the cancellation of finite opposite values of the local magnetiza-
tion within the domains (this transition is marked with ‘2’ in the
sketch of Fig. 3a).

To produce the scaling plots of the data in Fig. 4a we
determined Tc¼ 300±1 K (not to be confused with T*), and the
critical exponents b¼ 0.15±0.03, d¼ 13±2 usually defined in
the vicinity of an ordinary critical point3–6 (see the subsections
‘Experimental determination of Tc’ and ‘Experimental
determination of b and d’ in Methods). The values of the
critical exponents b and d found experimentally are close to those
expected for the unfrustrated 2D-Ising universality class49–51.
(We point out that some models of three-dimensional
ferromagnetism49–51 predict an ordinary critical point in the
presence of the dipolar interaction, with critical exponents
computable, for example, within the Renormalization Group
approach.) Notice that in the simulations the 2D-Ising critical
exponents were assumed. Here we obtain them from the
experimental data. In Fig. 4b a scaling plot is attempted with

ba c

Secondary
electrons

Primary
electrons

B

TTcT *

Re-entrance 2 1

 

Domain
phase

SEMPA MOKE

Laser beam

M

T

1

2

Fer
ro

m
ag

ne
tic scaling region

Figure 3 | Illustration of experimental methods. (a) Phase diagram of a frustrated perpendicularly magnetized film in the (T, B) parameter space. Dashed

violet line and green line, the points 1 and 2 and the horizontal red and blue lines are explained in the main text. The portion of the (T, B) plane in which the

scaling equations of state of ferromagnets are obeyed is indicated as ferromagnetic scaling region. (b) In SEMPA, the spatially focussed primary electron

beam is scanned across the sample carrying magnetic domains (dark and bright stripes). The secondary electrons ejected from the surface (green) are spin

polarized and are used for imaging the domains. (c) The MOKE experiment averages over all domains within the focus of the light beam (the violet circle,

about 1 mm2). Measuring with MOKE the magnetization as a function of T along the blue and red lines (a) produces the M(T) graphs in the inset given with

the same colours.
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the variables M/B1/d (vertical axis) and t/B1/(bd) (horizontal
axis)52. Except for a (substantial) set of data points, we observe
that the spread of curves inherent to Fig. 4a has reduced
considerably, that is, many M(T) isochamps have collapsed onto
one thin graph in Fig. 4b. As anticipated, such a collapsing is
considered to be a signature of scaling invariance realized while
approaching the critical point (T, B)¼ (Tc,0). But the emphasis
must be on the set of non-collapsed data points: they are
better evidenced in the scaling representation given in
equation (2)—replacing m with M and b with B—plotted in
Fig. 4c. The collapsed and non-collapsed data points were
retrieved using an ad hoc software that distinguished the high-
density points—which we consider as collapsed—from the
low-density ones—which we consider as non-collapsed. The
collapsed data points, which build the majority, are rendered with
their original colours and are observed to be distributed onto the
graphs of the 2D-Ising scaling functions g� (x) (dashed line,
upper branch) and gþ (x) (dashed line, lower branch)31. The non-
collapsed data points are rendered in grey and are observed to fall
outside the graphs of the 2D-Ising scaling functions.

Experimental phase diagram. The coloured (collapsed) and grey
(non-collapsed data points, violating scaling) were subsequently
transferred into their place in the (T, B) plane in Fig. 4d, where

they appear outside and, respectively, inside a bell-shaped region.
As anticipated, this region, called the grey zone henceforth,
surrounds and protects the putative critical point (Tc,0). The
bell-shaped region starts on the left with the boundary line
marking the transition from static modulated phase to the
uniform phase (the blue line in the inset of Fig. 4a up to t¼ 0).
The phase diagram obtained by SEMPA in a previous publica-
tion39 corresponds to this portion of the grey zone, residing below
t¼ 0. Slightly above t¼ 0 stripes are observed to become
mobile45. The grey zone continues well beyond t¼ 0: it is
conceivable that within the entire grey zone, where scaling is
violated, some kind of modulated phase exists.

Further representations of scaling. In Fig. 5a the same data
points shown in Fig. 4a are plotted in the Griffiths–Widom
representation

B
Md ¼ f t=M1=b

� �
ð3Þ

with f(x) being a suitable scaling function30,31 with the same
colour coding as in Fig. 4c. Particularly clear is how grey points
deviate from scaling for the data plotted in the inset
(� 2� 1016rxr1017, with x¼ t/M1/b). In the main frame the
non-collapsed, grey points decorate the coloured line of clearly
collapsed points up to xB1023. For larger values of x, the line of
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coloured dots broadens and deviates from the theoretical scaling
function of the unfrustrated 2D-Ising model (dashed line) as well.
In this Griffiths–Widom representation data collapsing is realized
over 40 orders of magnitude with respect to the x-variable defined
above and 80 orders of magnitude with respect to the variable
B/Md (note the remarkable agreement in the inset). Further
representations of scaling are found in Fig. 5b,c (see the
subsection ‘Scaling and characteristic lengths’ in Methods for
explanation).

Experimental stripe width. A typical evolution of magnetic-
domain patterns as a function of temperature in B¼ 0 imaged
with SEMPA is shown in Fig. 6a–f. The spatial resolution of the
present SEMPA instrument is in the submicrometre range. Dark-
and light-grey regions correspond to domains with opposite
perpendicular magnetization. The in-plane components of the
magnetization vanish within the experimental sensitivity. The
images refer to a Fe film with thickness of 2 MLs. The
temperature is lowered while the image is acquired, starting from
a to f. The limiting temperatures are always indicated at the edges

of each image and temperatures in-between are interpolated
linearly. The left-hand side of the image in Fig. 6a appears almost
contrastless, while on the right of the red line—which defines the
temperature T*¼ 333±1 K—a very weak, stripe-like contrast
develops. Further right, approaching the edge of the same image,
the contrast becomes strong enough to allow the determination of
the stripe width L(T). The transition from static to mobile stripes
occurring at T* (red line in Fig. 6a) was already investigated in
previous works44–47. It is not clear yet how to call the phase with
mobile stripes. Possibly the most appropriate definition is that of
stripe liquid20 or floating solid53, which highlight the lack of
positional order in this phase21. With certainty, the temperature
corresponding to the red line cannot be identified with a Curie
temperature. This in spite of the fact that when T* is approached
from below the local magnetization inside the stripes
decreases sizeably, mimicking the decrease of the spontaneous
magnetization in a uniformly magnetized phase close to Tc

(refs 39,45) (see the subsection ‘Magnetization within domains’ in
Methods).

The magenta squares in Fig. 6g correspond to the values of
L determined by direct inspection of SEMPA images at the
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temperatures (ToT*) indicated by vertical lines in Fig. 6a–f. The
horizontal scale gives the reduced temperature variable
t¼ (T�T*)/T*. The blue triangles were obtained from a sequence
of images similar to the one shown in Fig. 6a–f but recorded while
heating the sample. Note that at lower temperatures the L(T)
values obtained on heating and cooling separate out clearly,
indicating the development of an out-of-equilibrium situation
towards low temperatures (discussed in ref. 40). This may result
from quenched disorder, for example, due to local fluctuations of
the Fe thickness that hinders the motion of domain walls and
thus prevents the system from adjusting L to its equilibrium
value44. This out-of-equilibrium situation may also have an
intrinsic origin as a manifestation of glassiness47, which has been
predicted for the model Hamiltonian (1)14,15,20,22. (We recall that
the M(T, B) data used to produce scaling plots and the phase
diagram are, instead, reasonably equilibrated since they are
independent of the sweeping rate of B.) Close to T* (t¼ 0) the
values of L(T) merge within the experimental error.

The green and red crosses in the main frame of Fig. 6g and the
coloured points in the inset were not obtained by imaging—for
the simple reason that they extend above t¼ 0, where mobility
makes stripe invisible to SEMPA imaging45. These additional,
essential data on L(T) were deduced from an equation that relates
L(T) to the spatially averaged magnetization MðT;BÞ in small
applied magnetic fields38,39 (see the subsection ‘Experimental
determination of L(T) using MðT;BÞ’ in Methods):

LðTÞ ¼ m0
p
4

d
@MðT;BÞ

@B

	 

B¼0

ð4Þ

d being the thickness of the film. We point out that in
equation (4) M is the spatially averaged magnetization expressed
in physical units (to be distinguished from M, which is the

spatially averaged magnetization measured by MOKE and is in
arbitrary units). The response of M to B is well defined both
below and above t¼ 0, see, for example, Fig. 6h: accordingly,
M(B) can be used to determine L(T) via equation (4) in the range
of temperatures where stripes are no longer observed in SEMPA.
Figure 6g shows that below t¼ 0, where both imaging (blue
triangles and pink squares) and M(T, B) (green and red crosses)
can be used to deduce the stripe width, SEMPA and equation (4)
give almost the same values for L(T). This correspondence
strongly supports the validity of equation (4) itself. Remarkably,
the data points represented by green and red crosses (and the
coloured ones in the inset) continue into the temperature region
where SEMPA imaging becomes contrastless, t40. This suggests
that the stripe width, directly observed on static patterns below
t¼ 0, evolves smoothly up to the highest measured temperatures,
tEþ 0.16 corresponding to more than 30� above T* (inset of
Fig. 6g), and ranges from several micrometres at low T down to
few tens of nanometres32. The estimates of L(T) represented with
crosses, triangles and squares refer to a slightly thicker Fe film
(2 MLs) than the one (1.75 MLs) on which MOKE measurements
and scaling analysis were performed. The Curie temperature
determined in the thinner film as described before is indicated in
the inset as tc. Figure 6g thus establishes a characteristic long
spatial scale L at every temperature, carrying neither a sign of the
transition to mobile stripes (at T*) nor an anomaly at the putative
critical temperature Tc. Equation (4) establishes a proportionality
between L(T) and the magnetic susceptibility m0 � ½@MðT; BÞ

@B �B¼0. As
L(T) is a non-singular quantity as a function of the temperature,
we expect the susceptibility as well to be a non-singular quantity
as a function of the temperature within the grey zone. Indeed, the
nonlinear relationship between M and B, detected outside the
grey zone, gives way to the linear, non-critical behaviour shown
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in Fig. 6h (the susceptibility being the slope of the graphs in
Fig. 6h at low magnetic fields). This remarkable difference has
been anticipated in the sketches in Fig. 1a,d. From magnetic
imaging we can associate the linear portion of the M(T, B) curve
in Fig. 6h with the displacement of domain walls, which
accompanies the increase of those magnetic domains whose
magnetization is parallel to B at the expense of the size of
domains with magnetization antiparallel to the magnetic field39.

A legitimate question is whether the period of modulation
actually acts as a natural cutoff that hinders the divergence of the
correlation length x underlying the critical behaviour in the
unfrustrated system. (We thank the reviewers for putting these
issues under our attention (see Reports).) Should this be the case,
then finite-size-scaling relations54,55, involving both x and L,
should replace the equations of state of the 2D-Ising ferromagnet.
In the subsection ‘Scaling and characteristic lengths’ in Methods
we show that finite-size-scaling relations are incompatible with
the law M � L � B observed experimentally in the patterned
phase (inset of Fig. 6g) and provide an additional argument on
this issue.

Discussion
With the plots of Figs 2b, 4b,c and 5 we have discovered a
strikingly simple but, surprisingly, yet unnoticed symmetry: even
if an indefinitely weak long-ranged and frustrating interaction—
the dipolar coupling in our case—is enough to eliminate the
critical point of a standard second-order phase transition,
sufficiently away from it ordinary critical scaling à la Kadanoff
is fully recovered3–6. In our specific Fe films, outside the region of
the phase diagram corresponding to the patterned phase (grey
zone) we observe 2D-Ising scaling, despite the fact that the true
critical point at (T, B)¼ (Tc, 0) is—strictly speaking—avoided. It
remains to be determined what type of order is realized within the
grey zone and how it relates to the physics outside of it, namely in
the ferromagnetic scaling region. As already anticipated, strong
theoretical arguments exclude the persistence of positional order
of the stripe domain pattern at finite temperature21. For what
concerns orientational order, the lowest-energy perturbations can
be described by an orientational effective Hamiltonian that
explicitly possesses O(2) symmetry21 (symmetric with respect to
continuous rotations around a fixed axis). Both these facts are
compatible with the occurrence of a Berezinskii–Kosterlitz–
Thouless phase transition from a nematic phase of magnetic
domains to a disordered phase17,18,21 and our films might,
indeed, be good candidates to observe such a transition. The
mixing of Z2 and O(2) symmetries is encountered in other
models as well, like the 2D frustrated XY models56–61. In the last
ones, the O(2) symmetry is explicit in the Hamiltonian, while the
Z2 symmetry emerges from the chiral degree of freedom of the
ground state; the interplay between the two symmetries gives rise
to a rich—and debated—scenario of phase transitions57–61.
However, the patterned phase of the model defined by
equation (1) is expected to evolve differently with temperature
with respect to frustrated XY models: in the model of our interest
the Z2 symmetry—broken in one ground state—is restored at
finite temperature by elastic-like excitations, while in genuine
Ising-like transitions it is restored creating domain-wall
excitations. These important open issues will certainly stimulate
further work to better characterize the grey zone. From the
present investigation we definitely conclude that whatever order
is realized in the modulated phase of thin films magnetized out of
plane, it must be such that (i) standard scaling relations, like
M/|t|b¼ g±(B/|t|bd) or B/Md¼ f(t/M1/b), are replaced by the
one-variable relation M/BBL(T) (In ref. 28 this scaling law
is generalized to any dimension and to a generic power-law

exponent a in equation (1).) and (ii) a well-defined modulation
length L(T) persists deep into the paramagnetic phase.

Methods
Technical details of Monte Carlo simulations. Data in Fig. 2a–c were produced
by Monte Carlo simulations on a square lattice with Lx¼ Ly¼ 120 using the
Hamiltonian (1). Some simulations were also run for Lx¼ Ly¼ 200 to exclude
possible finite-size effects and to produce the snapshots in Fig. 2c. Ewald sums
technique was used to implement the long-range interaction with a¼ 3 for periodic
boundary conditions27,62. This term represents the dipolar interaction in the Ising
limit with the easy axis perpendicular to the film plane, in which case dipole–dipole
coupling is antiferromagnetic for all spin pairs; the corresponding sum runs over all
the (i,j) pairs of distinct sites on the lattice. The limiting field bc above which the
system is in a phase with mostly uniform spin profile was determined from the
behaviour of the average magnetization m as a function of temperature for fixed
values of b, according to a zero-field-cooled–field-cooled protocol. After having
prepared the system in a uniformly saturated state (with m¼ 1), we let the
temperature increase from very low values up to a predefined Tf, lying above the
transition from the modulated to the paramagnetic phase for b¼ 0. Then, we
stopped the simulation and, starting from the final configuration, the system was
cooled down to the original temperature. When bobc a strong hysteresis in the
m(T) curves was observed, below the temperature where modulated phases
develop. When b4bc, instead, the curves were completely reversible in the whole
temperature range. In this way we could estimate bc for rather large values of
J/g (up to J/g¼ 10), without the computational cost of complete phase-diagram
calculations27. To observe domain phases within the given Lx the ratio J/g cannot
be as large as in the experiment, where Tc/gBO(102), because the width of domains
increases exponentially with this ratio27,28, and realistic simulations can be
performed up to about Lx¼ Ly¼ 200 (the necessity of summing over all pairs,
imposed by the dipolar interaction, limits the size of the simulation box
significantly with respect to the cans in which only short-ranged interactions are
considered).

SEMPA imaging. Spatially resolved magnetic imaging shown in Fig. 6a–f is
performed with SEMPA (Fig. 3b). A focused electron beam of primary electrons is
directed towards the sample and the secondary electrons excited off the topmost
surface layers by the primary electrons are sampled and analysed according to their
spin polarization, which is proportional to the local magnetization vector within
the beam focus. The spin polarization is rendered in the images by a grey scale,
black and white corresponding to opposite spin polarization. Only the component
perpendicular to the surface is displayed, as the components of the spin polar-
ization parallel to the film plane are vanishing. The images are built by horizontal
line scans, consisting of about 200 pixels, from top to bottom, starting from the
left-hand side of each image. For contrast to be detected, the magnetization dis-
tribution must be static over the times required to collect at least a dozen horizontal
lines, that is, about 60 s.

Experimental determination of Tc. In conventional ferromagnets one finds Tc as
the critical temperature at which, for example, the critical isochamp at zero applied
magnetic field M(T, B¼ 0) vanishes. In the present system, the ordinary critical
point is obscured, at low magnetic fields, by the appearance of static and mobile
domains, so that one has to find a different way to determine Tc. One useful
property of a conventional second-order phase transition is that the plot of the
magnetic susceptibility wðT;BÞ ¼ m0 � @MðT;BÞ=@B as a function of temperature
has a maximum at a temperature Tmax(B) that approaches Tc as B approaches
zero63. Figure 7a shows the susceptibility w(T, b) of the unfrustrated (that is,
without dipolar interactions) 2D-Ising model computed by means of Monte Carlo
simulations. For any ba0 the maximum value of w(T, b) is finite but—as
expected—it is higher the weaker the fields. Notice that the true approach of
Tmax(b) to Tc may not necessarily be linear in b, as pointed out in ref. 63, but our
numerical simulations (Fig. 7b) show that a linear extrapolation of Tmax towards
b¼ 0 gives a fairly accurate estimate of Tc.

Experimentally, we obtained the w(T, B) by first treating the raw M(T, B) data
with a Savitzky–Golay finite-impulse-response smoothing filter implemented in
MATLAB. After filtering, the derivative w(T, B)¼ m0 � qM(T, B)/qB could readily be
obtained. In Fig. 7c some of the resulting susceptibility curves are shown for
selected values of B. The experimental B(Tmax) is plotted in Fig. 7d. This graph, in
contrast to the one in Fig. 7b, shows two distinct regimes, depending on the range
of B. We discuss first the low field regime. When cooling in weak enough fields, the
system first enters the grey zone, (see point ‘1’ in Fig. 3a), without displaying any
anomaly in the susceptibility in correspondence with this transition. On further
cooling a re-entrant transition (point ‘2’ in Fig. 3a) from the patterned to the
uniform phase is encountered39: this second transition is accompanied by a sharp
maximum in the susceptibility (abrupt increase of the magnetization). This type of
maxima—highlighted by a blue dashed line in Fig. 7d—mark the transition from a
phase with domains to the uniform phase. When extrapolated to B¼ 0, they lead to
a temperature at which the sample consists of very large stripes carrying opposite
but almost saturated values of the magnetization. Above this temperature, the
sample keeps the modulated order up T*, where domains become mobile but the
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magnetization within them is still substantial. Accordingly, Tc must be above T*.
On the other side, for larger fields (the right-hand side portion of the graph) the
grey zone of Fig. 3a is never entered and the system is in a uniformly magnetized
phase: B(Tmax) for larger B was therefore taken to extrapolate towards a putative Tc.
Several linear fittings were performed by choosing different ranges of the field B
between 30� 10� 4 and 80� 10� 4 T. The different fittings produced the family of
red lines (Fig. 7d) from which the error on the Tc was estimated. The experimental
Tc, for this particular sample, is 300±1 K. Notice that the extrapolated Tc lies
within the cross-over range (K) 298uTu302, in which the ‘blue-line’ types of
maxima transform into the ‘red-line’ types of maxima.

Experimental determination of b and d. In conventional ferromagnets one finds
the critical exponent b via the asymptotic behaviour of the critical isochamp near
Tc, that is, from M(T, B¼ 0)B(� t)b and the critical exponent d via the asymp-
totic behaviour of the critical isotherm, that is, M(Tc,B)BB1/d. In the present
system, these ordinary power laws are obscured, at low magnetic fields, by the
appearance of static and mobile domains. However, the conventional lore of scaling
(ref. 1, p. 485) and our simulations for the specific system, indicate practical ways
to find b and d using experimental MOKE data of M(T, B) originating within the
high-temperature, non-zero field region of the (T, B) parameter space. The critical
exponent b can be deduced from the experimentally determined values of the
exponents g and d, using the relation bd¼ bþ g. The exponent g determines the
magnetization in the region of weak fields (equation (148.8) in ref. 1) according to

M � B
jt j g ð5Þ

The exponent d determines the magnetization in the region of strong fields
according to the relation

M � B1=d ð6Þ
(see equation (148.10) in ref. 1). The notion of weak and strong field is, of

course, dependent on which temperature interval is addressed. In Fig. 8a we plot
log(M/B) versus log|t| for different values of B (for the colour code indicating the
values of B see the horizontal scale in the inset). At sufficiently high temperatures, a
region of the graph emerges, where all the curves for different magnetic fields

almost collapse onto one single straight line, and thus fulfil the scaling properties
required by equation (5) for the quantity M/B. The negative of the slope of the
resulting straight line is the sought-for exponent g. Several linear fittings were
performed for fixed fields ranging from 20� 10� 4 to 80� 10� 4 T. These
independent determinations of g are shown in the inset. After averaging, for
Tc¼ 300 K we obtain g¼ 1.78±0.09, with the error given by the s.d. of the mean.
As consistency check, the whole procedure was repeated varying the value of Tc.
The s.d. of the mean values of g goes through a minimum in the range (K)
298rTcr301, which is, accordingly, the range where the ‘best collapsing’ of the
M/B curves is realized. When Tc is varied in this interval, g ranges from 1.7 to 1.9.

The log(M/B) versus logB plot of Fig. 8b in the temperature range (K)
299oTo301, reveals a low-field region where the curves saturate to an almost
constant value, indicating the linearity of M versus B for weak fields. In the strong-
field region the graphs are observed to almost collapse onto a single straight line, the
slope of which amounts to (1� d)/d, consistently with equation (6). From these slopes
fitted for different T in the appropriate regime of Fig. 8b we estimate d¼ 13±2.

Scaling and characteristic lengths. As suggested by one of the reviewers, in a
conventional ferromagnet scaling plots can also be written in such a way that the
dependence on the correlation length x � jt j � n is made explicit (n being the
corresponding critical exponent). Let us consider the following equations of state of
a ferromagnet:

MðT;BÞ
B1=d ¼ F1

B� n=ðbdÞ

jt j � n

� �
ð7Þ

and

MðT;BÞ
jt j b ¼ F2

B� n=ðbdÞ

jt j � n

� �
ð8Þ

with F1(x) and F2(x) some scaling functions. In Fig. 5b,c the same data points
shown in Fig. 4c are plotted in the representations defined above. Points falling
in the grey zone are rendered in grey. Indeed, collapsing is observed for the
coloured points while the grey ones spread out in the plot planes. Figure 5c appears
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very similar to Fig. 4c and basically the same considerations apply. Equation (7)
leads instead to the plot in Fig. 5b that has a different shape.

If the spreading of grey points observed in all the scaling plots was due to
the size of magnetic domains L acting as a cutoff for the correlation length, from
equation (7) one would expect the following relation to be fulfilled in the patterned
phase

MðT;BÞ
B1=d ¼ F3

B� n=ðbdÞ

L

� �
¼ ~F3 Bn=ðbdÞ � L

� �
ð9Þ

with F3(x) and ~F3ðxÞ appropriate scaling functions. This scaling relation is not
compatible with the one found in within the grey zone, MgreyðT;BÞ � B � L, which

can be rewritten as

MgreyðT;BÞ
B1=d � Bðd� 1Þ=d � L ð10Þ

Equations (9) and (10) can be simultaneously fulfilled only for

d� 1 ¼ n
b

ð11Þ

This last relation is not obeyed by the 2D-Ising critical exponents b¼ 1/8, d¼ 15
and n¼ 1.

A more proper framework to discuss whether L acts as a cutoff for the
correlation length is provided by the finite-size scaling (FSS) ansatz54,55, according
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to which the magnetization ML(T) of a finite system of linear size Lx should be
related to the magnetization of the corresponding infinite systems MN(T) by the
law

MLðTÞ ¼ M1ðTÞfMðLx=xÞ ð12Þ
where B¼ 0 is assumed and fM(x) is some FSS function of the single variable
x¼ Lx/x such that

fMðxÞ ! 1 for Lx � x
fMðxÞ ! const: for Lx 	 x

ð13Þ

Figure 9a displays the mL(T) as a function of T computed for the unfrustarted
2D-Ising model and B¼ 0 for finite square lattices of size Lx¼ 10, 20, 40.
Comparatively small lattices were chosen to enhance finite-size effects. The exact
Onsager solution for the infinite system, mN(T), is also shown as a solid black line.
From these data the theoretical FSS function fM(x) can be deduced simply by
plotting mL/mN versus Lx|t|n, the latter being proportional to Lx/x (Fig. 9b). The
same procedure was repeated for the experimental points assuming MN¼AN|t|b,
with b¼ 1/8 and AN fitting parameter. Figure 9c demonstrates that this law is
followed by the coloured points, while the grey points deviate from it. A speculative
FSS function, in which the role of the lattice size Lx is played by the size of magnetic
domains at the putative Curie temperature L(Tc), can be obtained directly from
experimental points and reads

MðT;B ¼ 0Þ
jtb j ¼ F4 LðTcÞ� jt j nð Þ ð14Þ

The function F4(x) is plotted in Fig. 9d. The part of curve resulting from grey
points deviates from fM(x) computed for the 2D-Ising model shown in Fig. 9b,
which seems to confirm that L does not simply act as a cutoff for the correlation
length x.

Magnetization within domains. Below T* domains are frozen and one can reli-
ably extract from SEMPA images, like the ones shown in Figs 2d and 6a–f, the
value of the local magnetization, that is, the magnetization within the domains. The
data related to this quantity, published in two previous articles39,45, are reported in
Fig. 10 for convenience. As anticipated in the main text, the local magnetization
inside the stripe domains decreases sizeably while T* is approached. If one tries to
capture this decrease using a power law, one obtains a curve, which vanishes in the
vicinity of T*, with an effective critical exponent of about 0.25 (Fig. 10). However,
from the present work we know that the putative Tc deduced from scaling analysis
lies about 30� above T*. Therefore, the power-law behaviour represented by the
continuous curves in Fig. 10 is not related to the scaling behaviour observed in the
ferromagnetic scaling region. We point out that we are not aware of any prediction
that assigns a power law to the local magnetization in the vicinity of T*. Moreover,
we note that our experimental data in Fig. 10, strictly speaking, do not necessarily
speak for a power-law vanishing of the local magnetization.

Experimental determination of L(T) using M(T, B). In the temperature region
to0 stripe domains are static and can be imaged with SEMPA. By means of
equation (4) the stripe width can also be determined from the behaviour of the
spatially averaged magnetization M(T, B) at low magnetic fields. M is the product
of |M0|—the value of the local magnetization within the stripes—and
AðT;HÞ �¼ðf" � f#Þ=ðf" þ f#Þ, that is, the asymmetry between the film

area occupied by up (fm), respectively, down (fk) perpendicular magnetization:
M(T, B)¼M0(T, B) � A(T, B). In the range to0 and for small B, M0(T, B) is a
smooth function of T and almost independent of B. A(T, B), instead, increases,
close to T*, linearly39 with B and describes a process where the width of stripes
magnetized parallel to B increases at the expenses of the width of stripes
magnetized antiparallel to B. Accordingly, the following scaling law has been
demonstrated39: M(T, B)/BpL(T), that is, the response of M to B is linear
(Fig. 6h) and the susceptibility is proportional to the sought-for equilibrium
stripe width. The knowledge of the proportionality constant is thus crucial to
determine L(T). This can be computed exactly for a square-like stripe profile
(see equation (2.38) in ref. 38), which yields equation (4). A perfect square profile is
not expected at finite T because the domain walls are certainly not atomically
sharp. However, as shown in ref. 39, the assumption of an almost square profile
explains precisely the response of A to B also in the very vicinity of t¼ 0, so that we
are confident that the proportionality constant computed for a perfect square
profile holds up to temperatures where L(T) behaves smoothly (inset, Fig. 6g). Note
that M entering equation (4) is expressed in physical units, while in MOKE
measurement we access M, which is in arbitrary units. For low temperatures and
sufficiently large applied fields the film is in the uniform phase with all magnetic
moments almost fully aligned, so that the value of the MOKE signal MS measured
in this condition can be associated with the saturation magnetization of Fe,
m0 �MS¼ 2.16 T. The other measured values were rescaled accordingly to obtain
the physical magnetization M(T, B).

Data availability. Data are available from the ETH Zurich Data Archive: http://
doi.org/10.5905/ethz-1007-20.
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