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CD45-mediated control of TCR tuning in naı̈ve
and memory CD8þ T cells
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Continuous contact with self-major histocompatibility complex (MHC) ligands is essential for

survival of naı̈ve T cells but not memory cells. This surprising finding implies that T cell

subsets may vary in their relative T-cell receptor (TCR) sensitivity. Here we show that in

CD8þT cells TCR sensitivity correlates inversely with levels of CD5, a marker for strong

self-MHC reactivity. We also show that TCR sensitivity is lower in memory CD8þ T cells than

naı̈ve cells. In both situations, TCR hypo-responsiveness applies only to short-term TCR

signalling events and not to proliferation, and correlates directly with increased expression of

a phosphatase, CD45 and reciprocal decreased expression of activated LCK. Inhibition by high

CD45 on CD8þ T cells may protect against overt TCR auto-MHC reactivity, while enhanced

sensitivity to cytokines ensures strong responses to foreign antigens.
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D
ifferentiation of naı̈ve T cells into memory cells leads to
enhanced responses to foreign antigens with retention of
tolerance to self-antigens1,2. For naı̈ve T cells, self-tolerance

is established in the thymus through negative selection of cells
with strong reactivity for self-peptide/major histocompatibility
complexes (MHCs) (self-pMHC) plus positive selection of cells
with low but significant affinity for self-pMHC (ref. 3). Especially
for CD8þ cells, naı̈ve T-cell recognition of self-pMHC ligands in
the extra-thymic environment is essential for cell survival: such
recognition elicits low-level TCR signals which, together with IL-7,
upregulate Bcl-2 and promote long-term survival of naı̈ve CD8þ T
cells in interphase4,5.

Since naı̈ve T cells undergoing positive selection in the thymus
are presumed to vary in their degree of self-pMHC reactivity, cells
with the highest affinity (just below the level leading to negative
selection) would be potentially dangerous in the post-thymic
environment. Because of this problem, positively selected T cells
are subjected to a process of mild TCR desensitisation before
leaving the thymus6,7. Such TCR ‘‘tuning’’ occurs during the
differentiation of mature CD4þ and CD8þ single-positive (SP)
cells from CD4þCD8þ double-positive (DP) precursors and is
associated with upregulation of negative regulators of TCR
signalling, notably CD5, and downregulation of microRNA
(miR)-181a which inhibits expression of negative regulatory
protein tyrosine phosphatases (PTPs)8,9. Although TCR tuning is
presumed to reduce reactivity to self-pMHC ligands and thereby
promote self-tolerance, direct support for this notion is sparse.
The relevant question here is whether mature T cells with high
innate self-pMHC reactivity, for example, naı̈ve T cells with high
expression of CD5 (CD5hi cells), show lower TCR sensitivity than
CD5lo cells. In fact, there is evidence against this idea. Thus,
for naı̈ve T cells, CD5hi cells show higher background expression
of tyrosine-phosphorylated CD3z than CD5lo cells10,11.
Also, CD5hi cells display stronger lymphopenia-driven
homeostatic proliferation (HP) as well as antigen-specific
expansion than CD5lo cells10,12,13. These findings are not easy
to reconcile with the notion that self-reactivity is regulated by
TCR tuning, at least as defined by relative CD5 expression.

Although continuous contact with self-pMHC ligands is
essential for naı̈ve CD8þ T cells, memory CD8þ T cells can
survive in the absence of these ligands14. This finding is
surprising because the enhanced expression of adhesion
molecules on memory cells would be expected to augment
contact with self-pMHC, especially on antigen-presenting cells
(APC). One explanation for this finding is that differentiation of
naı̈ve into memory CD8þ T cells reduces their TCR sensitivity.
This idea seems unlikely because memory CD8þ T cells generally
give enhanced proliferative responses to antigen15–17. However,
this is not invariably the case. Thus, as defined by
phosphorylation (p) of ERK after contact with specific antigen,
TCR sensitivity of naı̈ve and memory CD8þ T cells was reported
to be indistinguishable18. Moreover, a recent study found reduced
TCR sensitivity of memory CD8þ T cells relative to naı̈ve cells
for p-ZAP-70 induction19. Like two others20,21, this study also
reported that memory CD8þ T cells gave lower proliferative
responses to antigen than naı̈ve CD8þ T cells. By contrast, many
other studies found that memory CD8þ T cells gave better
proliferative response than naı̈ve cells15,16,22.

In this paper, we sought evidence of TCR tuning in mature
CD8þ T cells by multiple parameters, first in CD5lo versus CD5hi

subsets of naı̈ve cells, and then in naı̈ve versus memory cells.
For naı̈ve CD8þ T cells, the results show that CD5hi cells are less
TCR sensitive than CD5lo cells but are more sensitive to
cytokines. Likewise, memory CD8þ T cells have lower TCR
sensitivity than naı̈ve cells but increased sensitivity to cytokines,
accounting for their increased responsiveness to antigen. In each

situation, TCR sensitivity correlates inversely with cell-surface
density of CD45.

Results
Proliferation versus TCR signalling in naı̈ve CD8þ T-cell subsets.
In initial experiments, FACS-sorted CD5lo and CD5hi subsets of
naı̈ve CD44lo CD8þ T cells (Supplementary Fig. 1a) were
analysed for expression of tyrosine-phosphorylated CD3z
(p-CD3z). In agreement with prior studies on naı̈ve T cells10,11,
CD5hi CD44lo CD8þ T cells prepared from young C57BL/6 (B6)
mice showed higher background expression of p-CD3z than
CD5lo cells (Fig. 1a). Likewise, as for HP in lymphopenic hosts12,
CD5hi cells displayed more extensive proliferation (CFSE
dilution) than CD5lo cells when cultured with cross-linked
anti-CD3 monoclonal antibody (Cx-aCD3 mAb) in vitro
(Fig. 1b). Collectively, these data would seem to argue against
the concept of TCR tuning of mature T cells. However, for resting
T cells, phosphorylation of CD3z is only partial and is therefore
not necessarily indicative of TCR signalling23. Also, as shown
elsewhere12, stronger proliferation of CD5hi than CD5lo CD8þ

T cells following CD3 ligation may simply reflect the enhanced
sensitivity of CD5hi cells to cytokines, including endogenous IL-2
(Fig. 1b). Indeed, CD3 mAb-induced proliferation of both subsets
was minimal following IL-2 blockade or with IL-2-deficient naı̈ve
CD8þ T cells (Supplementary Fig. 1b,c).

To examine the influence of CD5 expression on downstream
TCR signalling, purified naı̈ve (CD44lo) populations of CD5hi and
CD5lo CD8þ T cells were cultured with soluble anti-CD3
(S-aCD3) mAb to examine phosphorylation of ERK (p-ERK) and
other signalling molecules by immunoblot analysis. Here, the
striking finding was that induction of p-ERK, p-PLCg and
p-ZAP-70 after brief (2–15 min) exposure to S-aCD3 mAb
was clearly more prominent in CD5lo cells than in CD5hi

cells (Fig. 1c–e). Similar findings applied following culture with
strongly stimulatory Cx-aCD3 mAb (Fig. 1f,g and Supplementary
Fig. 1d); note that, unlike Cx-aCD3, culture with S-aCD3 failed
to cause T-cell activation (Supplementary Fig. 1e) and is therefore
more relevant to the weak TCR signalling induced when CD8þ

T cells encounter self-pMHC ligands under in vivo conditions.
The poor induction of p-ERK by CD5hi CD8þ T cells after

CD3 ligation was not seen following culture with phorbol
myristate acetate (PMA)±ionomycin (Supplementary Fig. 1f),
indicating no intrinsic signalling defect, and could not be
overcome by addition of IL-2, despite strong induction of
p-STAT5 in these cells (Fig. 1h). As for polyclonal CD8þ T
cells, the inverse correlation between CD5 expression and p-ERK
induction applied to TCR transgenic (Tg) mice. Thus, for CD8þ

T cells from TCR Tg lines with high CD5 expression, namely
OT-1 and 2C, these cells showed much weaker p-ERK induction
after CD3 ligation than CD8þ T cells from the HY line where the
clonotype-positive cells are all CD5lo cells (Fig. 1i, upper); by
contrast, the minor component of HY CD5hi cells with
endogenous TCR showed much weaker p-ERK (Fig. 1i, lower).
Similar findings were applied to CD69 upregulation. Thus, as for
p-ERK induction, HY CD8þ T cells showed much higher CD69
upregulation at 3 h after CD3 ligation than OT-1 CD8þ T cells
(Supplementary Fig. 1g); note that, relative to p-ERK induction,
CD69 induction was slow, being very low at 1 h.

The above findings indicated that, in marked contrast to
p-CD3z expression and proliferative responses, naı̈ve CD5hi

CD8þ T cells showed weaker downstream TCR signalling than
CD5lo cells. As discussed later, CD5hi naı̈ve CD8þ T cells also
showed a reduced Ca2þ flux following CD3 ligation and, notably,
reduced constitutive expression of p-LCK relative to CD5lo cells
(see below).
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TCR sensitivity of naı̈ve versus memory CD8þ T cells. The
implication from the above data is that naı̈ve T cells with ‘‘above-
average’’ affinity for self-components undergo a form of TCR
desensitisation that prevents the cells from displaying overt auto-
reactivity; perhaps because these cells have enhanced sensitivity to
IL-2, the cells do not show diminished responses to foreign
antigens but rather exhibit enhanced responses10,13. What
then happens to TCR reactivity when naı̈ve T cells switch to
memory cells?

As mentioned earlier, memory T cells generally give stronger
and more rapid responses to foreign antigens than naı̈ve
T cells15,16,22. In support of this dogma, CD8þ T cells with a
memory (CD44hi) phenotype (MP) prepared from B6 mice
(Supplementary Fig. 2a) gave far stronger proliferative responses
(CFSE dilution) to Cx-aCD3 than naı̈ve CD44lo CD8þ T cells
(Fig. 2a). However, CD44hi MP cells are known to secrete more

IL-2 (Supplementary Fig. 2b) and display a higher density of
IL-2Rb (CD122) than naı̈ve cells (Supplementary Fig. 2c). Hence,
better responses of MP cells to antigen could reflect heightened
cytokine responsiveness to endogenous IL-2 (Supplementary
Fig. 2d). If so, the relevant question is whether MP cells show
altered early TCR responsiveness. Here, the striking finding was
that, following culture with either S-aCD3 (Fig. 2b–g) or
Cx-aCD3 (Fig. 2b,f,h), MP CD44hi CD8þ T cells showed
much weaker p-ERK and also p-ZAP-70 induction than naı̈ve
CD44lo CD8þ T cells; for p-ERK, weaker induction in CD44hi

than CD44lo cells also applied for flow cytometry via intracellular
staining with p-ERK mAb (Supplementary Fig. 2e–g) and was in
accord with decreased upregulation of CD69 expression in
CD44hi cells (Supplementary Fig. 2h). Likewise, induction of a
Ca2þ flux after exposure to Cx-aCD3 was far lower for CD44hi

CD8þ T cells than for CD44lo cells (Fig. 2i, upper); for the latter,
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Figure 1 | TCR sensitivity of CD5lo versus CD5hi naı̈ve CD8þ T cells. (a) Levels of tyrosine-phosphorylated CD3z chain (p-CD3z; 21 kDa) in freshly

isolated CD5lo and CD5hi B6 naı̈ve (CD44lo) CD8þ T cells (relative to b-actin; mean±s.d.). (b) Proliferation of CFSE-labelled CD5lo and CD5hi B6 naı̈ve

CD8þ T cells after incubation with IL-2, IL-7, or cross-linked anti-CD3 (Cx-aCD3) mAb. (c–e) ERK phosphorylation (c) and densitometric levels (relative

to total ERK; d or b-actin; e) of phosphorylated ERK (d,e), ZAP-70 (e), PLCg (e), and AKT (e) in CD5lo and CD5hi B6 naı̈ve CD8þ T cells after incubation

with soluble anti-CD3 (S-aCD3) mAb (graphs in d and e show mean±s.d.). (f,g) Phosphorylation of ERK and ZAP70 (f) and levels of phosphorylated

ZAP-70, PLCg, ERK and AKT (relative to b-actin; mean±s.d.) (g) in CD5lo and CD5hi B6 naı̈ve CD8þ T cells after incubation with Cx-aCD3 mAb.

(h) Phosphorylation of ERK and STAT5 in CD5lo and CD5hi B6 naı̈ve CD8þ T cells after S-aCD3 mAb incubation with or without IL-2. (i) CD5 levels by flow

cytometry (top left) and S-aCD3 mAb-induced ERK phosphorylation by Western blot (top right) in naı̈ve CD8þ T cells from HY, 2C and OT-I TCR Tg mice

(top and bottom) or CD5lo and CD5hi naı̈ve CD8þ T cells from B6 and HY mice (bottom); note that CD5hi HY cells are TCR-clonotype negative. Data are

representative of at least four (a,c-g) and three independent experiments (b,h,i). Unpaired Student’s t-test was used for the statistical analysis. *Po0.05;

**Po0.005; ***Po0.0005.
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consistent with the above data on p-ERK induction (Fig. 1c–h),
CD44lo CD5lo cells showed higher Ca2þ fluxes than CD5hi cells
(Fig. 2i, lower and Supplementary Fig. 2i). Consistent with the
role of PLCg in Ca2þ signalling24, the limited Ca2þ flux seen
with CD3 ligation of CD44hi MP cells correlated with reduced
p-PLCg in these cells relative to CD44lo naı̈ve cells (Fig. 2e,h).

For the mitogen-activated protein kinase pathways, weak
induction of p-ERK by CD3 ligation in CD44hi cells could not
be overcome by addition of costimulation via CD28 ligation
(Fig. 2f,g) and did not apply to p-p38 or p-JNK induction
(Supplementary Fig. 2j). For p-ERK induction, weaker induction
in CD44hi MP cells than CD44lo naı̈ve CD8þ T cells was
apparent from 5 min to 2 h after CD3 stimulation. Surprisingly,

this difference was reversed at 24 h: at this time, p-ERK induction
in CD44hi MP cells rose to very high levels and was paralleled by
strong induction of p-AKT (Fig. 2j). Notably, such signalling was
abolished by mAb blockade of IL-2, indicating that the strong
induction of p-ERK and p-AKT in the cultures at 24 h reflected
rapid production of IL-2 by the memory cells.

TCR sensitivity of antigen-induced memory CD8þ T cells.
Since MP cells in normal mice are not necessarily the counterpart
of memory cells primed to defined antigens, we examined the
TCR sensitivity of antigen-induced memory CD8þ T cells. As for
the polyclonal CD44hi cells from B6 mice used above, poor
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Figure 2 | TCR sensitivity of naı̈ve versus memory CD8þ T cells. (a) Proliferation of CFSE-labelled CD44lo naı̈ve and CD44hi memory-phenotype (MP)

B6 CD8þ T cells after incubation with Cx-aCD3 mAb. (b) ERK phosphorylation in CD44lo and CD44hi B6 CD8þ T cells after incubation with S-aCD3 or

Cx-aCD3 mAb. (c,d) Phosphorylation of ERK and ZAP70 (c) and densitometric levels (relative to b-actin; mean±s.d.) (d) in CD44lo and CD44hi B6 CD8þ

T cells after incubation with S-aCD3 mAb. (e) Phosphorylation of ERK, ZAP-70, and PLCg in CD44lo CD5lo and CD5hi and CD44hi B6 CD8þ T cells after

incubation with S-aCD3 mAb. (f,g) ERK phosphorylation in CD44lo and CD44hi B6 CD8þ T cells after incubation with S- or Cx-aCD3±Cx-aCD28 (f) and

S-aCD3±S- or Cx-aCD28 mAbs (g). (h) Phosphorylation of ERK, ZAP-70, and PLCg in CD44lo and CD44hi CD8þ T cells after incubation with Cx-aCD3

and -aCD28 mAbs. (i) Flow cytometry for Ca2þ flux in CD44lo and CD44hi (top) or CD44lo CD5lo and CD5hi and CD44hi CD8þ T cells (bottom) gated

from Indo-1-loaded total B6 LN cells after incubation with the indicated stimuli. (j) Phosphorylation of ERK and AKT in CD44lo and CD44hi B6 CD8þ T cells

at 2 and 24 h after incubation with Cx-aCD3 mAb±aIL-2 mAb blockade. Data are representative of three (a,b,e–j) and at least four independent

experiments (c,d). Unpaired Student’s t-test was used for the statistical analysis. *Po0.005; **Po0.0005.
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p-ERK induction following short-term CD3 ligation also applied
to experimentally induced memory CD8þ T cells, namely naı̈ve
(NA) CD44lo 2C TCR Tg CD8þ T cells primed with specific
immunogenic peptide in vivo (AgMEM) and also to 2C cells
converted from naı̈ve CD44lo to memory CD44hi cells as the
result of HP in lymphopenic hosts (HPMEM) (Fig. 3a and
Supplementary Fig. 3a). Similar findings applied to OT-1 TCR Tg
CD8þ T cells; here, lower p-ERK induction in memory cells than
naı̈ve cells applied to AgMEM OT-1 cells (Fig. 3b and
Supplementary Fig 3b,c) and also to the naturally occurring
subset of CD44hi MP OT-1 cells present in unimmunized OT-I
mice (Fig. 3b and Supplementary Fig. 3b). Thus, for each type of
memory cells examined, p-ERK induction was lower than in
naı̈ve cells (Supplementary Fig. 3d).

The above data refer to TCR signalling induced by CD3
ligation. Essentially similar findings applied following contact
with specific antigenic peptide presented by APC. Thus, when
OT-1 CD8þ T cells were stimulated with APC pulsed with
ovalbumin peptide 257–264 (OVAp), p-ERK induction was lower
in AgMEM cells than in naı̈ve cells (Fig. 3c). Similar findings
applied to upregulation of the activation marker CD69, both for
strong peptide (OVAp) and weaker peptides (Q4R7, T4, Q4H7)
(Fig. 3d,e); likewise, OT-1 AgMEM cells were less sensitive to
downregulation of CD62L than naı̈ve cells, especially with weaker
peptides at early time points (30 min) (Supplementary Fig. 3e).
However, in marked contrast to these early TCR signalling events,
cytokine synthesis by OT-I AgMEM cells, like B6 MP cells, was

invariably far stronger than for naı̈ve cells (Fig. 3f and
Supplementary Fig. 3f,g).

Collectively, these findings indicated that both MP and induced
memory CD8þ T cells were less sensitive to TCR ligation than
naı̈ve cells, thus paralleling the data on naı̈ve CD5hi versus CD5lo

subsets.

Cause of TCR desensitisation in memory CD8þ T cells.
CD44lo naı̈ve and CD44hi MP CD8þ T cells displayed equivalent
expression of total LCK, ZAP-70, SLP-76 and PLCg but did show
altered expression of LAT and PKCy (Fig. 4a). Thus, LAT was
highest in CD5lo naı̈ve cells, intermediate in CD5hi naı̈ve cells and
lowest in MP cells, whereas the reverse applied to levels of PKCy.
Similar findings applied to both 2C naı̈ve and memory cells, with
notable parallel increase of CBL-B, a negative regulator of TCR
signalling25 (Fig. 4b). Hence, TCR sensitivity correlated directly
with total LAT expression but inversely with CBL-B expression
(Fig. 4b,c). This finding raised the question whether the reduced
TCR sensitivity of MP cells reflected enhanced expression of
CBL-B. This possibility seems unlikely, however, because MP
CD8þ T cells prepared from cblb� /� mice did not
show improved p-ERK induction after CD3 ligation relative to
cblbþ /þ or cblbþ /� cells (Fig. 4d). An obvious question is
whether memory cells show enhanced expression of CD5,
a negative regulator for TCR signalling. This appeared to be the
case for B6 MP cells as reported previously12 but, both for AgMEM
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Figure 3 | TCR desensitisation in induced memory CD8þ T cells. (a) Naı̈ve 2C CD8þ T cells were transferred into irradiated B6 mice and then

immunized with specific peptide (AgMEM; n¼ 5) or left unimmunized to form memory cells via lymphopenia-induced proliferation (HPMEM; n¼4). The

memory 2C cells purified at 56 d and freshly isolated naı̈ve 2C cells (n¼ 3) as controls were analysed for ERK phosphorylation after incubation with
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n¼ 5), together with host-derived B6 naı̈ve (NA) CD44lo and CD44hi (MP) CD8þ T cells, were analysed for ERK phosphorylation after incubation with
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(d,e) Flow cytometry for CD69 upregulation (d) and percentages of CD69þ cells (e; mean±s.d.) on OT-I naı̈ve and memory cells as in c after incubation

with sAPC pulsed with OVAp and its variant peptides, Q4R7, T4 and Q4H7. (f) IFN-g and TNF-a production from OT-I naı̈ve and memory cells as in c after

incubation with sAPC±OVAp or PMA plus ionomycin (PMA/IONO). Data are representative of two (f) and three (a-e) independent experiments.

Unpaired Student’s t-test was used for the statistical analysis. *Po0.005; **Po0.0005.
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and HPMEM cells, CD5 levels were lower in these induced memory
cells than in naı̈ve cells (Supplementary Fig. 4a and see below).

We then explored the possibility that memory cells show
increased expression of other negative regulators of TCR
signalling, namely certain PTPs. In support of this idea, relative
to naı̈ve cells, CD44hi MP CD8þ T cells displayed a striking
reduction in miR-181a, a known regulator of a number of PTPs
(ref. 9), and increased mRNA expression of DUSP5, though not
several other PTPs (Supplementary Fig. 4b). At the protein level,
however, MP cells showed increased expression of SHP-1 and
SHP-2 (ref. 26) (Fig. 4e), and two recently reported negative

regulators PTPN2 (TCPTP) and PTPN22 (LYP)27,28 (Fig. 4f).
If these or other PTPs (ref. 29) accounted for the weak TCR
sensitivity of memory cells, then adding PTP inhibitors would be
expected to enhance TCR signalling. However, tests on five
different PTP inhibitors with collective specificity for a variety of
PTPs, including SHP-1, SHP-2, LYP, TCPTP, PTP1B and
HePTP, failed to cause a measurable increase in CD3-induced
p-ERK induction (Supplementary Fig. 4c). Likewise, for two
PTPs, namely TCPTP and SHP-1, lower p-ERK induction in
memory CD8þ T cells compared with naı̈ve T cells in response
to S-aCD3 applied to cells from ptpn2� /� and shp1þ /� mice,
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respectively (Fig. 4g,h); note that shp1� /� mice were not tested
because of the T-cell developmental defect in these mice.

An important role for CD45. Despite the above negative findings
on PTP inhibitors, we turned our attention to another PTP,
namely CD45. CD45 is expressed ubiquitously on lymphoid cells
and plays a key role in regulating TCR signalling by inducing
tyrosine dephosphorylation of p56lck (LCK) Y394 (activating
motif) and also Y505 (inhibitory motif)30; in post-thymic
T cells, phosphorylation of Y394 is most important because
pY394/pY505 double-phosphorylated LCK has the same
functional kinase activity as LCK pY394 alone31. For the
following reasons, elevated expression of CD45 has emerged as
a likely explanation for the decreased TCR sensitivity of CD44hi

memory CD8þ T cells, and also of CD44lo naı̈ve CD5hi cells
versus CD5lo cells:

First, as for CD5, levels of CD45 were higher on mature CD4þ

and CD8þ SP thymocytes than on CD4þCD8þ DP precursor
cells32 (Fig. 5a), consistent with TCR tuning of thymocytes.
Second, for naı̈ve CD44lo CD8þ T cells, including cells from
TCR Tg strains, levels of CD5 correlated directly with CD45
levels, both for total CD45 levels (Fig. 5b bottom right, c) and
expression of the different isoforms of CD45 (Supplementary
Fig. 5a). Third, CD45 expression was clearly higher on memory
cells than naı̈ve cells, both for MP cells (Fig. 5b, bottom left) and
induced memory cells (Supplementary Fig. 5b,c). This difference
in CD45 levels was confirmed by confocal staining (Fig. 5d) and,
notably, was in direct accord with CD45 phosphatase activity
(Fig. 5e,f and Supplementary Fig. 5d); to measure the latter, total
CD45 was immunoprecipitated by anti-CD45 Abs from CD8þ

T-cell lysates and PTP activity was then assessed in vitro with a
specific CD45 inhibitor33,34 (CD45i; N-(9,10-Dioxo-9,10-dihydro-
phenanthren-2-yl)-2,2-dimethyl-propionamide) (Supplementary
Fig. 5e,f). Fourth, significantly, high CD45 expression and its
phosphatase activity correlated directly with reduced constitutive
levels of its major substrate p-Y394-LCK, and also p-Y505-LCK, in
memory cells (Fig. 5g,h and Supplementary Fig. 5g,h); this also
applied for CD5hi versus CD5lo B6 naı̈ve CD8þ T cells (Fig. 5i and
Supplementary Fig. 5g,h; for Fig. 5i, data are shown also for HY
naı̈ve subsets, with unseparated naı̈ve 2C and OT-I cells as a
control). Fifth, for naı̈ve CD8þ T cells, sorted cells expressing a
high density of CD45 (CD45hi), like CD5hi cells, exhibited weaker
CD3-induced TCR signalling (p-ZAP-70, p-PLCg and p-ERK)
than CD45lo cells (Fig. 5j and Supplementary Fig. 5i). Finally, and
most importantly, the above-mentioned specific inhibitor of CD45
phosphatase activity, CD45i (Fig. 5f), caused a prominent increase
in p-ERK induction following CD3 ligation (Fig. 6a); this applied to
three additional CD45-specific inhibitors (NSC95397, R164259
and S349631)35 with a similar and even more marked enhancing
effect relative to CD45i (Fig. 6b,c and Supplementary Fig. 6a,b); no
such effect was seen with a spectrum of inhibitors reactive to other
PTPs (Fig. 6b). The enhancing effect of CD45i applied to both
naı̈ve and memory CD8þ T cells (Fig. 6d) and depended on the
relative level of CD45 on the cells; thus, titration experiments
showed that the enhancing effect of CD45i was less pronounced on
CD44hi than CD44lo cells (Fig. 6e) and, for naı̈ve cells, less on
CD44lo CD5hi cells than CD44lo CD5lo cells (Supplementary
Fig. 6c) and also less on CD44lo CD45hi cells than CD44lo CD45lo

cells (Supplementary Fig. 6d). In addition to p-ERK, CD45i
enhanced p-ZAP-70 induction (Fig. 6d) and also led to an
augmented Ca2þ flux (Fig. 6f).

Unlike CD3 ligation, the enhancing effect of CD45i was not
observed with stimulation via PMA and ionomycin or IL-2
(Fig. 6g and Supplementary Fig. 6e) and was abolished by adding
an inhibitor (PP2) of LCK (Fig. 6h and Supplementary Fig. 6f),

implying that CD45i selectively enhanced TCR signalling events.
When tested on B cells as a specificity control, CD45i reduced
(rather than enhanced) p-ERK induction in response to IgM
ligation, with little or no effect of adding PP2 (Supplementary
Fig. 6g). Collectively, these findings indicate that the enhancing
effects of CD45i on TCR signalling of CD8þ T cells are largely
specific and LCK dependent.

Influence of CD45 inhibition in basal TCR signalling. The
above finding that CD45 inhibition enhanced CD3-induced TCR
signalling raises the question whether steady-state levels of CD45
on resting CD8þ T cells control quiescent basal TCR signalling.
Here, it is striking that, even without CD3 ligation, adding CD45i
alone to purified B6 naı̈ve CD8þ T cells caused a rapid increase
in background expression of p-ERK and also p-LCK, p-ZAP-70
and p-LAT, though not p-CD3z, implying onset of TCR signal-
ling (Fig. 7a); likewise, CD45i caused an increase in background
Ca2þ influx, especially in naı̈ve CD8þ T cells (Supplementary
Fig. 7a). The enhancing effect of CD45i on resting CD8þ T-cell
subsets was confirmed by immunoblot analysis and elevated
confocal staining for p-Y394-LCK for both naı̈ve (CD5lo and
CD5hi) cells and CD44hi MP cells (Fig. 7b and Supplementary
Fig. 7b); similar findings applied for p-Y505-LCK (Fig. 7c,d,
tested on naı̈ve cells) and also p-ZAP70 (Supplementary Fig. 7c).
Importantly, as for CD3 ligation, the enhancing effect by CD45i
alone on basal TCR signalling (p-LCK, p-ZAP-70 and p-ERK)
was abolished by adding PP2 (Fig. 7c–e and Supplementary
Fig. 7c), indicating dependency on LCK.

The above enhancing effect of CD45i on basal TCR signalling
was observed in the absence of APC (though it should be noted
that CD8þ T cells themselves are MHC Iþ ). Notably, however,
with naı̈ve OT-I CD8þ T cells, the increase in background
p-ERK induced by CD45i was greatly increased by addition of
APC, with or without specific peptide (Fig. 7f). This enhancing
effect by adding APC was much less prominent with MHC-Ilo

Tap1-deficient APC (Fig. 7g), implying a requirement for TCR
contact with self-pMHC ligands on APC. The implication
therefore is that basal TCR signalling driven by tonic TCR
contact with self-pMHC on APC is continuously kept in check by
CD45 PTP activity via modulation of active LCK, thereby
maintaining self-tolerance; such tolerance is broken by addition
of CD45i.

The ability of CD45 to restrain basal TCR signalling raises the
possibility that inhibiting CD45 activity on CD8þ T cells would
enhance TCR sensitivity to foreign antigens. In support of this
possibility, naı̈ve OT-I cells treated briefly in vitro with CD45i
and then adoptively transferred to B6 mice showed much faster
upregulation of early activation markers, CD25 and CD69,
following OVA peptide immunization, as compared with
untreated OT-I cells (Fig. 8a,b); likewise, downregulation of
CD62L and TCRb was markedly enhanced in CD45i-treated
OT-I cells (Supplementary Fig. 8a), Similar findings applied to
IFN-g production (Fig. 8c and Supplementary Fig. 8b,c). These
data required the presence of specific peptide. Hence, although
CD45i pretreatment did not induce overt self-reactivity, such
treatment did substantially augment TCR sensitivity to a foreign
antigen.

Collectively, these findings indicate that high expression of
CD45 on peripheral CD8þ T-cell subsets in steady-state
condition is an important checkpoint for modulating their
relative TCR sensitivity, not only to self-ligands but also to
foreign antigens.

Discussion
The data in this paper shed new light on TCR tuning. As
mentioned earlier, TCR tuning is well documented during thymic
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development and is viewed as a mechanism to fine-tune the TCR
sensitivity of mature post-thymic T cells. For naı̈ve T cells, these
cells have to receive TCR signals through contact with self-pMHC
ligands to survive in interphase, but such signalling has
to be relatively weak to avoid breaking self-tolerance. Although

TCR tuning is associated with upregulation of a number of
negative regulators of TCR signalling, notably CD5, the precise
mechanism of TCR tuning is still unclear. As shown here,
addressing this question depends on the particular parameters
used to measure TCR sensitivity.
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(d) Confocal staining for CD45 and CTB (to detect lipid rafts) in CD44lo naı̈ve CD5lo and CD5hi cells and CD44hi MP CD8þ T cells (original magnification

� 63; � 1.4 zoom; scale bars, 5mm). (e,f) In vitro PTP activity of CD45 immunoprecipitated by anti-CD45 mAb with whole cell lysates from equal numbers of

CD44lo naı̈ve CD5lo and CD5hi cells and CD44hi MP CD8þ T cells without (e) and with indicated concentrations of CD45-specific inhibitor, CD45i (f)

(means±s.d.). (g,h) Expression (g, Western blot; h, densitometric levels relative to b-actin) of tyrosine-phosphorylated LCK (Y394) with or without LCK

inhibitor PP2 (5mM) in freshly isolated CD44lo and CD44hi B6 CD8þ T cells. (i) Levels of basal p-Y394-LCK and p-Y505-LCK in freshly isolated HY (CD5lo),

2C and OT-I naı̈ve CD8þ T cells; note that CD5hi HY cells are TCR-clonotype negative. (j) Levels of phosphorylated ZAP-70, PLCg, and ERK in CD44lo naı̈ve

CD45lo and CD45hi cells and CD44hi MP CD8þ T cells after incubation with S-aCD3 mAb. Data are representative of two (a,c,d), at least three (b,e,f,i,j) and

seven independent experiments (g,h). Unpaired Student’s t-test was used for the statistical analysis. *Po0.005; **Po0.0005; ns, not significant.
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In initial experiments, we found no evidence that mature
T cells with high levels of CD5 displayed a reduction in TCR
sensitivity. In fact, by three parameters, the TCR reactivity of
CD5hi naı̈ve CD8þ T cells was actually higher than for CD5lo

cells. This applied to constitutive phosphorylation of CD3z, to
in vitro proliferation induced by CD3 ligation, and, as shown
previously12, to HP occurring in lymphopenic hosts. Moreover, as
for HP, recent studies showed that CD5hi naı̈ve T cells led to far
greater antigen-specific expansion than CD5lo cells after pathogen
infection10,13. For early TCR signalling events, however, the
results described here were totally different. Thus, as defined by
induction of p-ERK, p-ZAP-70, p-PLCg, a Ca2þ flux and CD69
expression soon after CD3 ligation, CD5hi cells were appreciably
less TCR sensitive than CD5lo cells. Hence, by these parameters,
CD5hi cells did display clear evidence of reduced TCR sensitivity
relative to CD5lo cells. The opposite results observed for later
(B2–3 d) proliferative responses can be attributed to differences
in sensitivity to cytokines. Thus, correlating with enhanced
expression of GM1-containing lipid rafts, CD5hi cells were more
sensitive than CD5lo cells to stimulation by endogenous IL-2
produced following CD3 ligation in vitro, and also to the raised
levels of IL-7 that drive HP in lymphopenic hosts12. The
increased background expression of p-CD3z by CD5hi cells is
less easy to explain. The possibility we favour is that the partial
phosphorylation of CD3z induced by continuous TCR interaction
with self-pMHC ligands leads to a weak form of TCR signalling

which selectively promotes sensitivity to cytokines, thereby
making CD5hi cells more sensitive to IL-7 and IL-2 than CD5lo

cells. But we envisage that such signalling is not sufficient to
induce typical signs of TCR signalling such as p-ERK induction.
On this point, high constitutive p-CD3z expression on CD5hi

cells is not accompanied by measurable background expression of
p-ERK, implying a lack of downstream TCR signalling.

As for naı̈ve T cells, defining the TCR sensitivity of memory
CD8þ T cells depended on the assay used. As mentioned earlier,
most, though not all, previous studies found that memory CD8þ

T cells gave more prominent proliferative responses to antigen
than naı̈ve cells. In line with this finding, as shown here, MP
CD44hi CD8þ T cells gave far stronger in vitro proliferative
responses after CD3 ligation than CD44lo cells, reflecting both
higher synthesis of IL-2 and higher expression of IL-2Rb (CD122)
by CD44hi cells than CD44lo cells. Likewise, the observation that
HP in lymphopenic hosts is faster and more intense for CD44hi

cells than CD44lo cells36 may reflect the enhanced sensitivity of
CD44hi cells to IL-7; as for IL-2, this enhanced sensitivity may in
part reflect the more open configuration of cytokine loci in
memory T cells37. Despite these findings, early TCR signalling
events were clearly less marked in CD44hi cells than CD44lo cells.
This finding applied to induction of p-ERK, p-ZAP-70, p-PLCg,
a Ca2þ flux and upregulation of CD69, and was apparent
for both MP and induced memory CD8þ T cells and
with stimulation by peptide-loaded APC as well as by CD3 or
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CD3/CD28 ligation. By these parameters, memory CD8þ T cells
showed reduced TCR sensitivity relative to naı̈ve CD8þ T cells.
It is important to emphasize that this evidence for TCR
desensitisation of memory cells applied only within the first few
hours of stimulation and was reversed at later stages as the result
of stimulation by endogenous IL-2.

With regard to the cause of TCR desensitisation in memory
CD8þ T cells, regulation by CD5 seems unlikely because, in
contrast to MP cells, TCR transgenic AgMEM and HPMEM CD44hi

cells both showed substantially lower expression of CD5 than
naı̈ve cells. Likewise, based on studies with gene knockout mice,
we could find no evidence that the decreased TCR sensitivity of
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memory CD8þ T cells reflected increased expression of CBL-B.
Others have described lower TCR expression on memory cells
than naı̈ve cells19. However, in our hands this difference, though
detectable, was very slight (Supplementary Fig. 5b).

For PTPs, others reported increased expression of PTPN2
(TCPTP), PTPN12 (PTP-PEST) and PTPN22 (LYP) in memory
CD8þ T cells19, which is of interest because deletion of these and
other PTPs is associated with TCR hyper-reactivity and onset of
autoimmune disease28,29,38–41. In our studies, we found increased
expression of SHP-1 and SHP-2 proteins, as well as TCPTP and
LYP proteins both in MP cells and CD5hi naı̈ve CD8þ T cells
relative to CD5lo cells. However, it is questionable whether the
elevation of these and other PTPs could account for the decreased
TCR sensitivity in these cells. If this were the case, broad-
spectrum phosphatase inhibitors would be expected to increase
TCR sensitivity. However, tests with six different phosphatase
inhibitors showed no increase in TCR signalling when the
inhibitors were added during CD3 ligation. Consistent with the
inhibitor data, we could find no evidence for a role of TCPTP or
SHP-1 in TCR tuning of CD8þ T cells when cells lacking TCPTP
or expressing reduced levels of SHP-1 were tested. The
implication therefore is that, though important for modulating
the immune response, the above individual PTP may have only a
minor role in restraining TCR signalling of resting CD8þ T cells.
Vanadate (Na3VO4), a potent inhibitor for multiple PTPs, did
show a clear enhancing effect of p-ERK induction after CD3
ligation. However, this effect may be largely a reflection of
inhibition of CD45 activity (see below).

The PTP inhibitors that failed to alter TCR signalling
sensitivity included reagents with specificity for PTPN22. This
finding may seem surprising because deficiency of PTPN22 was
recently shown to cause enhanced TCR sensitivity to stimulation
with relatively weak antigenic peptides, though this effect was
not seen with strong peptides28. However, in our studies the
differences in TCR sensitivity between naı̈ve and memory cells
and also between CD5hi and CD5lo naı̈ve cells applied equally to
strong and weak TCR stimulation. Moreover, for naı̈ve cells,

we observed only a marginal difference in PTPN22 levels between
CD5hi and CD5lo cells despite their prominent difference in TCR
sensitivity. It should be mentioned that in other studies PTPN22
deficiency had little or no effect on TCR sensitivity under various
conditions38,42. Despite these findings, PTPN22-deficient mice do
show a moderate increase in memory CD8þ T cells in later life,
though with no change in naı̈ve cells38. Hence it seems likely that
PTPN22 does play a significant, though mild role in restricting
TCR sensitivity to self-ligands.

With regard to other PTPs, PTPN2 clearly deserves considera-
tion because PTPN2-deficient CD8þ T cells were reported to be
more reactive than wild-type (WT) cells in response to TCR
ligation in vitro, and gave far stronger HP in lymphopenic
hosts27,41. Consistent with these data, we found that
PTPN2-deficient cells showed relatively higher p-ERK induction
than WT cells after CD3 ligation. Nevertheless, the hierarchy of
TCR sensitivity reported here for CD8þ T cells (CD44lo

CD5lo4CD44lo CD5hi4CD44hi) was the same for PTPN2-
deficient and WT cells. Similar findings applied for shp1þ /�

versus shp1þ /þ cells. Hence, altered expression of these two
PTPs seems an unlikely explanation for the difference in TCR
sensitivity shown here for resting CD8þ T-cell subsets.

In searching for other explanations for TCR tuning of
peripheral CD8þ T cells, the possibility that CD45 could be
involved may seem unlikely because CD45 is generally viewed
as a positive regulator of TCR signalling by causing depho-
sphorylation of inhibitory p-Y505-LCK (ref. 43). However, more
recent evidence suggests that, for mature T cells, CD45 has an
overall negative effect on TCR signalling by dephosphorylating
p-Y394-LCK, which keeps LCK in an active configuration.
In favour of a negative effect of CD45, several studies with
transgenic mice have shown that reducing total amounts or
relative activity of CD45 on T cells to 10–40% of normal can
cause TCR hyper-reactivity, accelerated rejection of pathogens,
and signs of autoimmunity33,44–46. Likewise, there is reciprocal
evidence that overexpression of CD45 in transgenic mice reduces
TCR reactivity47,48. The data shown here on CD8þ T-cell subsets
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from B6 mice are clearly consistent with this model. Thus, for
naı̈ve CD8þ T cells, the reduced TCR sensitivity of CD5hi cells
relative to CD5lo cells correlated directly with higher expression
of total CD45 (and the various CD45 isoforms), higher levels of
total CD45 phosphatase activity, and reduced expression of
p-Y394-LCK (and also p-Y505-LCK). Similarly, the decreased
TCR sensitivity of memory CD8þ T cells versus naı̈ve CD8þ T
cells correlated with higher CD45 levels (and also total CD45 PTP
activity) and lower p-Y394-LCK on memory cells. One apparent
discrepancy is that, in sharp contrast to CD45 transgenic mice
with intermediate levels of CD45, T cells from CD45 transgenic
mice with unphysiologically low levels of CD45 (B3–15% of
WT levels) showed reduced TCR sensitivity45,48. This finding
correlated with aberrantly high accumulation of inactive
p-Y505-LCK on the cells and may have no counterpart in
normal mice where CD45 levels are substantially higher. Thus, as
shown here in normal mice, mature T cells with the lowest
density of CD45 invariably had the highest TCR sensitivity.

Studies with CD45i provided direct support for the view that
the reduced TCR sensitivity of CD5hi naı̈ve and memory CD8þ

T cells, relative to naı̈ve CD44lo CD5lo T cells, reflected negative
regulation by CD45. Thus, in marked contrast to the other PTP
inhibitors tested, addition of CD45i greatly increased p-ERK and
p-ZAP-70 induction and also a Ca2þ flux after CD3 ligation,
both for naı̈ve and memory CD8þ T cells. Although PTP
inhibitors are rarely if ever entirely specific for particular
substrates, multiple approaches suggested that the specificity of
CD45i was heavily skewed to CD45 with minimal activity on
other candidate modulators of TCR signalling. In particular, the
capacity of CD45i to enhance TCR signalling was observed with
three other inhibitors with known CD45-specific reactivity but
was undetectable with other PTP inhibitors. Moreover, CD45i
was highly specific for TCR/CD3-induced, LCK-dependent
signalling. Thus, the enhancing ability of CD45i was (a) abrogated
by addition of an LCK inhibitor PP2, (b) did not apply to
stimulation of T cells via PMA and ionomycin or IL-2 and (c)
also did not apply to IgM-induced stimulation of B cells (where
CD45 acts as a positive regulator for BCR signalling48).
In addition, it is notable that the enhancing effect of CD45i on
CD8þ T cells was dependent on the density of CD45 on the cells,
being more marked for cells with a low density of CD45, that is,
CD44lo naı̈ve cells sorted for low CD45 expression. Collectively,
these data validate the credentials of CD45i for inhibiting CD45
activity and thereby consolidate the view that the restraining
influence of CD45 on TCR sensitivity is most prominent
for CD8þ T cells with the highest density of CD45, namely
memory cells.

Although the capacity of high CD45 levels to limit TCR
sensitivity was shown previously for CD45 transgenic mice45,48,
the data presented here provide the first clear evidence that levels
of CD45 on T cells are physiologically relevant and control the
relative TCR sensitivity of resting CD8þ T cells, both for naı̈ve
and memory subsets. For both subsets, CD45 levels correlated
directly with levels of p-Y394-LCK, thereby serving to modulate
proximal TCR signalling events and reduce self-reactivity. For
naı̈ve CD8þ T cells, CD45 levels correlated directly with CD5
levels. Since CD5 expression on CD8þ T cells is thought to
correlate directly with their intrinsic TCR/self-pMHC reactivity,
the implication therefore is that cells with relatively strong self-
reactivity (CD5hi CD3zhi CD45hi CD8þ T cells) are restrained
from overt self-responsiveness by their high density of CD45,
which reduces p-Y394-LCK and thereby limits TCR sensitivity. In
this respect, it is notable that addition of CD45i to purified CD8þ

T cells without CD3 ligation led to p-ERK induction and other
signs of TCR signalling, presumably through TCR contact with
self-pMHC ligands on neighbouring T cells. Moreover, much

stronger p-ERK induction occurred with addition of APC, but not
with MHC-Ilo Tap1-deficient APC. Consistent with the effect of
CD45i on increasing TCR sensitivity, pretreating OT-I cells
with CD45i before adoptive transfer markedly enhanced the
early response of these cells to specific peptide. Hence, CD45i
treatment increases responsiveness to both self and foreign
antigens. In future studies it will be important to extend these
findings by examining the effects of conditionally deleting CD45
in mature T cells.

Although CD45 levels correlated closely with p-Y394-LCK
levels, precisely how CD45 controls TCR tuning is unclear.
Various factors could be important, including distribution/
localization of CD45 to lipid rafts on the T-cell membrane,
protein interaction via the CD45 cytoplasmic domain, different
ligand interaction via differential glycosylation of its extracellular
domain, and variation in dimerization by different isoforms49.
It is also unclear how the density of CD45 on mature CD8þ

T cells is controlled. For resting memory CD8þ T cells, it is
notable that survival of these cells, unlike naı̈ve cells, is MHC-I
independent, implying an absence of baseline TCR signalling in
memory cells. However, despite the apparent inverse correlation
between CD45 expression and tonic TCR signalling,
understanding this relationship will require further investigation.

In conclusion, we show here that, after positive selection in the
thymus, naı̈ve CD8þ T cells are subjected to a second step of
TCR tuning via upregulation of CD45, which reduces basal levels
of p-Y394-LCK and thereby modulates their TCR sensitivity.
CD45 upregulation is most prominent for cells with high intrinsic
self-pMHC reactivity and is tailored to enable naı̈ve cells to
receive survival signals through TCR/self-pMHC interaction
while maintaining self-tolerance, but without compromising
reactivity to foreign antigens. A further step of TCR tuning
occurs when naı̈ve CD8þ T cells respond to antigen and become
memory cells: enhanced CD45 upregulation on memory cells
mildly reduces their TCR sensitivity (and self-reactivity) but
elevated responsiveness to cytokines and possibly also other
mediators ensure that these cells display robust responses to
foreign antigens. In addition to CD45, TCR sensitivity is probably
modulated by other PTPs and/or other negative regulators on T
cells; whether the latter inhibitors act during normal T-cell
homeostasis rather than during the immune response is still
unclear.

Methods
Mice. C57BL/6 (B6) and B6.SJL (Ly5.1) mice were obtained from Australian
Bioresources Centre (ABR, Australia) and POSTECH Biotech Centre (PBC,
Korea). Sources of OT-I (Thy1.1), 2C (Ly5.1) and HY TCR Tg mice, and il2� /�

and tap1� /� mice, all on a B6 background, were reported12. The cblb� /�

homozygote and cblbþ /þ WT mice were all on a B10.BR background50 and
obtained from the same littermates by crossing cblbþ /� heterozygote mice.
Lck-Cre.Ptpn2 f l/f l (ptpn2� /� ; conditional deletion for PTPN2) and motheaten
viable mice (mev; null mutation for SHP-1), all on a B6 background, were used as
reported41,51. All mice were maintained under specific pathogen-free conditions
and female mice were used at 6–12 weeks of age for experiments without need of
randomization or blinding tests, according to protocols approved by the Animal
Experimental and Ethic Committee at the Garvan Institute (Australia) and the
Institute for Basic Science (Korea).

Reagents. Recombinant mouse IL-2 and IL-7 were purchased from PeproTech.
SIYRp (SIYRYYGL; specific for 2C TCR) and OVAp (SIINFEKL) and its variant
peptides (Q4R7, SIIQFERL; T4, SIITFEKL; and Q4H7, SIIQFEHL; all specific for
OT-I TCR) were purchased from Mimotopes. LCK inhibitor PP2 and various PTP
inhibitors, LYPi II, PTPi IV, PTPi XVIII, HePTPi, SHP1/2i, CD45i, NSC95397 and
vanadate (Na3VO4) were all purchased from Calbiochem and dissolved in DMSO
(Sigma-Aldrich). Two CD45-specific inhibitors, R164259 and S34963135, were
generously provided by N. Bottini (La Jolla Institute for Allergy and Immunology).

Antibodies for flow cytometry. Cell suspensions were prepared and stained for
FACS analysis of cell-surface markers using PBS containing 2% FBS and 0.05%
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sodium azide with the following fluorochrome-conjugated Abs to (from BD
Biosciences and eBioscience): CD4 (GK1.5 and RM4–5), CD5 (53-7.3), CD8a
(53-6.7), CD27 (LG.7F9), CD43 (1B11), CD44 (IM7), CD45RA (14.8), CD45RB
(16A), CD45RC (DNL-1.9), pan-CD45 (30-F11), CD45.1 (A20), CD62L (MEL-14),
CD69 (H1.2F3), CD90.1 (HIS51), CD122 (TM-b1), CD127 (A7R34), CD183
(CXCR3-173) and Ly6C (HK1.4). All Abs were used at a concentration of
1:300–1:500. Flow cytometry samples were run using a LSR II or FACSCanto II
(BD Biosciences) and analysed by FlowJo software (Tree Star).

T- and B-cell purification. Pooled lymph node (LN) cells from the indicated mice
were stained with fluorochrome-conjugated Abs to CD8a, CD5 and CD44, and
then sorted to obtain CD44lo CD5lo and CD44lo CD5hi naı̈ve CD8þ T cells and/or
CD44hi MP CD8þ T cells. The LN cells treated with Abs were also sorted to obtain
total CD44lo naı̈ve and CD44hi MP CD8þ T cells using a FACSAria (BD
Biosciences) and Moflo-XDP (Beckman Coulter). For B cell purification, spleen
cells stained with Abs to B220 (RA3-6B2; eBioscience; 1:300) and CD19 (1D3;
eBioscience; 1:300) were sorted to obtain CD19þ B220þ mature splenic B cells.
Purity was routinely tested after cell sorting and was499%.

Generation of Ag- or HP-induced memory CD8þ T cells. Naı̈ve 2C CD8þ

T cells (Ly5.1þ ) were isolated by a negative selection using MACS with a CD8þ

T-cell isolation kit (Miltenyi Biotec) according to the manufacturer’s instructions
and transferred i.v. into irradiated (450 cGy) B6 mice (1� 106 cells per mouse).
Recipient mice were either injected i.p. with SIYR peptide (10 mg) plus polyI:C
(20 mg; Sigma-Aldrich) to generate Ag-induced memory cells (AgMEM; n¼ 5) or left
unimmunized to generate HP-induced memory cells (HPMEM; n¼ 4). At 56 days
after adoptive transfer, SP and LN cells pooled from the recipient mice were first
enriched for total CD8þ T cells by a MACS negative selection and then further
isolated to obtain memory donor 2C CD8þ T cells by FACS sorting with 499%
purity. As a control, naı̈ve CD44lo 2C CD8þ T cells were freshly isolated from LN
cells of 2C TCR Tg mice by FACS. For generating OT-I memory cells, MACS-
purified naı̈ve OT-I CD8þ T cells (Thy1.1þ ) were transferred i.v. into either
untreated (1� 106 cells per mouse; n¼ 5) or irradiated B6 mice (n¼ 8). On day 1
after adoptive transfer, untreated recipient mice were immunized i.v. with OVAp
(10 mM)-pulsed B6 bone marrow-derived dendritic cells (BM-DC; 2� 106 cells for
inducing AgMEM); for inducing HPMEM, irradiated recipients of naı̈ve OT-I cells
were either left untreated (n¼ 4) unless otherwise described or injected i.p. with
IL-2 (1 mg)/aIL-2 mAb (S4B6; 10mg; n¼ 4) complexes12 to enhance proliferation.
As with 2C memory cells, OT-I donor memory cells (both AgMEM and HPMEM)
were purified at 46 months after adoptive transfer by FACS sorting. Naı̈ve control
CD44lo OT-I cells were freshly isolated either directly from OT-I TCR Tg mice
(n¼ 3) or from B6 recipients adoptively transferred with naı̈ve OT-I CD8þ T cells
7 days before (1� 106 cells per mouse; n¼ 3).

Measuring TCR sensitivity by CD3 ligation. For polyclonal CD8þ T cells,
subsets of the indicated FACS-sorted naı̈ve (total CD44lo, CD5lo or CD5hi cells)
or memory (CD44hi) CD8þ T cells (0.5–2� 106 cells) were cultured for indicated
various time points (ranging from 2 min to several hours for early and late
responses, respectively) either with soluble (S) or plate-bound cross-linked (Cx)
anti (a)-CD3 mAb (145-2C11; BD Biosciences; 0.5–5 mg ml� 1 unless otherwise
described)±S- or Cx-aCD28 mAb (37.51; BD Biosciences; 5 mg ml� 1)±IL-2
(10 ng ml� 1). For Ag-specific CD8þ T cells, OT-I TCR Tg CD8þ T cells
(1–2� 105 cells) were incubated with T-cell-depleted irradiated (2,000 cGy)
B6 splenic APC (sAPC; 0.5–1� 106 cells) pre-pulsed with 0.1 mM OVAp.

TCR and BCR sensitivity with CD45 PTP inhibitor. FACS-sorted naı̈ve and
memory CD8þ T cells were preincubated for 10–30 min with indicated con-
centrations of either PP2 (2–5 mM), CD45i (0.03–10 mM) or both inhibitors and
then cultured for additional 10–15 min with various stimuli, including S-aCD3
mAb (0.5–2 mg ml� 1), PMA (50 ng ml� 1) plus ionomycin (500 ng ml� 1; Sigma-
Aldrich) or high dose IL-2 (1mg ml� 1). In an experiment for assessing BCR
sensitivity, FACS-purified splenic B cells were preincubated for 30 min with or
without indicated inhibitors, PP2, CD45i or both, and then incubated for 10 min
with goat anti-mouse IgM F(ab0)2 (10 mg ml� 1; Jackson ImmunoResearch
Laboratories). With addition of APC, sorted B6 or OT-I naı̈ve CD8þ T cells
pretreated with CD45i (5mM) or a control PBS containing 0.1% DMSO were either
left alone or coincubated with T-cell-depleted irradiated WC or Tap1-deficient
sAPC (without CD3 mAb ligation); for some OT-I cultures with sAPC, OVAp
(0.1mM) was added as a positive control. For measuring TCR sensitivity to foreign
antigens in vivo, OT-I naı̈ve CD8þ T cells (Thy1.1) were pretreated with CD45i or
PBS containing 0.1% DMSO for 30 min, washed twice, and transferred i.v. into B6
mice (1� 106 cells per mouse; n¼ 3) that had been preinjected i.p. with OVAp
(5mg) plus polyI:C (10mg) 2 h before adoptive transfer. At 3 and 6 h post-transfer,
SP cells from the mice were analysed for expression of early activation markers,
CD25 and CD69, and other various markers indicated, as well as for intracellular
IFN-g production after 5 h OVAp restimulation in vitro, by flow cytometry.

Other phosphatase inhibitors. In experiments investigating the effects of other
PTP inhibitors, FACS-sorted naı̈ve B6 CD8þ T cells were cultured for 10 min with
S-aCD3 mAb (0.5 mg ml� 1) immediately after 30 min preincubation with titrated
concentrations of the indicated PTP inhibitors, the specificity of the inhibitors
(o10mM IC50) according to the manufacturers being: LYPi II (TCPTP, PTP1B
and PEP/LYP), PTPi IV (SHP-2, PTP1B and PTP-e), PTPi XVIII (PTP1B, SHP-1
and YOP), HePTPi (TCPTP, PTP-SL, SHP-2, PTP1B, LYP, VHR, SHP-1, HePTP,
MKP-3 and STEP), DUSP1/6i (DUSP1 and DUSP6) and SHP-1/2i (SHP-1, SHP-2,
PTP1B and HePTP).

Western blot. Purified naı̈ve or memory CD8þ T cells cultured under the
conditions indicated were collected, washed with ice-cold PBS and lysed on ice for
15–30 min in a lysis buffer (20 mM Tris, pH7.5, 150 mM NaCl, 1 mM EDTA, 1 mM
EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM b-glyceropho-
sphate, 1 mM Na3VO4, 1 mM PMSF, 1 mg ml� 1 aprotinin and leupeptin). Cell
lysates were resolved by 4–12% bis–tris SDS–polyacrylamide gel electrophoresis
Gel (Invitrogen), transferred onto nitrocellulose membrane (Invitrogen), blocked
with 5% dry non-fat milk in Tris buffered saline (pH 7.4) containing 0.1%
Tween-20, and probed with the following Abs to (mAbs were used at 1:1000 and
purchased from Santa Cruz Biotechnology and Cell Signaling Technology unless
otherwise described): phospho (p)-LCK (Tyr394; rabbit polyclonal), LCK (3A5),
p-ZAP70 (Tyr319; 65E4), ZAP70 (IE7.2), p-LAT (Tyr191; E225; Abcam), LAT
(FL-233; rabbit polyclonal), SLP76 (H-300; rabbit polyclonal), p-PLCg (Tyr783;
rabbit polyclonal), PLCg1 (530; rabbit polyclonal), PKCy (C-18; rabbit polyclonal;
1:500), p-ERK1/2 (Thr202/Tyr204; D13.14.4E), ERK1/2 (H-72; rabbit polyclonal),
p-AKT (Ser473; 193H12), p-p38 (Thr180/Tyr182; D3F9), p-JNK (Thr183/Tyr185;
81E11), p-STAT5A/B (Tyr694/699; A11W; Millipore; 1:2,000), STAT5 (3H7),
SHP-1 (C14H6), SHP-2 (D50F2), TCPTP (PTPN2; E-11 and M-115), LYP
(PTPN22; G-3), Histone H3 (9715S; rabbit polyclonal) and b-actin (AC-15, AC-74;
Sigma-Aldrich; 1:10,000). For detecting p-CD3z (p21 form), a relevant membrane
section spanning a region between 14 and 38 kDa based on a protein size marker
was cut and probed with Ab to p-Tyrosine (4G10; Millipore) and confirmed by
stripping and reprobing with mAb to CD3z (1z3A1; BD Biosciences; 1:500).
Immunoreactivity was detected by ECL detection system according to the
manufacturer’s instructions (GE Healthcare). Densitometry on the scanned blots
was performed by histogram analysis using Photoshop CS3 Imaging Software
(Adobe) for quantification of the band intensity and normalized to the control.
Uncropped images of immunoblots are shown in Supplementary Fig. 9.

CD45 immunoprecipitation and in vitro CD45 PTP assay. Equal numbers of
FACS-purified B6 CD8þ T-cell subsets (CD44lo naı̈ve CD5lo and CD5hi cells and
CD44hi MP cells) were washed with ice-cold PBS and lysed on ice for 15–30 min in
Pierce IP Lysis Buffer (Thermo Fisher Scientific) containing protease inhibitors.
Cell lysates were incubated overnight with mAbs to CD45 (I3/2.3, 3H1379 or
30-F11; all from Santa Cruz Biotechnology; 1:500–1:1,000) and, as a control, mAb
to CD5 (53-7.3; eBioscience; 1:250) and isotype mAb (rat IgG2b; eBioscience;
1:500), followed by Protein A/G PLUS-Agarose (Santa Cruz Biotechnology). For
detecting phosphatase activity in vitro, the immunoprecipitated complexes were
washed twice with IP lysis buffer and then twice with a PTP assay buffer (25 mM
HEPES, 50 mM NaCl, 0.05% Tween 20, 1 mM dithiothreitol, pH 7.0) and were
added with 50–100 ml PTP assay buffer. An indicated series of dilution of the
immunoprecipitates was prepared and then incubated with 20 mM 6,8-difluoro-4-
methylumbelliferyl phosphate (DiFMUP; Invitrogen) with or without various PTP
inhibitors (5–20 mM) at 30 �C in a 96-well microtiter plate. Fluorescence (emission
450 nm and excitation 360 nm by the hydrolysed DiFMU) was measured from 30
to 60 min after reaction in a fluorescence-based microplate reader (Tecan Infinite
F200 Pro). Background fluorescence of PTP assay buffer only was subtracted for
each well.

Confocal staining. For CD45 confocal staining, FACS-purified CD44lo naı̈ve
CD5lo and CD5hi cells and CD44hi MP CD8þ T cells were placed at 0.5–1� 105

cells on a poly-L-lysine-coated glass slide (Sigma-Aldrich), and allowed to adhere to
the slide for 5 min at room temperature (RT). The cells were co-stained for 20 min
on ice with fluorescein isothiocyanate-conjugated CTB (Sigma-Aldrich; 1:200) and
Alexa Fluor 647-conjugated anti-CD45 (30-F11; Biolegend; 1:200) in PBS, washed
twice with PBS and then fixed for 20 min with cold 4% paraformaldehyde in PBS
without permeabilization. For confocal staining of LCK and ZAP-70, purified naı̈ve
CD8þ T cells were washed, fixed for 20 min with cold 4% paraformaldehyde in
PBS, permeabilized for 5 min with 0.1% Triton X-100 in PBS and then blocked for
15 min with 5% normal goat serum in PBS containing 1% BSA. Cells were stained
for 45 min with either unconjugated (for p-LCK) or Alexa Fluor 488-conjugated
(for p-ZAP-70) primary Abs to p-Y394-LCK (Santa Cruz Biotechnology; 1:200),
p-Y505-LCK (Santa Cruz Biotechnology; 1:200), and p-Y319-ZAP-70 (BD
Bioscience; 1:200), washed, blocked, and then re-incubated for 30 min with Alexa
Fluor 488-conjugated anti-rabbit (for p-Y394-LCK) or Alexa Fluor 647-conjugated
anti-mouse (for p-Y505-LCK) IgG (Invitrogen; 1:200). The final slides were washed
with PBS and mounted in ProLong Gold Antifade Reagent (Invitrogen) and
analysed using a Zeiss LSM 700 laser scanning confocal microscope (Carl Zeiss) for
acquiring fluorescence images.
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Ca2þ mobilization. Unsorted LN cells or FACS-purified CD8þ T-cell subsets
from B6 mice (n¼ 3) were labelled with 5 mM Indo-1 (Invitrogen) for 45 min at
37 �C followed by two washes and continued incubation at RT for staining with
fluorochrome-conjugated Abs to CD8, CD5 and CD44 for additional 10 min. After
a washing step, cell samples were prewarmed for 5 min at 37 �C and then run on a
LSRII for 4–5 min before adding a stimulus to set baseline Ca2þ levels. Sample
analysis was immediately continued by TCR stimulation with addition of S-aCD3
mAb (5 mg ml� 1) for 3–4 min, either untreated or followed by adding cross-linking
anti-hamster IgG (G94-56; BD Biosciences; 5 mg ml� 1) for additional 2–3 min; for
the latter cross-linking, incubation continued by adding ionomycin (1 mg ml� 1) as
a positive control for measuring saturated Ca2þ levels. Data are presented as the
ratio of 398 nm (Indo-1 bound to Ca2þ )/482 nm (unbound Ca2þ ) in the indicated
subsets of CD8þ T cells.

Intracellular staining for flow cytometry. For intracellular cytokine staining
(ICS), cells stimulated with indicated stimuli in the presence of GolgiStop (BD
Biosciences) were stained for cell-surface markers, fixed and permeabilized using
Cytofix/Cytoperm buffer (BD Biosciences) and then stained with fluorochrome-
conjugated Abs to IFN-g (XMG1.2; eBioscience; 1:300) and TNF-a (MP6-XT22;
BD Biosciences; 1:300) using Perm/Wash buffer (BD Biosciences). The same ICS
protocol was used for analysing Bcl-2 and CD107a expression with fluorochrome-
conjugated Abs to Bcl-2 (BCL/10C4; Biolegend; 1:200) and CD107a (1D4B;
eBioscience; 1:300). Intracellular staining for T-bet and Eomes expression
was performed with Foxp3 Staining Buffer Set (eBioscience) according to the
manufacturer’s instructions using fluorochrome-conjugated Abs to T-bet (4B10;
1:200) and Eomes (Dan11mag; all from eBioscience; 1:200). For intracellular
staining for p-ERK, B6 SP cells treated with indicated stimuli were fixed with 2%
paraformaldehyde at RT for 15 min, followed by permeabilization with ice-cold
90% methanol for 20 min on ice. After a washing step, cells were blocked with PBS
containing 2% FBS and incubated with fluorochrome-conjugated Ab to p-ERK
(Thr202/Tyr204; D13.14.4E; Cell Signaling Technology; 1:100), followed by
repeated washes and continued incubation for 15 min on ice with fluorochrome-
conjugated Abs to cell-surface markers.

Cytokine ELISA. For detection of IL-2 and IFN-g secretion, culture supernatants
from cells incubated with indicated stimuli were collected and analysed by a
standard protocol using a cytokine sandwich ELISA kit for IL-2 and IFN-g
(all from BD Biosciences) according to the manufacturer’s instructions.

CFSE labelling and proliferation. FACS-purified subsets of CD8þ T cells from
mice indicated were labelled with CFSE (2mM) as described previously12 and
cultured for 2–7 days either with high doses of cytokines, IL-2 (0.1–1 mg ml� 1) and
IL-7 (1 mg ml� 1), or with Cx-aCD3 mAb (0.1–10 mg ml� 1); in some experiments
with the latter TCR stimulation, a mixture of mAbs to IL-2 (JES6-1A12) and
CD122 (TM-b1; 10mg ml� 1; all from BD Biosciences) were added to block IL-2
signalling. Cells were collected and CFSE dilutions were analysed by flow
cytometry. Alternatively, proliferative responses of the indicated TCR-stimulated
CD8þ T cells were analysed by adding [3H]thymidine (1 mCi per well) and after a
6–12 h pulse, cells were collected and measured by a b-counter (TopCount
Microplate Scintillation Counter; PerkinElmer).

miRNA and mRNA analysis by qRT-PCR. RNA from FACS-purified CD44lo

naı̈ve CD5lo and CD5hi or CD44hi MP CD8þ T cells (B2–3� 106 and
B0.5–1� 106 cells for naı̈ve and memory subsets, respectively, isolated from
pooled B6 LN cells; n¼ 2–3 mice) was extracted by using the TRIzol reagent
(Life Technologies), followed by column purification using the RNeasy Mini kit
(Qiagen) and reversely transcribed with the QuantiTect Reverse Transcription kit
(Qiagen) or SuperScript III Reverse transcription (Invitrogen) according to the
manufacturers’ instructions. TaqMan Gene Expression Assays in combination with
the Universal PCR Master Mix and the ABI-Prism 7,900 system (all from Applied
Biosystems) were used for quantification of the following housekeeping genes and
the genes of interest (all ordered from inventory primers provided by Applied
Biosystems): Dusp5 (Mm01266106_m1), Dusp6 (Mm00518185_m1), Ptpn6
(Mm00469153_m1), Ptpn11 (Mm00448434_m1), Ptpn22 (Mm00501246_m1),
Gapdh (Mm99999915_g1) and Hprt (Mm01545399_m1). Target gene quantifica-
tion was normalized to housekeeping gene expression and the data were calculated
as the CT of target genes normalized to the CT of housekeeping gene of each
sample. Analyses for miRNA-181a were performed by TaqMan real-time qRT-PCR
assay kit (has-miR-181a; Applied Biosystems) on the ABI-Prism 7900 system
(Applied Biosystems) and based on the manufacturer’s technical recommendation,
snoRNA202 was used as the internal control. In each set, the test sample was
expressed as relative expression.

Statistics. An unpaired two-tailed Student’s t-test was performed to test statistical
significance. Differences in mean values were considered statistically significant at a
P value of o0.05.

Data availability. All data which support the findings of this study are available
within the article (as figure data or Supplementary Information Files) and from the
corresponding author upon request.

References
1. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).
2. Sprent, J. T and B memory cells. Cell 76, 315–322 (1994).
3. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of

T cells. Annu. Rev. Immunol. 21, 139–176 (2003).
4. Sprent, J., Cho, J. H., Boyman, O. & Surh, C. D. T cell homeostasis. Immunol.

Cell Biol. 86, 312–319 (2008).
5. Takada, K. & Jameson, S. C. Naive T cell homeostasis: from awareness of space

to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).
6. Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in

the selection and development of T cells in the thymus. Proc. Natl Acad. Sci.
USA 93, 14747–14752 (1996).

7. Grossman, Z. & Paul, W. E. Dynamic tuning of lymphocytes: physiological
basis, mechanisms, and function. Annu. Rev. Immunol. 33, 677–713 (2015).

8. Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and
thymocyte selection. Science 269, 535–537 (1995).

9. Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and
selection. Cell 129, 147–161 (2007).

10. Mandl, J. N., Monteiro, J. P., Vrisekoop, N. & Germain, R. N. T cell-positive
selection uses self-ligand binding strength to optimize repertoire recognition of
foreign antigens. Immunity 38, 263–274 (2013).

11. Persaud, S. P., Parker, C. R., Lo, W. L., Weber, K. S. & Allen, P. M. Intrinsic
CD4þ T cell sensitivity and response to a pathogen are set and sustained by
avidity for thymic and peripheral complexes of self peptide and MHC. Nat.
Immunol. 15, 266–274 (2014).

12. Cho, J. H., Kim, H. O., Surh, C. D. & Sprent, J. T cell receptor-dependent
regulation of lipid rafts controls naive CD8þ T cell homeostasis. Immunity 32,
214–226 (2010).

13. Fulton, R. B. et al. The TCR’s sensitivity to self peptide-MHC dictates the ability
of naive CD8(þ ) T cells to respond to foreign antigens. Nat. Immunol. 16,
107–117 (2015).

14. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class
I-deficient mice. Science 286, 1377–1381 (1999).

15. Cho, B. K., Wang, C., Sugawa, S., Eisen, H. N. & Chen, J. Functional differences
between memory and naive CD8 T cells. Proc. Natl Acad. Sci. USA 96,
2976–2981 (1999).

16. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B.
Response of naive and memory CD8þ T cells to antigen stimulation in vivo.
Nat. Immunol. 1, 47–53 (2000).

17. DiSpirito, J. R. & Shen, H. Quick to remember, slow to forget: rapid recall
responses of memory CD8þ T cells. Cell Res. 20, 13–23 (2010).

18. Kersh, E. N. et al. TCR signal transduction in antigen-specific memory CD8 T
cells. J. Immunol. 170, 5455–5463 (2003).

19. Mehlhop-Williams, E. R. & Bevan, M. J. Memory CD8þ T cells exhibit
increased antigen threshold requirements for recall proliferation. J. Exp. Med.
211, 345–356 (2014).

20. Masopust, D., Ha, S. J., Vezys, V. & Ahmed, R. Stimulation history dictates
memory CD8 T cell phenotype: implications for prime-boost vaccination.
J. Immunol. 177, 831–839 (2006).

21. Martin, M. D., Condotta, S. A., Harty, J. T. & Badovinac, V. P. Population
dynamics of naive and memory CD8 T cell responses after antigen stimulations
in vivo. J. Immunol. 188, 1255–1265 (2012).

22. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage
that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110,
14336–14341 (2013).

23. Becker, A. M., DeFord-Watts, L. M., Wuelfing, C. & van Oers, N. S. The
constitutive tyrosine phosphorylation of CD3zeta results from TCR-MHC
interactions that are independent of thymic selection. J. Immunol. 178,
4120–4128 (2007).

24. Winslow, M. M., Neilson, J. R. & Crabtree, G. R. Calcium signalling in
lymphocytes. Curr. Opin. Immunol. 15, 299–307 (2003).

25. Bachmaier, K. et al. Negative regulation of lymphocyte activation and
autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

26. Lorenz, U. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many
levels. Immunol. Rev. 228, 342–359 (2009).

27. Wiede, F., La Gruta, N. L. & Tiganis, T. PTPN2 attenuates T-cell lymphopenia-
induced proliferation. Nat. Commun. 5, 3073 (2014).

28. Salmond, R. J., Brownlie, R. J., Morrison, V. L. & Zamoyska, R. The tyrosine
phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR
signals. Nat. Immunol. 15, 875–883 (2014).

29. Stanford, S. M., Rapini, N. & Bottini, N. Regulation of TCR signalling by
tyrosine phosphatases: from immune homeostasis to autoimmunity.
Immunology 137, 1–19 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13373

14 NATURE COMMUNICATIONS | 7:13373 | DOI: 10.1038/ncomms13373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


30. Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling
thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

31. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor
signal transduction. Immunity 32, 766–777 (2010).

32. McNeill, L. et al. CD45 isoforms in T cell signalling and development.
Immunol. Lett. 92, 125–134 (2004).

33. Panchal, R. G. et al. Reduced expression of CD45 protein-tyrosine phosphatase
provides protection against anthrax pathogenesis. J. Biol. Chem. 284, 12874–
12885 (2009).

34. Bermejo, D. A. et al. Trypanosoma cruzi trans-sialidase initiates a program
independent of the transcription factors RORgammat and Ahr that leads to
IL-17 production by activated B cells. Nat. Immunol. 14, 514–522 (2013).

35. Stanford, S. M. et al. High-throughput screen using a single-cell tyrosine
phosphatase assay reveals biologically active inhibitors of tyrosine phosphatase
CD45. Proc. Natl Acad. Sci. USA 109, 13972–13977 (2012).

36. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic
proliferation of memory phenotype CD8þ cells but are not required for
memory phenotype CD4þ cells. J. Exp. Med. 195, 1523–1532 (2002).

37. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell
response: differential gene expression and its epigenetic regulation. Nat. Rev.
Immunol. 12, 306–315 (2012).

38. Hasegawa, K. et al. PEST domain-enriched tyrosine phosphatase (PEP)
regulation of effector/memory T cells. Science 303, 685–689 (2004).

39. Vang, T. et al. Protein tyrosine phosphatases in autoimmunity. Annu. Rev.
Immunol. 26, 29–55 (2008).

40. Davidson, D., Shi, X., Zhong, M. C., Rhee, I. & Veillette, A. The phosphatase
PTP-PEST promotes secondary T cell responses by dephosphorylating the
protein tyrosine kinase Pyk2. Immunity 33, 167–180 (2010).

41. Wiede, F. et al. T cell protein tyrosine phosphatase attenuates T cell signaling to
maintain tolerance in mice. J. Clin. Investig. 121, 4758–4774 (2011).

42. Zikherman, J. et al. PTPN22 deficiency cooperates with the CD45 E613R allele
to break tolerance on a non-autoimmune background. J. Immunol. 182,
4093–4106 (2009).

43. Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine
phosphatase required for lymphocyte activation and development. Annu. Rev.
Immunol. 12, 85–116 (1994).

44. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45
causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

45. McNeill, L. et al. The differential regulation of Lck kinase phosphorylation sites
by CD45 is critical for T cell receptor signaling responses. Immunity 27,
425–437 (2007).

46. Salmond, R. J., McNeill, L., Holmes, N. & Alexander, D. R. CD4þ T cell
hyper-responsiveness in CD45 transgenic mice is independent of isoform.
Int. Immunol. 20, 819–827 (2008).

47. Tchilian, E. Z. et al. Altered CD45 isoform expression affects lymphocyte
function in CD45 Tg mice. Int. Immunol. 16, 1323–1332 (2004).

48. Zikherman, J., Doan, K., Parameswaran, R., Raschke, W. & Weiss, A.
Quantitative differences in CD45 expression unmask functions for CD45 in
B-cell development, tolerance, and survival. Proc. Natl Acad. Sci. USA 109,
E3–E12 (2012).

49. Saunders, A. E. & Johnson, P. Modulation of immune cell signalling by the
leukocyte common tyrosine phosphatase, CD45. Cell. Signal. 22, 339–348
(2010).

50. Hoyne, G. F. et al. Visualizing the role of Cbl-b in control of islet-reactive CD4
T cells and susceptibility to type 1 diabetes. J. Immunol. 186, 2024–2032 (2011).

51. Tsui, H. W., Siminovitch, K. A., de Souza, L. & Tsui, F. W. Motheaten and
viable motheaten mice have mutations in the haematopoietic cell phosphatase
gene. Nat. Genet. 4, 124–129 (1993).

Acknowledgements
We thank S.M. Stanford and N. Bottini (La Jolla Institute for Allergy and Immunology,
USA) for CD45-specific inhibitors; K. Webster and S. Liu (Garvan Institute, Australia)
for comments and C.E. Teh and A. Enders (Australian National University, Australia) for
CBL-B and SHP-1 mutant mice and F. Wiede and T. Tiganis (Monash University,
Australia) for PTPN2 mutant mice; R. Salomon, D. Snowden and E. Lam (Garvan
Institute) and Haejin Jung (Institute for Basic Science; IBS, Korea) for assistance with cell
sorting by flow cytometry; Garvan Biological Testing Core Facility and POSTECH
Biotech Center (Korea) animal facility for mice breeding and care; T. Faroe (Garvan
Institute) and Academy of Immunology & Microbiology (AIM) administrative team for
administrative assistance; This work was supported by grants from the National Health
and Medical Research Council of Australia (1011388 to J.H.C., and 1016953 and 1078243
to J.S.), and from Korean Ministry of Science, Information/Communication Technology
& Future Planning (IBS-R005-D1 to J.H.C., and C.D.S.).

Author contributions
J.-H.C. and H.-O.K. designed the study and performed all major experiments; Y.-J.J.,
Y.-C.K., G.-W.L. and S.-W.L. helped for some supplemental experiments; C.-H.Y., N.B.,
C.C.G., K.W., C.D.S. and C.K. gave helpful comments and discussion and shared
important experimental materials; J.-H.C., H.-O.K. and J.S. analysed and interpreted data
and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Cho, J.-H. et al. CD45-mediated control of TCR tuning in naı̈ve
and memory CD8þ T cells. Nat. Commun. 7, 13373 doi: 10.1038/ncomms13373 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13373 ARTICLE

NATURE COMMUNICATIONS | 7:13373 | DOI: 10.1038/ncomms13373 | www.nature.com/naturecommunications 15

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	CD45-mediated control of TCR tuning in naïve and memory CD8+ T cells
	Introduction
	Results
	Proliferation versus TCR signalling in naïve CD8+ T-cell subsets
	TCR sensitivity of naïve versus memory CD8+ T cells
	TCR sensitivity of antigen-induced memory CD8+ T cells
	Cause of TCR desensitisation in memory CD8+ T cells
	An important role for CD45
	Influence of CD45 inhibition in basal TCR signalling

	Discussion
	Methods
	Mice
	Reagents
	Antibodies for flow cytometry
	T- and B-cell purification
	Generation of Ag- or HP-induced memory CD8+ T cells
	Measuring TCR sensitivity by CD3 ligation
	TCR and BCR sensitivity with CD45 PTP inhibitor
	Other phosphatase inhibitors
	Western blot
	CD45 immunoprecipitation and in vitro CD45 PTP assay
	Confocal staining
	Ca2+ mobilization
	Intracellular staining for flow cytometry
	Cytokine ELISA
	CFSE labelling and proliferation
	miRNA and mRNA analysis by qRT-PCR
	Statistics
	Data availability

	Additional information
	Acknowledgements
	References




