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SIKs control osteocyte responses to parathyroid
hormone
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Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation

and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist,

requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone

resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of

HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via

phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause

decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK

inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in

cultured osteocytes and following in vivo administration. Once daily treatment with the small

molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore,

a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK

inhibitors may be applied therapeutically to mimic skeletal effects of PTH.
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O
steoporosis is a serious problem in our ageing population,
with fragility fractures costing $25 billion annually1.
Novel treatments are needed to boost bone mass.

Osteocytes, cells buried within bone, orchestrate bone
remodelling by secreting endocrine and paracrine factors2.
Central amongst these are RANKL (encoded by the TNFSF11
gene), the major osteocyte-derived osteoclastogenic cytokine3,4

and an FDA-approved osteoporosis drug target, and sclerostin
(encoded by the SOST gene), an osteocyte-derived WNT pathway
inhibitor that blocks bone formation by osteoblasts5 and current
osteoporosis drug target6.

When given once daily, parathyroid hormone (PTH), is the
only approved osteoporosis treatment agent that stimulates new
bone formation. The proximal signalling events downstream of
Gsa-coupled PTH receptor signalling in bone cells are well-
characterized7, but how cyclic adenosine monophosphate
(cAMP) generation in osteocytes is linked to gene expression
changes remains unknown. SOST and RANKL are well-
established target genes important for the physiological effects
of PTH on osteocytes. Among the mechanisms through which
PTH stimulates new bone formation, down-regulation of SOST
expression in osteocytes plays an important role8–10. PTH also
stimulates bone catabolism, in large part through stimulation of
osteoclastogenesis via inducing RANKL11–14, which may limit its
therapeutic efficacy.

We have previously described a role for the class IIa histone
deacetylase HDAC5 as a negative regulator of MEF2C-driven
SOST expression, both in vitro in Ocy454 osteocytic cells15 and
in vivo16. Class IIa HDACs are uniquely endowed with
N-terminal extensions that allow them to sense and transduce
signalling information17. When phosphorylated, class IIa HDACs
are sequestered in the cytoplasm via binding to 14-3-3 proteins.
When de-phosphorylated, they are able to translocate to the
nucleus to inhibit MEF2-driven gene expression18. Like class IIa
HDACs, cAMP-regulated transcriptional coactivators (CRTC)
proteins shuttle from the cytoplasm to the nucleus where they
function as CREB coactivators19. Both HDAC4/5 and CRTC2 are
known substrates of salt inducible kinases (SIKs)19–22, and SIK3
deficiency in growth plate chondrocytes increases nuclear
HDAC4 and delays MEF2-driven chondrocyte hypertrophy21.

Here, we show that PTH signalling in osteocytes uses both
HDAC5 and the closely related family member HDAC4 to block
MEF2C-driven SOST expression. In addition, PTH-stimulated
RANKL expression requires CRTC2. PTH signalling, via cAMP,
inhibits SIK2 cellular activity in osteocytes. SIK inhibition, both
in vitro and in vivo, achieved via the small molecule YKL-05-093,
is sufficient to mimic many of the effects of PTH, including lower
levels of HDAC4/5/CRTC2 phosphorylation, SOST inhibition
and RANKL stimulation. Strikingly, a major arm of PTH
signalling in osteocytes involves SIK inhibition, as revealed by
RNA-seq analysis of PTH- versus YKL-05-093-treated osteocytes.
Finally, we demonstrate that YKL-05-099 (ref. 23), an analogue of
YKL-05-093 with properties making it suitable for targeting SIKs
in vivo, is able to boost osteoblast numbers, bone formation,
and bone mass in mice. In summary, our results demonstrate that
a PTH receptor/cAMP/SIK/class IIa HDAC/CRTC axis has a
crucial role in osteocyte biology.

Results
Class IIa HDACs control bone mass through SOST. Having
previously demonstrated that HDAC5 blocks MEF2C-driven
SOST expression in osteocytes16, we sought to determine whether
HDAC5 and SOST interact in vivo to control bone mass. Two
complementary approaches demonstrated that this was the case.
First, compound heterozygosity of HDAC5 and SOST rescued the
cortical and trabecular high bone mass phenotype of SOSTþ /�

mice (Supplementary Fig. 1A–C). Second, anti-sclerostin
antibody treatment rescued the trabecular osteopenia present in
HDAC5� /� animals (Supplementary Fig. 1D), which have high
levels of SOST expression16.

With evidence that HDAC5 control of SOST is physiologically
important, we asked if other class IIa HDACs function in
osteocytes. We16 and others24 have previously reported that
HDAC5� /� mice display mild trabecular osteopenia. For these
studies, we extended our analyses to include the closely related
family member HDAC4 for two reasons. First, endogenous
MEF2C immunoprecipitates from Ocy454 cells contained
HDAC4 in addition to HDAC5 (Fig. 1a and ref. 16). Second,
while no obvious skeletal phenotype was observed when HDAC4
was deleted from osteocytes using DMP1-Cre25, compound
deletion of both HDAC4 and HDAC5 led to a skeletal phenotype
not observed in either single mutant strain, characterized by
severe trabecular osteopenia (Supplementary Table 1 and
Supplementary Fig. 1F for results of static and dynamic
histomorphometry results), increased osteocyte density
(Fig. 1b,c), disorganized, ‘woven’ cortical bone (Fig. 1d), failure
to respond to sclerostin antibody (Supplementary Fig. 1D), and
reduced endocortical bone formation (Supplementary Fig. 1E).
As we previously reported, mice lacking HDAC5 alone show mild
cancellous osteopenia and reduced markers of bone formation by
histomorphometry16.

PTH signals through HDAC4 and HDAC5 to suppress SOST.
We next asked whether PTH, a known suppressor of SOST
expression8, worked through HDAC4, HDAC5, or both. PTH
treatment of Ocy454 cells caused translocation from the cytosol
to the nucleus of both HDAC4 and HDAC5 (Fig. 2a). When
phosphorylated, class IIa HDACs are predominantly cytoplasmic
through retention by 14-3-3 proteins17. When dephosphorylated,
class IIa HDACs translocate to the nucleus where they potently
inhibit MEF2-driven gene expression in muscle26,27. In neurons,
HDAC5 nuclear import is additionally inhibited by CDK5-
mediated phosphorylation at S279 (ref. 28). PTH signalling
reduced phosphorylation of HDAC4 at S246/S632 and, to a lesser
extent, HDAC5 at S259/S279 (Fig. 2b, Supplementary Fig. 2A).
Others have over-expressed HDAC5 in a rat osteosarcoma cell
line to demonstrate that mutation of these serines to alanine led
to PTH-independent nuclear import29. PTH-induced loss of
phosphorylation and nuclear translocation of HDAC4/5 requires
cAMP signalling, as evidenced by the fact that these events did
not occur in cells lacking Gsa via CRISPR/Cas9-mediated
genome editing (Fig. 2c,d, and Supplementary Fig. 2B–E). As
previously described15,30,31, Gsa deficiency significantly increases
sclerostin production by osteocytes. However, reducing MEF2C
levels via shRNA or by over-expressing a constitutively nuclear
super-repressor form of HDAC5 rescued this phenotype
(Supplementary Fig. 2F–I), consistent with the model that Gsa
deficiency increases sclerostin production via a gain-of-function
MEF2C phenotype.

To determine the roles of HDAC4/5 in mediating PTH actions,
we generated osteocytes lacking HDAC4 (via CRISPR/
Cas9-mediated deletion, Supplementary Fig. 3A–E), HDAC5
(via lentiviral-mediated shRNA) or both (Fig. 2e). While cells
lacking HDAC4 or HDAC5 alone showed normal suppression of
SOST expression in response to PTH, deletion of both HDAC4
and HDAC5 abolished PTH-induced SOST down-regulation
(Fig. 2f, left). Importantly, HDAC4/5-deficient cells showed
preserved PTH-induced RANKL up-regulation (Fig. 2f, right).
Chromatin IP revealed that PTH signalling reduces MEF2C
binding to the þ 45 kB downstream SOST enhancer (Fig. 2g); this
occurs rapidly, at time points before observed reductions in
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MEF2C mRNA levels (Supplementary Fig. 3F and refs 32,33).
HDAC4/5-deficient cells showed increased MEF2C binding at
baseline, and failed to reduce MEF2C SOST enhancer occupancy
in response to PTH (Fig. 2h).

To determine the relevance of HDAC4/5 in mediating PTH
actions in vivo, HDAC4/5-deficient mice were treated with PTH,
and acute effects were measured 90 min later. While bone RANKL
levels increased comparably across all four genotypes (WT,
HDAC5� /� , HDAC4f/f;DMP1-Cre, and HDAC4f/f;HDAC5� /� ;
DMP1-Cre), HDAC4/5-deficient mice were unique in that SOST
levels failed to decrease following PTH treatment (Fig. 3a,b). At
the protein level, PTH administration significantly decreased the
numbers of sclerostin-immunoreactive cortical osteocytes in all
genotypes tested except in HDAC4/5-deficient animals (Fig. 3c,d).
Taken together, these results indicate that HDAC4 and HDAC5
are downstream of PTH receptor signalling, and are required for
PTH-mediated SOST suppression, both in vitro and in vivo.

While SOST is a well-studied PTH target genes, it represents a
small portion of the transcriptome regulated by parathyroid
hormone (see below). Underscoring this point, once daily

intermittent PTH treatment leads to comparable gains in
trabecular bone density in mice lacking HDAC4 in osteocytes,
HDAC5 or both (Supplementary Fig. 4A). Therefore, although
class II HDACs are required for acute PTH-induced changes in
SOST expression, other signalling arms and target genes down-
stream of the PTH receptor must exist that are important for the
pharmacologic effects of this hormone.

SIK2 is inhibited by PTH and required for PTH signalling.
We next addressed the signalling mechanisms used between
activation of the PTH receptor and decreased phosphorylation of
HDAC4/5. In chondrocytes in vitro, PTHrP drives HDAC4 into
the nucleus via PP2A-mediated dephosphorylation, which can be
blocked by okadaic acid34. Surprisingly, okadaic acid did not
block PTH-mediated decreased HDAC4/5 phosphorylation or
SOST suppression in Ocy454 cells (Supplementary Fig. 4B,C).
Similarly, PTH-induced decreases in HDAC4/5 phosphorylation
and SOST suppression were intact when PP2A catalytic subunit
levels were reduced via shRNA (Supplementary Fig. 4D,E).
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Figure 1 | HDAC4 and HDAC5 control osteocyte biology in vivo. (a) Endogenous MEF2C was immunoprecipitated from Ocy454 cells, followed by

immunoblotting for the indicated proteins. Data shown are representative of n¼ 3 independent experiments. (b) Osteocyte density in cortical bone 3 mm

below the growth plate. 4–5, 8 week old male mice per genotype was analysed, *indicates Po0.01 versus WT by student’s unpaired two tailed t-test.

(c) Representative Hþ E section demonstrating increased osteocyte density and disorganized cortical bone in DKO (HDAC4f/f; HDAC5� /� ;DMP1-Cre)

mice. Scale bar, 40 mm. (d) Sections were stained with Sirius Red and analysed under polarized light to view collagen fibre organization. Disorganized

collagen fibers are only seen in DKO sections. Scale bar, 40mm. Error bars indicate s.e.m for all figures.
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Figure 2 | Class IIa HDACs are required for PTH-induced SOST suppression in vitro. (a) Ocy454 cells were transfected with GFP-HDAC5 and then

treated with PTH (50 nM) for the indicated times. Cytosolic (c) and nuclear (n) lysates were prepared and immunoblotted as indicated. (b) Ocy454 cells

were treated with PTH (50 nM) for 30 min. Whole cell lysates were prepared and immunoblotted as indicated. Similar results were observed in four

independent experiments. (c) Ocy454 cells with (WT, clone 17) and without (Null, clone 8) Gsa were treated with PTH (50 nM for 30 min) and analysed

as in (a). (d) Ocy454 cells with (WT) and without (Null) Gsa were treated with either PTH (50 nM) or forskolin (5mg ml� 1) for 30 min and analysed

as in b. (e) Ocy454 cells were exposed to the indicated combinations of HDAC4-targeting sgRNAs (with Cas9) and HDAC5 shRNA-expressing lentiviruses,

and whole cell lysates were analysed by immunoblotting as indicated. (f) WT, HDAC5 shRNA, HDAC4 KO and DKO Ocy454 cells were treated with PTH
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(g,h) MEF2C chromatin immunoprecipitation was performed, and enrichment for the þ45 kB enhancer determined (relative to control IgG ChIP).

*indicates Po0.05 comparing fold enrichment of PTH versus vehicle by student’s unpaired two tailed t-test.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13176

4 NATURE COMMUNICATIONS | 7:13176 | DOI: 10.1038/ncomms13176 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Okadaic acid and PP2A shRNA efficacy was confirmed in these
experiments based on observed increases in HDAC4 S246
phosphorylation (Supplementary Fig. 4B,D). Taken together,

these results suggest that, unlike in chondrocytes, in osteocytes
PTH-stimulated decreased phosphorylation of HDAC4/5 is not
mediated by activation of PP2A.
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To explore candidate kinases whose activity might mediate the
actions of PTH on HDAC4/5, we examined salt inducible kinases
(SIKs), AMPK family members reported to function as class IIa
HDAC N-terminal kinases20,35. Subcellular fractionation
experiments revealed that both SIK2 and SIK3 proteins are
predominantly cytoplasmic in osteocytes (Supplementary
Figure 4F). Combined silencing of both SIK2 and SIK3 in
Ocy454 cells significantly decreased HDAC4/5 N-terminal
phosphorylation (Fig. 4a).

cAMP signalling in adipocytes and hepatocytes inhibits SIK2
activity via protein kinase A (PKA)-mediated phosphorylation,
which in turn sequesters SIK2 from its substrates36–38. PTH
signalling in osteocytes triggered SIK2 phosphorylation at S343,
S358 and T484 (Fig. 4b). PKA-mediated SIK3 phosphorylation
was not triggered by PTH signalling (Fig. 4b). Notably,
PTH-stimulated SIK2 S358 phosphorylation occurred rapidly,
faster than the fall in HDAC4/5 phosphorylation levels (Fig. 4c).
Importantly, SIK2-silenced cells showed normal up-regulation of
the PTH target gene CITED1 (ref. 39) (Fig. 4d). In contrast, PTH-
induced decreases in HDAC4/5 phosphorylation (Fig. 4e) and
SOST suppression (Fig. 4f) did not occur in SIK2-silenced cells.
Interestingly, PTH-induced RANKL upregulation, an HDAC4/5-
independent phenomenon (Figs 2f and 3a) also did not occur in
SIK2-deficient osteocytes (Fig. 4g), suggesting that another SIK
substrate is involved in PTH-mediated RANKL gene induction.
SIK3-deficient cells showed normal PTH responses (Fig. 4d,f,g),
as predicted by the fact that this protein is not phosphorylated in
response to PTH signalling. cAMP responses to PTH were
blunted in SIK2-silenced Ocy454 cells but were clearly present at
PTH levels above 4 nM (Supplementary Fig. 4G). Nevertheless,
this effect on cAMP levels in response to PTH is unlikely to
explain the effects of SIK2 silencing. Forskolin-induced cAMP
up-regulation was normal in SIK2-deficient cells, yet this agent
failed to regulate SOST or RANKL expression in the absence of
SIK2 (Fig. 4h).

To determine the relevance of SIK2 in mediating PTH actions
in vivo, mice lacking SIK2 in DMP1-expressing cells (including
osteocytes) were treated with PTH, and acute effects were
measured in bone 120 min later. Figure 4i shows that DMP1-Cre
deletion of SIK2 led to a significant reduction in SIK2, but not
PTH receptor, mRNA levels in bone. Similar to the results in
Ocy454 cells, PTH-induced CITED1 up-regulation was preserved
in SIK2OcyKO mice (Fig. 4j). However, PTH-induced SOST and
RANKL gene regulation did not occur in the absence of SIK2
(Fig. 4k).

RANKL is a known PTH target gene; previous studies have
suggested an important role for CREB, through binding to an
enhancer 75 kB upstream of the transcription start site12–14,40,41.
While CREB itself is not a known SIK substrate, the CRTC
CREB coactivator proteins are19. All three CRTC proteins are
expressed in osteocytes; therefore, levels of each were
reduced individually using shRNA. Only CRTC2 silencing was
sufficient to block PTH-induced RANKL up-regulation (Fig. 4l).
Supplementary Fig. 4J shows that PTH-induced cAMP generation
was normal in CRTC2-deficient cells. PTH promoted CRTC2
nuclear translocation in a Gsa-dependent manner (Fig. 2c), and
CRTC2 inducibly associated with the � 75 kB ‘D5’ RANKL
enhancer42 following PTH treatment (Fig. 4m). In summary,
these results demonstrate that two key SIK substrates, HDAC4/5
and CRTC2, play major roles in PTH-mediated regulation of
SOST and RANKL expression, respectively.

SIK inhibitors regulate SOST and RANKL expression. Gene
ablation studies in vitro and in vivo suggested that SIK2 is
required for PTH to regulate SOST and RANKL expression, and

that PTH signalling leads to PKA-mediated SIK2 inhibition.
Therefore, we wondered whether acute inhibition of SIK kinase
activity in otherwise normal cells or mice would be sufficient
to mimic these actions of PTH. HG-9-91-01 is a small
molecule kinase inhibitor with demonstrated biologic activity
against SIKs in cultured macrophages, dendritic cells and
hepatocytes37,38,43,44. However, HG-9-91-01 is not SIK-specific
and is not suitable for in vivo use; therefore, we screened for
analogues based on the goals of improved specificity and
pharmacokinetics. These efforts ultimately led to the
identification of YKL-04-114 and its closely related analogue
YKL-05-093 (Fig. 5a). The Kd of YKL-05-093 for SIK2 is 7.1 nM,
and its activity against a panel of 96 recombinant kinases is
shown in Supplementary Table 2 (here SIK refers to SIK1 and
QSK refers to SIK3) and shown graphically in Supplementary
Fig. 5A. YKL-04-114 or YKL-05-093 treatment of Ocy454
cells led to rapid, dose-dependent decreases in HDAC4/5
phosphorylation (Fig. 5b,c), and increased nuclear translocation
of HDAC4 and CRTC2 (Fig. 5d). YKL-04-114 caused rapid and
potent SOST suppression and RANKL up-regulation (Fig. 5e)
without increasing cAMP levels (Supplementary Fig. 5B).
Optimal efficacy at the level of HDAC4/5 phosphorylation
(B1mM, Fig. 5c) and gene expression (B0.5 mM, Fig. 5e)
occurred at comparable doses.

Importantly, treatment with YKL-05-093 did not decrease
HDAC4 S246 phosphorylation or cause SOST suppression in
osteocytes lacking SIK2 and SIK3 (Fig. 5f,g). In addition, PTH
and YKL-05-093-mediated stimulation of RANKL expression
was abrogated in cells lacking CRTC2 (Fig. 5h). So although
YKL-05-093 does target other kinases in vitro, its cellular actions
studied here depend on the presence of SIK2 and SIK3.

On the basis of our model that YKL-05-093 functions as a SIK
inhibitor downstream of PTH-stimulated cAMP generation, one
would predict that the inhibitor would regulate gene expression in
Gsa-deficient osteocytes. Indeed, YKL-05-093 treatment of
Gsa-deficient Ocy454 caused SOST suppression and RANKL
up-regulation with effects similar to forskolin, except, as expected
based on its inability to increase cellular cAMP levels
(Supplementary Fig. 5B), YKL-05-093 did not increase SIK2
S358 phosphorylation (Fig. 5i,j).

Small molecule SIK inhibitors mimic PTH action in vitro. The
ability of YKL-05-093 to mimic the effects of PTH with respect to
SOST and RANKL gene regulation supports the hypothesis that
the actions of YKL-05-093 might mimic the effects of PTH on
many genes. We therefore performed RNA-seq on Ocy454 cells
treated for four hours with vehicle, PTH (1 nM) or YKL-05-093
(0.5 mM) to determine the overlap in global gene regulation by
these two agents. Significantly 446 genes were (42 fold,
FDRo0.05) regulated by PTH, and 257 genes were significantly
regulated by YKL-05-093. Of the 446 PTH-regulated genes, 142
(32%) were co-regulated in the same direction by YKL-05-093
(Fig. 6a,b, Supplementary Table 3 for differentially expressed
genes and Supplementary Dataset 1 for all RNA-seq data).
This significant overlap was not due to random chance
(Supplementary Fig. 6A,B). Gene ontology analysis for the genes
regulated by both PTH and YKL-05-093, is shown in
Supplementary Fig. S6C,D: many of the co-regulated genes fit
into categories of interest such as ‘ossification’ and ‘mesenchyme
development’.

Overall, six clusters of differentially-expressed genes were
identified: those up-regulated by PTH alone (172 genes),
YKL-05-093 alone (56 genes) and both PTH and YKL-05-093
(97 genes), and those down-regulated by PTH alone (132 genes),
YKL-05-093 alone (59 genes) and both PTH and YKL-05-093
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(45 genes). The appropriateness of gene categorization was
assessed for selected genes from each of these six clusters
(FAM69C, ADAMTS1, WNT4, KLHL30, DUSP6 and CD200,
respectively) by Quantitative reverse transcription PCR
(RT-qPCR) from independently-generated samples (Fig. 6c–h).

While YKL-05-093 regulation of many of its target genes not
co-regulated by PTH did occur in cells lacking SIK2 and SIK3
(Supplementary Fig. 6E), regulation of WNT4 and CD200 (genes
co-regulated by both PTH and YKL-05-093) by YKL-05-093 did
not occur in SIK2/3 deficient cells (Fig. 6i,j). In total, 13/19 genes
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measured showed SIK2/3-dependent regulation by YKL-05-093,
while 6/19 genes measured showed regulation by YKL-05-093
independent of the presence of SIK2/3 (Fig. 6i,j, Supplementary
Fig. 6E). Taken together, these results demonstrate that a major
arm of PTH signalling in Ocy454 cells can be mimicked by SIK
inhibition.

YKL-05-093 mimics PTH actions in vivo. While YKL-04-114
and YKL-05-093 had comparable activity in vitro, YKL-05-093
showed improved stability when exposed to murine hepatic
microsomes in vitro (Supplementary Fig. 7). Therefore, mice were
treated with YKL-05-093 and effects on gene expression in bone
were assessed 2 h later. Similar to acute PTH administration
(Fig. 3), intraperitoneal YKL-05-093 administration led to
dose-dependent SOST suppression and RANKL up-regulation in
osteocyte-enriched bone RNA (Fig. 7a,b). This was accompanied
by reductions in sclerostin protein levels measured by
immunohistochemistry (Fig. 7c). Finally, expression of genes
identified by RNA-Seq as co-regulated by PTH and YKL-05-093
in vitro were measured: as shown in Fig. 7d–i, in vivo
20 umol kg� 1 YKL-05-093 treatment leads to significant
regulation of VDR, WNT4, NR4A2, NUAK1, PDGFA and CD200
expression in the directions predicted from the in vitro
experiments. Therefore, acute YKL-05-093 treatment in vitro and
in vivo engages a program of gene expression quite similar to one
used by parathyroid hormone, thus identifying SIK inhibition
as an important mechanism used by PTH to regulate gene
expression in osteocytes.

SIK inhibitors boost bone formation and bone mass in vivo.
Efforts to determine the skeletal effects of prolonged once daily
YKL-05-093 administration were unsuccessful due to toxicity
associated with repeated dosing. Therefore, we turned our
attention to the recently-described and highly-related compound
YKL-05-099 (ref. 23). Developed in parallel efforts to design SIK
inhibitors suitable for in vivo use, YKL-05-099 is well-tolerated
and achieves free serum concentrations above its IC50 for SIK2
(34 nM) for 416 h (ref. 23).

First, in vitro experiments were performed to characterize the
effects of YKL-05-099 in Ocy454 cells. In these experiments,
YKL-05-099 was compared side-by-side with YKL-05-093.
As expected, YKL-05-099 leads to dose-dependent reduction
in HDAC4 S246 phosphorylation (Fig. 8a). Furthermore,
YKL-05-099 treatment causes SOST down-regulation and
RANKL up-regulation in a SIK2/3-dependent manner (Fig. 8b).
Like YKL-05-093, acute intraperitoneal administration of

YKL-05-099 in vivo leads to SOST down-regulation and RANKL
up-regulation (Fig. 8c).

Male mice were then treated with vehicle or YKL-05-099
(6 mg kg� 1) once daily via intraperitoneal injection for 2 weeks.
Bone RNA from these animals revealed that RANKL levels were
increased and there was a trend towards reduced SOST (Fig. 8d).
In addition, genes expressed by osteoblasts (osteocalcin (encoded
by the BGLAP gene) and COL1A1) were significantly increased
by YKL-05-099 treatment, suggesting possible positive effects on
osteoblastic bone anabolism (Fig. 8d). To determine effects
on bone mass and cellular composition/activity, static and
dynamic histomorphometry were performed. Indeed, once
daily YKL-05-099 treatment increased cancellous bone mass
(Fig. 8e) and osteoid surface (Fig. 8f), suggesting accelerated
bone formation. Dynamic histomorphometry revealed that
YKL-05-099 led to increased mineralizing surface, a trend
towards increased matrix apposition rate, and increased bone
formation rate (Fig. 8g,h,i,l). At the cellular level, YKL-05-099
treatment increased osteoblast numbers (Fig. 8j,m) and reduced
osteoclast numbers (Fig. 8k). Other than the observed reduction
in osteoclast numbers (see Discussion), these findings are quite
similar to the effects of once daily PTH treatment.

Discussion
PTH is currently the only approved osteoporosis therapy that
promotes new bone formation. While its effects on target cells in
bone are broad, major target genes in osteocytes responsible for
its ability to increase both bone formation and resorption include
SOST and RANKL, respectively. Here we demonstrate that SIKs
act as gatekeepers to regulate a major arm of PTH signalling in
osteocytes, including (but not limited to) these two important
target genes. Tonic SIK activity leads to constitutive phosphor-
ylation and cytoplasmic localization of HDAC4/5 and CRTC2.
Activation of protein kinase A, as occurs with activation of the
PTH receptor7, leads to multisite phosphorylation on SIK2,
modifications that inhibit its cellular activity36,38. This inhibition
reduces tonic HDAC4/5 and CRTC2 phosphorylation, which in
turn leads to their nuclear localization and action on respective
target genes (Fig. 9). Whether this pathway operates in other
PTH/PTHrP target cells, such as chondrocytes45, renal epithelial
cells46, T lymphocytes47 and adipocytes48 remains to be determined.

HDAC4/5 are required for PTH-stimulated SOST repression
in osteocytes, through effects on MEF2C binding to the
þ 45 kB SOST enhancer. Previous overexpression studies have
suggested that PTH signalling impinges on the upstream SOST
enhancer29,49,50: here we show that HDAC4/5 are required for
this effect using loss of function approaches in vitro and in vivo.

Figure 5 | SIK inhibitors regulate SOST and RANKL expression. (a) Structure of YKL-04-114 (left), YKL-05-093 (middle) and YKL-05-093 Kd

determination curves for SIK2 (right). For the Kd determination curves, the y-axis represents the amount of bound kinase measured by qPCR (see

Methods), and the x-axis represents the corresponding compound concentration in nM. (b) Ocy454 cells were treated with YKL-04-114 (10mM)

for the indicated times, followed by immunoblotting of whole cell lysates as indicated. (c) Ocy454 cells were treated with the indicated concentrations of

YKL-04-114 for 60 min, followed by immunoblotting of whole cell lysates as indicated. (d) Left: Ocy454 cells were treated with vehicle, PTH (50 nM) or

YKL-05-093 (10 mM) for 60 min. Cytosol and nuclear fractions were then generated, followed by immunoblotting as indicated. Right: quantification of

nuclear fraction (defined as nuclear/total) of HDAC4 or CRTC2. * indicates Po0.01 comparing treatment versus vehicle. (e) Top: Ocy454 cells were

treated with the indicated concentrations of YKL-04-114 for 4 h, followed by RT-qPCR. Bottom: Cells were treated with YKL-04-114 (0.5mM) for the

indicated times. * indicates Po0.05 comparing treatment versus vehicle. (f) Cells lacking SIK2, SIK3 or both were treated with YKL-05-093 (10mM for

45 min). Quantification of HDAC4 S246 phosphorylation, as assessed by densitometric analysis of immunoblots, is shown. * indicates Po0.01 comparing

treatment versus vehicle. # indicates Po0.05 for the same comparison. (g) Control and SIK2/3 deficient cells were treated with YKL-05-093 (0.5mM) for

4 h and SOST transcript abundance was measured by RT-qPCR. (h) Control and CRTC2 shRNA cells were treated with PTH (1 nM) or YKL-05-093 (0.5mM)

for 4 h and RANKL transcript abundance was measured by RT-qPCR. (i) Control and Gsa-deficient Ocy454 cells were treated with PTH (1 nM),

YKL-05-093 (0.5mM) or forskolin (5 mg ml� 1) and SOST and RANKL transcript abundance was determined by RT-qPCR. For (h) and (i), * indicates Po0.05

comparing treatment and vehicle. (j) Control and Gsa-deficient Ocy454 cells were treated with PTH (50 nM), YKL-05-093 (10 mM) or forskolin

(5mg ml� 1) for 30 min. Whole cell lysates were generated and immunoblotted as indicated.
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Figure 6 | YKL-05-093 and PTH similarly affect gene expression. (a) Venn diagram showing overlap between differentially-expressed genes (fold chance

42, FDRo0.05) determined by RNA-Seq from Ocy454 cells treated with vehicle, PTH (1 nM) or YKL-05-093 (0.5mM) for 4 h. (b) Heat map showing six

different clusters of differentially expressed genes. Each row corresponds to a single differentially expressed gene. Colour coding is with respect to the

average log2 (fold change) for each gene comparing treatment to vehicle. Genes were ordered by the strength of the significance of the fold change

comparing PTH and vehicle. (c–h) Ocy454 cells were treated with vehicle, PTH (1 nM) and YKL-05-093 (0.5mM) for 4 h, and RT-qPCR was performed for

the indicated gene. As described in the text, FAM69C and KLHL30 are regulated by PTH alone, ADAMTS1 and DUSP6 are regulated by YKL-05-093 alone,

and WNT4 and CD200 are regulated by both PTH and YKL-05-093. (i,j) Control and SIK2/3-deficient cells were treated with vehicle or YKL-05-093

(0.5mM) for 4 h, and WNT4 and CD200 transcript abundance determined by RT-qPCR. For all panels, * indicates Po0.05 comparing vehicle and compound

or PTH treatment by student’s unpaired two tailed t-test.
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At later time points, PTH treatment reduces in MEF2C mRNA
levels32,33,51, in addition to the post-translational effects on DNA
binding observed here earlier (Fig. 2g). Similarly, PTH induces
both the rapid nuclear translocation of HDAC4 and, at later time
points, increases in HDAC4 mRNA (Fig. 6 and ref. 52). It is
interesting that PTH signalling has evolved two complementary
mechanisms to inhibit MEF2C activity: HDAC4/5-mediated

inhibition of binding of MEF2C to target genes and inhibition
of transcription of the MEF2C gene. Since MEF2C autoregulation
is known to occur53, future studies will focus on whether class IIa
HDACs regulate MEF2C-driven expression of MEF2C itself, and
other targets of MEF2C in osteocytes54.

HDAC4/5 ‘DKO’ mice display several phenotypes not present
in either single knockout strain or in mice over-expressing
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sclerostin55 (Supplementary Fig. 1). Notably, sclerostin transgenic
mice do not display woven bone and increased osteocyte density,
and sclerostin antibody did not increase BMD in DKO animals.
Therefore, class IIa HDACs control expression of additional
genes in osteocytes that potently regulate skeletal biology. In
addition, as evident by the fact that HDAC4/5 ‘DKO’ mice show a
preserved bone anabolic effect of intermittent PTH treatment
(Supplementary Fig. 4A), class II HDAC/SOST-independent
pathways that mediate the pharmacologic effects of parathyroid
hormone must exist.

Interesting parallels and distinct differences are noted between
PTH-mediated SOST suppression in osteocytes and PTHrP-
mediated suppression of expression of the Collagen X gene in
growth plate chondrocytes34. While both pathways utilize a class
IIa HDAC/MEF2 mechanism of action, the signalling events
required for HDAC4 nuclear translocation may differ. PTH
signalling in osteocytes involves inhibition of SIK activity, while
in chondrocytes, PTHrP signalling activates the cAMP-dependent
phosphatase PP2A. That being said, a role for SIKs in PTHrP
signalling in chondrocytes cannot be excluded given the fact that
SIK3-deficiency21 appears to phenocopy the effects of PTHrP
overexpression56. Our experiments with okadaic acid and PP2A
shRNA (Supplementary Fig. 4A–D) argue against a major role for
PP2A in mediating PTH signalling in osteocytes. Because the
inhibition of HDAC4/5 phosphorylation in response to PTH
was substantial, any further action of PTH on PP2A or other
phosphatases would be likely to have a modest effect on overall
phosphorylation levels.

PTH signalling to regulate RANKL expression in osteoblasts
and osteocytes has been studied extensively over the past decade.
Many investigators have demonstrated a role for a cAMP/CREB
pathway via the gene’s upstream enhancers13,40,42,57. Here we

show an additional requirement for the presence of a CREB
co-activator, CRTC2, for PTH-induced RANKL gene regulation.
It is of interest that PTH action requires two pathways,
one involving a direct PKA target (CREB) and another that
uses PKA-mediated SIK inhibition. Since SIK inhibition, through
suppression of SOST expression, can also increase bone
formation, one can speculate that this use of the SIK pathway
‘forces’ PTH action to link bone resorption and bone formation.

A recent report has suggested that, in osteoblasts, PTH
signalling promotes proteasomal degradation of HDAC4 that in
turn allows MEF2C-driven activation of the RANKL promoter24.
We do not observe changes in HDAC4/5 levels after PTH
treatment, which may be explained by the differing time courses
and cell types used. We favour a model in which PTH induces
RANKL expression in osteocytes via its � 75 kB enhancer
through SIK-dependent CRTC2 nuclear translocation.

The use of SIK inhibitors uniquely allows us to examine the
acute effects of changes in SIK enzyme activity in cells and mice.
These experiments show that the effects of SIK inhibition are
rapid enough to mediate the effects of PTH on SOST and RANKL
expression. In this way, though the inhibitors are less specific
than gene knockout or shRNA-mediated expression knockdown,
their use complements the data derived from the genetic studies.
While YKL-05-093 and YKL-05-099 do inhibit kinases other than
SIKs when tested in vitro, many of their effects in Ocy454 cells,
including those on SOST and RANKL expression, were not
observed when SIK2/3 proteins were absent.

The role of SIK2 and SIK3 (the predominant SIKs expressed in
osteocytes) in bone biology in vivo remains incompletely
understood. Global SIK2 knockout mice have been shown to
display phenotypes in melanocytes58, neurons after ischaemic
injury59, cardiomyocytes during hypertrophy60 and in lipid
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Figure 9 | Model showing PTH signaling via inhibition of SIK2 in osteocytes. In the absence of PTH signaling, SIK2 tonically phosphorylates its

substrates HDAC4/5 and CRTC2, leading to their cytoplasmic retention via binding to 14-3-3 chaperones. PTH signaling leads to PKA-mediated

phosphorylation of SIK2, which inhibits its cellular activity. This in turn reduces phosphorylation of HDAC4/5 and CRTC2, leading to their

dephosphorylation by an unknown phosphatase (ppase), and subsequent nuclear translocation. Small molecule SIK inhibitors (YKL-05-093 and

YKL-05-099) mimic the effects of PTH by directly blocking SIK2 kinase activity. In the nucleus, HDAC4/5 block MEF2C-driven SOST expression,

while CRTC2 enhances CREB-mediated RANKL gene transcription. PTH-induced reductions in sclerostin contribute to increased bone formation, while

PTH-induced increases in RANKL drive increased bone resorption.
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homoeostasis61. Conditional SIK2 mutant alleles have been
described38,62 to further study the role of this kinase in
hepatocytes and in the pancreas. Global SIK2 knockout mice
have no skeletal phenotype reported to date. Here, we have
deleted SIK2 from DMP1-Cre expressing cells, and have observed
that this gene is required for the acute response of osteocytes to
PTH. A detailed description of the global bone phenotype of the
SIK2OcyKO strain remains to be determined. Global SIK3 deficient
mice display a dramatic growth plate phenotype21 that confounds
study of direct actions of SIK3 in osteocyte biology in vivo.
A conditional SIK3 allele has been reported, and deletion in
chondrocytes confirms the cell-intrinsic role for SIK3 in these
cells63. No studies to date have examined the role of SIK3 in
osteocytes in vivo.

SIK inhibition downstream of cAMP signalling has long
been appreciated to occur36, but the relative contribution of
SIK inhibition to overall changes in gene expression due to
Gsa-coupled GPCR signalling has not previously been explored.
Remarkably, 32% of genes regulated by PTH in osteocytes were
co-regulated by YKL-05-093. While it is likely that many of these
genes (like SOST and RANKL) are regulated in turn by HDAC4/5
and CRTC2, undoubtedly additional SIK2/3 substrates may be
responsible for these widespread effects.

Recently, pterosin B was reported as a small molecule inhibitor
of SIK3 with in vivo activity in a SIK3-dependent murine
osteoarthritis model63. Interestingly, this small molecule leads to
ubiquitin-dependent SIK3 degradation, and therefore acts in a
manner distinct to that of YKL-05-093 and YKL-05-099, which
function as kinase inhibitors23. While SIK2 deficiency was
sufficient to abrogate responses to parathyroid hormone in vitro
and in vivo (Fig. 4), combined SIK2 and SIK3 deficiency was
required to blunt effects of YKL-05-093 and YKL-05-099. This is
consistent with potential redundancy between these two
kinases38, and the fact that both inhibitors potently target SIK3
in addition to SIK2.

In many regards, YKL-05-099 treatment mimics the effects of
once-daily PTH treatment in vivo. However, one notable
exception is present. PTH treatment increases osteoclastic bone
resorption, in part due to PTH-induced RANKL up-regulation12.
Although YKL-05-099 potently increases RANKL levels in bone
(Fig. 8d), osteoclast numbers are actually decreased by this
treatment (Fig. 8j). In addition to targeting SIK2, YKL-05-099
inhibits the tyrosine kinases Src and CSF-1R (ref. 23).
Src deficiency leads to functional osteoclast defects and
osteopetrosis64, and CSF-1R deficiency causes osteoclast-poor
osteopetrosis65. Therefore, combined SIK and Src/CSF-1R
inhibition may lead to the desirable therapeutic combination of
increased bone formation and reduced bone resorption. More
detailed assessment of the long-term safety profile of YKL-05-099
will be required to determine if its profile of kinase inhibition will
be well-tolerated over time.

Recombinant PTH is the only current osteoanabolic therapy
approved for osteoporosis treatment. Our data highlight that
distinct signalling modules exist downstream of PTH receptor
signalling, including a major arm involving SIK inhibition. SIK
inhibition is sufficient to reduce sclerostin levels and to mimic
many of the other effects of PTH in osteocytes at the level of gene
expression. Furthermore, in vivo SIK inhibition with YKL-05-099
boosts osteoblast numbers, osteoblast activity and trabecular bone
mass. Specific inhibitors of SIK action might provide a novel
approach to mimic PTH action to stimulate bone anabolism.

Methods
Animal studies. All animals were housed in the Center for Comparative Medicine
at the Massachusetts General Hospital, and all experiments were approved by the
hospital’s Subcommittee on Research Animal Care. HDAC5-null mice66 and

HDAC4 f/f mice67 were generously provided by Dr Eric Olson (University of Texas
Southwestern Medical Center, Dallas, TX) and were backcrossed to C57B/6 mice
for at least 6 generations. DMP1-Cre mice25 were generously provided by Dr Jian
(Jerry) Feng (Texas A&M University, Baylor College of Dentistry, Dallas, TX).
‘DKO’ HDAC4/5 mice were of the following genotype: HDAC4f/f;HDAC5� /

� ;DMP1-Cre. SIK2 f/f mice were as described38, and were bred to DMP1-Cre
animals to generate SIK2OcyKO mice. ES cells carrying the targeted SOST allele
Sosttm1(KOMP)Vlcg, in which the SOST coding sequence has been replaced by LacZ
and floxed Neo cassette, were obtained from the knockout mouse project (KOMP)
repository. Clone VG10069-BE8 was injected into blastocysts, and the resulting
SOSTþ /� mice were crossed to HDAC5 mutant animals to generate compound
heterozygous mice. In all instances, skeletal phenotypes were evaluated in 8 week-
old sex-matched littermates. For acute effects of PTH on bone gene expression,
animals were treated with PTH (1-34, 300 mg kg� 1, subcutaneous administration)
and then killed 90 min later. For acute effects of YKL-05-093 on bone gene
expression, animals were treated with the indicated doses of compound (dissolved
in PBSþ 25 mM HCl) or solvent via intraperitoneal injections and killed 2 h later.
Experiments with YKL-05-099 were performed in a similar fashion: compound was
dissolved in PBSþ 25 mM HCl and injected IP once daily five times per week for a
total of 10 injections. For in vivo sclerostin antibody treatment, mice were treated
twice weekly with sclerostin antibody (50 mg kg� 1, subcutaneous administration,
generously provided by Dr Michael Ominsky, Amgen) for 6 weeks. Power
calculations were performed based on pilot experiments in which s.d.s and
magnitudes of effect sizes were estimated. For experiments in which mice were
treated with either vehicle or PTH (or YKL-05-093), mice were assigned to
alternating treatment groups in consecutive order.

Antibodies and compounds. Antibodies against phospho-HDAC4/5/7 S246/259/
155 (3443), phospho-HDAC4 S632 (3424), MEF2C (5030), tubulin (2146),
phospho-PKA substrate (9624) and PP2Acs (2259) were purchased from Cell
Signaling Technology (Danvers, MA). HDAC4 (ab 12172) and GFP (ab6556)
antibodies were from Abcam (Cambridge, MA). FLAG antibody (F1804) was from
Sigma (St. Louis, MO). CRTC2 (ST1099) and SP1 (07-645) antibodies were from
EMD Millipore (Darmstadt, Germany). Gs,alpha antibody (C-18) was from Santa
Cruz Biotechnology (Santa Cruz, CA). Phospho-HDAC5 S279 (ref. 28) antibody
was a generous gift from Dr Chris Cowan (McLean Hospital, Belmont, MA).
Antibodies recognizing phosphorylated and total forms of SIK2 and SIK3 were
as describedin refs 37,38. The phospho-SIK3 (T469) antibody was generated by
YenZym Antibodies by immunizing rabbits with mouse SIK3 peptide (Res 463–476
of mouse SIK3 (www.kinase.com): *CLSMRRH-pT-VGVADPR, a terminal
cysteine (*C) was added to the peptide sequence to allow peptide conjugation to
carrier proteins and ‘p’denotes the phosphorylated residue). All antibodies were
used at 1:1,000 dilution for immunoblotting. For sclerostin immunohistochemistry,
biotinylated anti-sclerostin antibody (BAF1589) was purchased from RþD
(Minneapolis, MN). Synthetic human PTH (refs 1–34) was synthesized by
Dr Ashok Khatri (peptide/protein core facility, MGH). Forskolin (F6886),
staurosporine (S5921) and okadaic acid (O113) were from Sigma. Oligonucleotides
were synthesized by the DNA synthesis group of the CCIB DNA Core Facility at
MGH (Boston, MA).

Cell culture. For all experiments, a single cell subclone of Ocy454 cells15,16 was
used. Cells were passages in alpha-MEM supplemented with 10% heat-inactivated
fetal bovine serum and 1% antibiotics (penicillin/streptomycin, Fungizone) at 33 �C
with 5% CO2. Cells were plated at 50,000 cells ml� 1 and allowed to reach
confluency at 33 �C (typically in 2–3 days). At this point, cells were transferred to
37 �C for subsequent analysis. For immunoblotting, cells were always analysed after
culture at 37 �C for 7 days. For gene expression analysis, cells were analysed after
culture at 37 �C for 14 days. Mycoplasma contamination was ruled out by PCR.
Cells were routinely assayed for SOST expression at 37 �C and examined for
osteocytic morphology.

shRNA infections and CRISPR/Cas9-mediated gene deletion. See
Supplementary Table 4 for all shRNA and sgRNA targeting sequences used. For
shRNA, lentiviruses were produced in 293T cells in a pLKO.1-puro (Addgene,
plasmid 8453) backbone. Viral packaging was performed in 293T cells using
standard protocols (http://www.broadinstitute.org/rnai/public/resources/protocols).
Briefly, 293T cells were plated at 2.2� 105 ml� 1 and transfected the following day
with shRNA-expressing plasmid along with psPAX2 (Addgene plasmid 12260) and
MD2.G (Addgene plasmid 12259) using Fugene-HD. Medium was changed the
next day, and collected 48 h later. For experiments with SIK2/SIK3 double
knockdown, one shRNA was transferred into a blasticidin resistance-conferring
backbone (Addgene, plasmid 26655). Cells were exposed to lentiviral
particles (MOI¼ 1) overnight at 33 �C in the presence of polybrene (5mg ml� 1).
Media was then changed and puromycin (2 mg ml� 1) and/or blasticidin
(4 mg ml� 1) was added. Cells were maintained in selection medium throughout the
duration of the experiment. HDAC5 S/A complementary DNA (cDNA) was
introduced via lentivirus as described in ref. 16. Briefly, control and Gsa-
knockdown cells were infected with lentiviral particles expressing GFP and/or
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HDAC5 S249/498A. After 24 h, cells were selected with hygromycin (100 mg ml� 1)
and used for subsequent experiments.

For sgRNA experiments, first Ocy454 cells were stably transduced with a
hygromycin resistance-conferring Cas9-expressing lentivirus to ensure no effects
on sclerostin secretion. Sclerostin ELISAs were performed exactly as described in
ref. 16. For subsequent experiments, sgRNA sequences were subcloned into PX458
(a gift from Dr Feng Zhang, Addgene plasmid 48138 (ref. 68)), a plasmid that
co-expressed sgRNA, Cas9 and eGFP. Ocy454 cells were transfected with this
plasmid using Fugene HD (Promega, Madison, WI) (1 mg plasmid per well of a six
well plate). 48 h later, eGFPhi cells were recovered by FACS-based sorting and
plated in 96 well plates at 1 cell per well. Media was changed once weekly, and
3 weeks later colonies were identified by visual inspection. Colonies were then
expanded and analysed for loss of target protein expression by immunoblotting.
For HDAC4 and Gs,a targeting experiments, at least three independent clones
(deriving from two independent sgRNA sequences) were analysed and showed
similar results. Allele-specific sequencing of mutant clones was performed by
amplifying the genomic region of interest surrounding the targeted site by PCR.
PCR products were then TOPO-TA cloned (ThermoFisher), and multiple bacterial
colonies sequenced using T7 sequencing primer.

Real-time quantitative PCR. Total RNA was extracted from cultured cells using
RNeasy (Qiagen, Venlo, Netherlands) following the manufacturer’s instructions.
For long bone RNA isolation, mice were killed and both femurs were rapidly
dissected on ice. Soft tissue was removed and epiphyses cut. Bone marrow cells
were then removed by serial flushing with ice-cold PBS. TRIzol (Life Technologies)
was added and sampled were frozen at � 80 �C and then homogenized. RNA was
then extracted per the manufacturer’s instructions, and further purified on RNeasy
microcolumns before cDNA synthesis. RNA with a A260/280 ratio o1.7 was not
used for downstream analysis. For cDNA synthesis, 1 mg RNA was used in
synthesis reactions according to the instructions of the manufacturer (Primescript
RT, Takara). SYBR Green-based quantitative PCR (qPCR) detection was
performed using FastStart Universal SYBR Green (Roche, Basel, Switzerland) on a
StepOne Plus (Applied Biosystems, Carlsbad, CA) thermocycler. All PCR primer
sequences are listed in Supplementary Table 4.

Immunoprecipitation and immunoblotting. Whole cell lysates were prepared
using TNT buffer (20 mM Tris–HCl pH 8, 200 mM NaCl, 0.5% Triton X-100
supplemented with 1 mM DTT, 1 mM NaF and protease inhibitors (Pierce,
catalogue #88266). This lysis buffer was used for all experiments except those in
which SIK2 and SIK3 phosphorylation was measured using phospho-specific
antibodies: for those experiments, cells were lysed in buffer containing 50 mM
Tris–HCl pH 7.5, 270 mM sucrose, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 1 mM
DTT and protease inhibitors (Sigma, P8340). MEF2C (ref. 16) and SIK3
(refs 37,38) immunoprecipitations were performed as described. Briefly, lysates
were precleared with protein A/G, then 0.5 mg total protein incubated with
1 mg antibody overnight at 4 �C. The next morning, immune complexes were
precipitated with protein A/G agarose, washed three times in ice-cold lysis buffer,
and precipitated proteins eluted by boiling in SDS-sample buffer at 95 �C for 5 min.
Subcellular fractionation was performed using a commercially-available kit
(Thermo Scientific, product number 78840) following the manufacturer’s
instructions. Lysates (15–20 mg cellular protein) were separated by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE), and proteins were
transferred to nitrocellulose. Membranes were blocked with 5% milk in TBST,
and incubated with primary antibody overnight at 4 �C. The next day, membranes
were washed, incubated with appropriate horseradish peroxidase (HRP)-coupled
secondary antibodies, and signals detected with enhanced chemiluminescence
(ECL, Pierce). All immunoblots were repeated at least twice with comparable
results obtained. Supplementary Figure 8 shows the full blot corresponding to the
scanned portions shown in the main text figures.

Histology and immunohistochemistry. Formalin-fixed paraffin-embedded dec-
alcified tibia sections from 8 week-old mice were obtained. Sirius red staining was
performed using Sirius red and picric acid obtained from Sigma. Sections were
visualized under polarized light. Hematoxylin and eosin (Hþ E) staining was
performed on some sections using standard protocols, and osteocyte density was
assessed on cortical bone osteocytes in a medium power field 3 mm below the tibial
growth plate. For anti-sclerostin immunohistochemistry, antigen retrieval was
performed using proteinase K (20 mg ml� 1) for 15 min. Endogenous peroxidases
were quenched, and slides were blocked in TNB buffer (Perkin-Elmer), then
stained with anti-sclerostin antibody at a concentration of 1:200 for 1 h at room
temperature. Sections were washed, incubated with HRP-coupled secondary anti-
bodies, signals amplified using tyramide signal amplification and HRP
detection was performed using 3,30-diaminobenzidine (DAB, Vector) for 2–3 min.
Slides were briefly counterstained with hematoxylin before mounting.
Quantification of sclerostin positive osteocytes was performed on a blinded basis.
All photomicrographs were taken 3 mm below the growth plate on the lateral side
of the tibia. All osteocytes were counted and then scored as either sclerostin-
positive or negative. Sections from at least four mice per experimental group were
analysed. Quantification of immunostaining was done based on coded sample

numbers in a completely blinded manner. Representative photomicrographs are
displayed next to quantification in data figures.

Chromatin immunoprecipitations. ChIP assay was performed using a kit
(EZ-Chip, Miilipore, 17-371, Billerica, MA) according to the manufacturer’s
instructions. Briefly, cells were grown at 37 �C for 7 days, followed by PTH
treatment (25–50 nM) for the indicated times. Cells were then cross-linked with 1%
formaldehyde for 10 min and then quenched with 0.125M glycine. Cells were lysed
and sonicated with 10 pulses for 30 s each to fragment DNA to 200–800 bp
fragments. DNA-protein complexes were precipitated using 1.5 mg antibodies
(MEF2C, CRTC2 or control rabbit IgG) overnight at 4 �C. Immune complexes
were precipitated, DNA was purified and real-time PCR was conducted using
primer sets (Supplementary Table 4) to detect the þ 45 kB SOST enhancer and
upstream RANKL enhancers. Data are expressed as relative enrichment for each
antibody (above control IgG) for each primer set. Data shown represent triplicate
biological repeats within experiments, and each experiment was performed at
least twice.

cAMP radioimmunoassay. Cells, in 96 well plates, were treated with indicated
ligands for 20 min at room temperature in the presence of the phosphodiesterase
inhibitor 3-isobutyl-1-methylxanthine (IBMX, Sigma I5879, 2 mM). The medium
was then removed and cells were lysed in 50 mM HCl and transferred to � 80 �C.
Thawed lysates were diluted 1:5 with dH2O, and an 10 ml aliquot was assessed for
cAMP content by radioimmunoassay using 125I-cAMP analogue as a tracer and
unlabelled cAMP to generate a standard curve.

RNA-sequencing. Total RNA was subjected to ribosomal RNA (rRNA) depletion
using RiboZero kit (Illumina) followed by NGS library construction using
NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England
Biolabs). Experimental duplicates were performed for each condition. Sequencing
was performed on Illumina HiSeq 2500 instrument, resulting in an average of
33 million pairs of 50 bp reads per sample. Sequencing reads were mapped to the
mouse reference genome (mm10/GRCm38) using STAR (http://bioinformatics.
oxfordjournals.org/content/early/2012/10/25/bioinformatics.bts635). Gene
expression counts were calculated using HTSeq v.0.6.0 (http://www.huber.embl.de/
users/anders/HTSeq/doc/overview.html) based on a current Ensembl annotation
file for mm10/GRCm38 (release 75). Differential expression analysis was
performed using EgdeR package based on the criteria of more than two-fold change
in expression value versus control and false discovery rates (FDR) o0.05. Venn
diagrams from gene set analysis were generated using genes with 41.5 fold change
in expression values and FDR o0.05. Significance testing for gene set overlap
was performed according to a standard hypergeometric distribution, P-values
o2.2� 10� 16. The RNA-seq data are deposited in GEO under accession code
GSE76932.

Small molecule synthesis. Details regarding synthesis of YKL-04-114 and
YKL-05-093 are found in Supplementary Methods. Supplementary Fig. 9 shows
nuclear magnetic resonance (NMR) spectra for these compounds and related
intermediates.

In vitro kinase assays. ScanEDGE kinase assays panelling specificity across a
panel of 96 representative kinases were performed by DiscoverX (Fremont, CA).
For most assays, kinase-tagged T7 phage strains were grown in parallel in 24-well
blocks in an E. coli host derived from the BL21 strain. Bacteria were grown to log
phase and infected with T7 phage from frozen stock (MOI¼ 0.4) and incubated
with shaking at 32 �C until lysis (90–150 min). The lysates were centrifuged
(6,000g) and filtered (0.2 mm) to remove cell debris. The remaining kinases
were produced in HEK-293 cells and subsequently tagged with DNA for qPCR
detection. Streptavidin-coated magnetic beads were treated with biotinylated small
molecule ligands for 30 min at room temperature to generate affinity resins for
kinase assays. The liganded beads were blocked with excess biotin and washing
with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20, 1 mM DTT)
to remove unbound ligand and to reduce non-specific phage binding. Binding
reactions were assembled by combining kinases, liganded affinity beads, and test
compounds in 1� binding buffer (20% SeaBlock, 0.17� PBS, 0.05% Tween 20,
6 mM DTT). Test compounds were prepared as 40� stocks in 100% DMSO and
directly diluted into the assay. All reactions were performed in polypropylene 384
well plates in a final volume of 40 ml. The assay plates were incubated at room
temperature with shaking for 1 h and the affinity beads were washed with wash
buffer (1� PBS, 0.05% Tween 20). The beads were then resuspended in elution
buffer (1� PBS, 0.05% Tween 20, 0.5 mM of the non-biotinylated affinity ligand)
and incubated at room temperature with shaking for 30 min. The kinase con-
centration in the eluates was measured by qPCR. YKL-05-093 was screened in this
assay at 71 nM (ten times its Kd for SIK2), and results are reported as ‘% control’,
where lower numbers indicate stronger hits.
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Micro-CT. Assessment of bone morphology and microarchitecture was performed
with high-resolution micro–computed tomography (mCT40; Scanco Medical,
Brüttisellen, Switzerland). In brief, the distal femoral metaphysis and mid-diaphysis
were scanned using 70 kVp peak X-ray tube potential, 113 mAs X-ray tube current,
200 ms integration time, and 10-mm isotropic voxel size. Cancellous bone
was assessed in the distal metaphysis and cortical bone was assessed in the
mid-diaphysis. The femoral metaphysis region began 1,700 mm proximal to the
distal growth plate and extended 1,500 mm distally. Cancellous bone was separated
from cortical bone with a semiautomated contouring program. For the cancellous
bone region we assessed bone volume fraction (BV/TV, %), trabecular thickness
(Tb.Th, mm), trabecular separation (Tb.Sp, mm), trabecular number (Tb.N,
1 mm� 1), connectivity density (Conn.D, 1 mm� 3), and structure model index.
Transverse CT slices were also acquired in a 500 mm long region at the femoral
mid-diaphysis to assess total cross-sectional area, cortical bone area, and medullary
area (Tt.Ar, Ct.Ar and Ma.Ar, respectively, all mm2); bone area fraction
(Ct.Ar/Tt.Ar, %), cortical thickness (Ct.Th, mm), porosity (Ct.Po, %) and
minimum (Imin, mm4), maximum (Imax, mm4) and polar (J, mm4) moments
of inertia. Bone was segmented from soft tissue using the same threshold,
300 mg HA cm� 3 for trabecular and 733 mg HA cm� 3 for cortical bone. Scanning
and analyses adhered to the guidelines for the use of micro-CT for the assessment
of bone architecture in rodents69. For the primary spongiosa region (where
intermittent PTH treatment has its predominant effect) analysed in Supplementary
Fig. 4A, coronal CT slices were evaluated in a 500mm (50 slices) region located
centrally in the bone. The region of interest began 1000 mm superior to the
epiphysis and included all primary spongiosa and the medullary cavity. The
primary spongiosa bone region was identified by semi-manually contouring the
region of interest. Images were thresholded using an adaptive-iterative algorithm.
The average adaptive-iterative threshold of control mice (WT, vehicle treated) for
the region of interest (299 mgHA cm� 3) was then used to segment bone from soft
tissue for all distal femur images. Micro-CT analysis was done in a completely
blinded manner with all mice assigned to coded sample numbers.

Histomorphometry. Right tibia from 8-week-old mice were subjected to bone
histomorphometric analysis. The mice were injected with 20 mg kg� 1 body weight
of calcein and 40 mg kg� 1 body weight of demeclocycline on 7 and 2 days before
necropsy, respectively. The tibia was dissected and fixed in 70% ethanol for 3 days.
Fixed bones were dehydrated in graded ethanol, then infiltrated and embedded in
methylmethacrylate without demineralization. Undecalcified 5 mm and 10 mm thick
longitudinal sections were obtained using a microtome (RM2255, Leica
Biosystems., IL, USA). The 5 mm sections were stained with Goldner Trichome and
at least two nonsecutive sections per sample were examined for measurement of
cellular parameters. The 10 mm sections were left unstained for measurement of
dynamic parameters, and only double-labels were measured, avoiding nonspecific
fluorochrome labelling. A standard dynamic bone histomorphometric analysis
of the tibial metaphysis was done using the Osteomeasure analysing system
(Osteometrics Inc., Decatur, GA, USA). Measurements were performed in the area
of secondary spongiosa, 200 mm below the proximal growth plate. The observer was
blinded to the experimental genotype at the time of measurement. The structural,
dynamic and cellular parameters were calculated and expressed according to the
standardized nomenclature70.

Statistics. All experiments were performed at least twice. Data are expressed
as means of triplicate biological repeats within a representative experiment
plus/minus standard error. Statistical analyses were peformed using an unpaired
two-tailed Student’s t-test (Microsoft Excel), P-values o0.05 were considered to be
significant. Variation between groups was similar in all cases.

Data availability. The RNA-seq data are deposited in GEO under accession code
GSE76932. The authors declare that all other data supporting the findings of this
study are available within the article and its supplementary information files.
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In this article, there are errors in the labelling of the y axis in Fig. 1b. The labels ’50’, ’100’ ’and ‘150’ should have been ‘500’, ’1,000’ and
‘1,500’, respectively. The correct version of this figure appears as Fig. 1 below.
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