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Ailanthone targets p23 to overcome MDV3100
resistance in castration-resistant prostate cancer
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Androgen receptor (AR) antagonist MDV3100 is the first therapeutic approach in treating

castration-resistant prostate cancer (CRPC), but tumours frequently become drug resistant

via multiple mechanisms including AR amplification and mutation. Here we identify the

small molecule Ailanthone (AIL) as a potent inhibitor of both full-length AR (AR-FL) and

constitutively active truncated AR splice variants (AR-Vs). AIL binds to the co-chaperone

protein p23 and prevents AR’s interaction with HSP90, thus resulting in the disruption of the

AR-chaperone complex followed by ubiquitin/proteasome-mediated degradation of AR as

well as other p23 clients including AKT and Cdk4, and downregulates AR and its target genes

in PCa cell lines and orthotopic animal tumours. In addition, AIL blocks tumour growth and

metastasis of CRPC. Finally, AIL possesses favourable drug-like properties such as good

bioavailability, high solubility, lack of CYP inhibition and low hepatotoxicity. In general, AIL is a

potential candidate for the treatment of CRPC.
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P
rostate cancer (PCa) is the most common male cancer in
many industrialized countries1,2. PCa initially depends on
androgen receptor (AR) signalling for growth and survival.

Androgen ablation therapy causes a temporary reduction in PCa
tumour burden, but the tumour eventually develops into
castration-resistant prostate cancer (CRPC) with the ability to
grow again in the absence of androgens3. Mechanisms of CRPC
progression include AR amplification and overexpression4,5,
AR gene rearrangement promoting synthesis of constitutively
active truncated AR splice variants (AR-Vs)6 and induction of
intracrine androgen metabolic enzymes3,7. The canonical human
AR has 919 amino acids with a mass of 110 kDa, composed of
four structurally and functionally distinct domains including the
N-terminal domain (amino acids 1–537), DNA-binding domain
(amino acids 537–625), hinge region (amino acids 625–669) and
ligand-binding domain (LBD, amino acids 669–919)8. When
activated by endogenous androgens, AR translocates into the
nucleus, associates with coregulatory factors and binds to specific
genomic DNA sequences in the regulatory regions of AR target
genes9. Previous clinical research showed that targeting AR was a
valid therapeutic strategy for CRPC10. Indeed, recent clinical
trials have shown that the AR antagonist MDV3100 (MDV)11

and abiraterone, an inhibitor targeting androgen synthesis12, are
effective against CRPC. However, recent studies have reported
that AR-Vs which lack the LBD are resistant to anti-androgen
therapy including MDV and abiraterone13–17. Since the major
AR-Vs identified to date have an intact N-terminal domain and
DNA-binding domain, they display constitutive activity, which
underlies the persistent AR signalling in CRPC expressing these
variants6,18–20. Collectively, both ligand-dependent full-length
AR (AR-FL) and AR-Vs mediate distinct transcriptional
programs in CRPC21–23, but AR inhibitors currently in clinical
use all target the LBD, and thus would not overcome cancer cell
resistance driven by constitutively active AR-Vs.

AR is maintained in a ligand-binding competent state through
its interaction with the foldosome, a protein complex consisting
of the chaperones HSP40, HSP70 and HSP90 together with the
co-chaperones HOP, p23 and the immunophilins FKBP51/52 and
BAG-1 (ref. 24). Intriguingly, some inhibitors of HSP90 such as
AT13387 decrease the expression of several HSP90 client proteins
including wild-type AR and AR–V7 (an AR splice variant), and
also disrupt nuclear localization of the AR. A phase I/II clinical
trial of AT13387 alone or in combination with abiraterone acetate
in patients with mCRPC is in progress25. Other HSP90 inhibitors
that target the HSP90 N terminus including NVP-HSP990 and
PF-04929113 have activity in preclinical studies26,27. The
co-chaperone p23 is overexpressed in multiple types of cancer,
and protects cancer cells from HSP90 inhibitors28. p23
overexpression is induced on treatment with either androgens
or anti-androgens and facilitates PCa cell motility; p23
knockdown inhibits the invasiveness of the PCa cell line
LNCaP, suggesting an important role of p23 in PCa metastasis
independent of its role as an HSP90 co-chaperone29. The
expression of p23 increases AR protein level, AR ligand-binding
activity and AR’s target promoter-binding activity; most
importantly, p23 functions to promote AR activity in an
HSP90-independent mechanism involving the direct binding to
AR30. p23 is also associated with an increased resistance to
etoposide and doxorubicin in breast cancer cells31 along with
elevated expression of a subset of estrogen-responsive genes32.
p23 overexpression correlates with poor prognosis for breast
cancer patients, implicating p23’s role in breast cancer
progression in addition to PCa, supporting the utility of p23 as
a potential therapeutic target for cancer therapy.

To identify compounds that block the transcriptional activities
of both ligand-dependent AR-FL and constitutively active AR-Vs,

we used the MMTV-luciferase (MMTV-luc) reporter system
containing AR-binding elements33 to screen B100 compounds
from a library of natural compounds (including about 1,000
natural compounds extracted from Traditional Chinese
Medicine) (Supplementary Tables 4 and 5) and identified a
small-molecule compound termed Ailanthone (AIL), which is a
natural compound extracted from the whole seedlings of
Ailanthus altissima (Simaroubaceae) that has antimalarial and
antitumour activities34,35. In this study, we find that
AIL potently reduce the transcriptional activities of both
AR-FL and AR-Vs. In addition, AIL decrease the protein
levels of not only AR-FL but also constitutively active
AR-Vs, resulting in cell growth inhibition as well as
suppression of MDV3100-resistant CRPC metastasis, by
binding to p23 protein. Furthermore, we evaluate the drug-like
properties of AIL including solubility, pharmacokinetics,
bioavailability, cytochrome P450 (CYP) inhibition and toxicity.
Overall, our findings provide the first evidence that AIL is a
promising lead compound against CRPC and is suitable for
further pharmaceutical development.

Results
AIL suppresses the activities of AR-FL and AR-Vs. To identify
compounds that inhibit the transcriptional activities of both
AR-FL and constitutively active AR-Vs, we used a luciferase
reporter assay to screen about 100 compounds from a library of
natural compounds. 22RV1 PCa cells were either stimulated
with androgen dihydrotestosterone (DHT) to activate AR-FL
or transfected with AR1-651 to introduce the splice variant of
AR lacking the LBD. After incubation with these natural
compounds for 12 h, the transfected cells were collected and AR
transcriptional activity was detected by dual luciferase assay
(Supplementary Tables 4 and 5). We identified the small-
molecule AIL that potently reduced the transcriptional activities
of both AR-FL and AR-Vs. The physicochemical properties of
AIL are listed in Supplementary Table 1.

To further test the bioactivity of AIL (structure shown in
Fig. 1a, right panel), luciferase reporter assays were performed in
several PCa cell lines including LNCaP, c4-2b, 22RV1 and
AR-transfected PC3 cells. As shown in Fig. 1a,b, AIL
dose-dependently inhibited the DHT-induced transcriptional
activities of AR and constitutively active truncated AR1–651

at low concentrations (AR-FL IC50¼ 69 nM, 95% confidence
interval¼ 53–89 nM; AR1–651 IC50¼ 309 nM, 95% confidence
interval¼ 236–687 nM in 22RV1 cells). The AIL-mediated
repression of AR activity was also observed in PC3 cells
co-transfected with the AR expression vector plasmid and
reporters (Supplementary Fig. 7g).

To examine whether AIL had an effect on AR-dependent
endogenous gene expression, the levels of mRNA transcripts
for numerous well-characterized AR-regulated genes were
measured in LNCaP cells. As shown in Fig. 1c, AIL decreased
the androgen-dependent induction of endogenous PSA,
TMPRSS2, FKBP5, SLC45A3 and NDRG1 mRNA expression.
Since AR-Vs lacking the LBD are resistant to AR antagonists,
we next investigated whether AIL blocked its constitutive and
androgen-independent AR activity. As shown in Fig. 1d, the
constitutively active truncated AR1–651 lacking the LBD was
resistant to the AR antagonists bicalutamide (BIC) and MDV,
but its transcriptional activity was also blocked by AIL in a
dose-dependent manner (Fig. 1d, left panel). Similarly,
in 22RV1 cells that naturally express AR-Vs, although
MDV decreased the level of the AR target gene PSA in the
presence of the synthetic androgen methyltrienolone (R1881), it
had no effect in the absence of R1881. However, AIL
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downregulated PSA not only in the presence but also
in the absence of R1881 (Fig. 1d, right panel). Taken together,
AIL inhibited the activity of both the androgen inducible
AR-FL and the constitutively active truncated AR lacking
the LBD.

AIL inhibits the proliferation of PCa cells. We examined
whether AIL affected the proliferation of AR positive PCa cells.
Using the sulforhodamine B colorimetric (SRB) assay, we con-
firmed that AIL potently inhibited the growth of several
PCa cell lines including LNCaP, c4-2b, 22RV1 and LAPC4

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

0

20

40

60

80

PSA

**

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

D
M

S
O

R
18

81
R

18
81

 +
 A

IL

0

2

4

6

8

10

12

14

16

18
AR

TMPRSS2

FKBP5

SLC45A3

NDRG1

**

*

**

**

LNCaP

F
ol

d 
ch

an
ge

 o
f m

R
N

A

c

D
M

S
O

M
D

V

A
IL

D
M

S
O

M
D

V

A
IL

0

1

2

3
22RV1

*

**
**

R1881 – R1881 +
F

ol
d 

of
 m

R
N

A
 (

P
S

A
/G

A
P

D
H

)

d

0 0.05 0.1 0.2 1 10
0

20

40

60

80

100

120

LNCaP
22RV1
LAPC4

PC3
DU145
WPMY-1

AR–

AR+

**
*

c4-2bRWPE-1
VCaP
LNCaP-MDV3100-R

C
el

l g
ro

w
th

 (
%

)

e

0.
1

0.
1

0.
1

0.
1

0

20

40

60

80

100

120

PC3
DU145

LNCaP
22RV1

N
um

be
r 

of
 c

ol
on

ie
s 

(%
) ***

AIL (μM)

PC3 DU145 LNCaP 22RV1

A
IL

 0
μM

A
IL

 0
.1

μM

f

0

50

100

150

200
LNCaP

C
el

l g
ro

w
th

 (
%

)

R1881 (0.1 nM)
BIC (μM)

AIL (μM)
MDV (μM)

***
*** ***

***

***

0

20

40

60

80

100

120
22RV1

***
*** ***

0

20

40

60

80

100

120
c4-2b

– + + + + + +

– – – – –

– –

10

10

– – 0.1 0.2 0.4

–

– – – – ––

– + + + + + +

– – – – –

– –

10

10

– – 0.1 0.2 0.4

–

– – – – ––

– + + + + + +

– – – – –

– –

10

10

– – 0.1 0.2 0.4

–

– – – – ––

***

***
***

LNCaP-MDV3100-R

C
on

tr
ol 5 10 20 5 10 20 0.
1

0.
2

0.
4

0

50

100

150

(μM)

Control
MDV
BIL
AIL

***
***

***

C
el

l g
ro

w
th

 (
%

)

hg

b

– + + + + + +
0

2

4

6

8

10 PC3

AR1-651

*
*

**

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

AIL (μM)

0.01
0

0.1
0.05

0.2
0.4

a

AIL (μM)

BIC (μM)
– + + + + + +

0
2
4
6
8

10
12
14
16
18
20

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

**

** **

AR1-651

10
10

– – – – 0.1 0.2 0.4

–– – – – –
– – – – ––

PC3

MDV (μM)
AIL (μM)

– + + + + + +
0

2

4

6 LAPC4

*

**

**
***

0.01
0

0.1
0.05

0.2
0.4

– + + + + + +
0
1
2
3
4
5
6
7
8
9

10
11
12 LNCaP

*

*
**

– + + + + + +
0

1

2

3

4

5

6

7 22RV1

**
**

******

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

DHT (10 nM)
AIL (μM)

�-actin

HO
OH

O
O

H

H

H H
O O

OH

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13122 ARTICLE

NATURE COMMUNICATIONS | 7:13122 | DOI: 10.1038/ncomms13122 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


(Supplementary Fig. 1a). In addition, AIL induced G1-phase
arrest instead of apoptosis (Supplementary Fig. 8a,b;
Supplementary Methods). Interestingly, AIL more potently
inhibited the growth of AR positive prostate cancer cells than
either AR negative tumour cell lines or normal prostate cell lines
(Fig. 1e, Supplementary Figs 1b and 2). In the colony formation
experiments, AR positive cells were also more sensitive to AIL
(Fig. 1f). Moreover, in the transwell chamber migration
assay, AIL suppressed AR-positive LNCaP cell migration more
effectively than that of AR-negative PC3 cells (Supplementary
Fig. 1c).

To examine whether AIL could overcome the resistance to
androgen antagonist therapy, LNCaP, c4-2b and 22RV1 cells
were tested using the SRB assay (Fig. 1g). Although C4-2b and
22Rv1 cells may be androgen-insensitive, these assays were
performed in the presence of R1881. In androgen sensitive
LNCaP cells, the well-known AR antagonists BIC and MDV
effectively blocked cell growth as well as AIL (Fig. 1g). However,
in the androgen-insensitive c4-2b line and the CRPC cell line
22RV1, 10 mM BIC and 10 mM MDV could not significantly
inhibit cell growth, but 0.1 mM AIL remarkably inhibited growth
(Fig. 1g). Furthermore, LNCaP-MDV3100-R cells (a MDV3100-
resistant LNCaP cell subline that was chronically cultured in the
presence of MDV and is characterized in Supplementary Fig. 12)
were totally resistant to BIC and MDV at a high concentration
(20 mM), but 0.1 mM AIL treatment still significantly induced cell
growth arrest (Fig. 1h). Collectively, AIL inhibited both
androgen-dependent and androgen-independent PCa cell growth
and overcame resistance to AR antagonist therapy.

AIL blocks tumour growth and metastasis of CRPC. We
evaluated the efficacy of AIL in vivo by treating 22RV1 xenografts
in male BALB/c nude mice with AIL for 35 days. Administration
of 1 and 3 mg kg� 1 per day AIL significantly inhibited the
increase of tumour volume in 22RV1 xenografts (Supplementary
Fig. 3). AIL did not significantly affect the body weight of mice
and did not show apparent toxicity as determined by pathological
review of sections of lungs, heart, liver, spleen and kidneys
collected from mice receiving AIL (Supplementary Fig. 5a,b).
In addition, treatment with AIL decreased the weight of seminal
vesicle of the mice (Supplementary Fig. 5c), indicating that AIL
blocked AR signalling in the mice in vivo. Therefore, we selected
the dose of 2 mg kg� 1 per day AIL for further experiments in
animals.

We also compared the efficiency of AIL with the well-known
AR-antagonist BIC in both LNCaP and 22RV1 xenografts.
For androgen-sensitive LNCaP cells, treatment with either
10 mg kg� 1 per day BIC or 2 mg kg� 1 per day AIL significantly
reduced the tumour volume (Figs 2b and 4b). In contrast, the
CRPC 22RV1 xenografts were resistant to BIC administration,

but AIL strongly inhibited tumour growth (Figs 2a and 4a).
Furthermore, we compared the efficiency of AIL with the next
generation AR-antagonist MDV in another cell line, VCaP, which
expresses AR-Vs but is still sensitive to androgen. As shown in
Fig. 2c and Supplementary Fig. 4c, VCaP xenografts were more
sensitive to AIL compared with MDV3100, although VCaP
xenografts still responded to MDV3100.

To more closely mimic human disease, we further evaluated
whether AIL regressed CRPC in vivo. Castrated mice bearing
22RV1-luc orthotopic xenografts were treated with AIL.
As shown in Fig. 2d and Supplementary Fig. 6a, AIL suppressed
the 22RV1 orthotopic xenografts in castrated mice,
whereas these CRPC xenografts were resistant to MDV. AIL
administration reduced the tumour volume by 82%
(95% confidence interval¼ 70–95%), whereas MDV treatment
reduced the tumour volume by only 15% (95% confidence
interval¼ 0–36%). In addition, AIL inhibited tumour metas-
tasis and reduced kidney injury in this CRPC model. Eighty
percent of control mice but only 20% of AIL-treated mice had
obvious metastasis (Fig. 2e and Supplementary Fig. 6b) and
kidney injury (Fig. 2f). In summary, AIL not only inhibited the
tumour growth and metastasis of MDV-resistant 22RV1 cells,
but also reduced kidney injury and metastases in orthotopic
xenografts.

AIL downregulates AR protein level in vitro and in vivo.
To investigate the mechanism of AR transcriptional activity
inhibition by AIL, we first determined the AR protein level after
AIL treatment in PCa cell lines. AIL potently reduced AR protein
expression in a dose-dependent manner in LNCaP, 22RV1,
LNCaP-MDV3100-R, and VCaP cell lines (Fig. 3a). In AR
positive PCa cell lines, AR was more stable and had a higher basal
level in the presence of synthetic androgen R1881; we observed
that AIL reduced the AR protein level both in the absence and in
the presence of R1881 (Fig. 3b and Supplementary Fig. 7a).
Notably, AIL downregulated the truncated splice variants of AR
(Supplementary Fig. 7b,c) which were continually active and
resistant to AR antagonist therapy. Indeed, knockdown of AR-Vs
decreased the proliferation of VCaP and 22RV1 cells which
have high expression of AR-Vs (Supplementary Fig. 10c,d).
Furthermore, we examined whether AIL prevented AR nuclear
translocation by transfecting an AR-GFP fusion protein into PC3
cells. As expected, the nuclear translocation of AR-GFP induced
by R1881 was decreased by AIL in PC3 cells (Fig. 3c and
Supplementary Fig. 7d). The HSP90 complex plays a major role
in stabilizing unliganded AR24. Therefore, we examined whether
AIL affected the members of the HSP90 complex. Unexpectedly,
AIL did not downregulate the AR molecular chaperones HSP90
and HSP70 in PCa cells (Fig. 3d). We further confirmed this
phenomenon in the AIL-treated 22RV1 orthotopic xenografts.

Figure 1 | Inhibitory effects of AIL on AR activity and PCa cell proliferation. (a,b) PCa cells were treated with different concentrations of AIL for 12 h and

luciferase activities were measured. MMTV-luc reporter was stimulated by DHT (a) or exogenous AR1–651 (b). (c) LNCaP cells were cultured in 5% c-FBS

for 5 days and treated with 10 nM R1881 alone or 0.2mM AIL with 10 nM R1881 for 12 h. The gene expression was measured by quantitative-PCR.

(d) PC3 cells were transfected with AR1–651, MMTV-luc, Renilla-luc and treated with indicated concentrations of bicalutamide (BIC), MDV3100 (MDV) and

AIL. After 12 h, the MMTV-luc activities were detected (left panel). 22RV1 cells were stimulated with or without 10 nM R1881 and treated with 10mM MDV

or 0.2 mM AIL. After 12 h, total RNA was extracted and PSA mRNA was measured by quantitative-PCR (right panel). (e,f) The AR negative cell lines

PC3 and DU145 (AR� ), normal prostate cell lines RWPE-1 and WPMY-1 (N), and AR positive cell lines LNCaP, 22RV1, LAPC4 c4-2b,VcaP and

LNCaP-MDV3100-R (ARþ ) were treated with different concentrations of AIL for 48 h. Cell proliferation was detected with the SRB assay (e). AR negative

cell lines PC3 and DU145, and positive cell lines LNCaP, 22RV1 were treated with 0 or 0.1 mM AIL for 7 days, and the cell colonies were counted (f).

Data were expressed as mean±s.d. of three independent assays; two-way ANOVA followed by Bonferroni multiple comparison test; ***Po0.001. Scale

bar, 200 mm. (g,h) Androgen-starved LNCaP, c4-2b and 22RV1 cells were treated with 10mM BIC, 10 mM MDV and 0.1, 0.2, 0.4mM AIL together with

0.1 nM R1881 stimulation for 96 h (g). MDV3100-resistant LNCaP cells were treated with the indicated concentrations of BIC, MDV or AIL for 72 h (h). Cell

growth was determined by SRB assay. In a–d,g and h, data were expressed as mean±s.d. of three independent assays; Student’s t-tests were performed;

*Po0.05, **Po0.01, ***Po0.001.
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Figure 2 | Therapeutic effects of AIL on castration-resistant xenografts. (a–c) 22RV1 (a), LNCaP (b) and VCaP (c) cells suspended in 0.1 ml PBS (22RV1)

or matrigel (LNCaP, VCaP) were injected into the right flank of BALB/c-nude mice. Androgen containing blocks were subcutaneously inserted into each

mouse in the LNCaP and VCaP xenograft models. After the volume of tumour nodules reached about 100 mm3, the mice were randomly assigned to the

indicated groups and respectively i.p. injected with vehicle control, AIL, BIC or MDV as indicated. The control group was injected with DMSO. Tumour

volume and the mouse body weight were measured twice per week. (d) Male BALB/c-nude mice were anaesthetized, and the dorsolateral prostate was

injected with 22RV1-luc cells in matrigel. After a week, mice were castrated and treated i.p. with DMSO, 10 mg kg� 1 MDV or 2 mg kg� 1 AIL once per day.

Tumours were imaged every week to determine local tumour growth and evidence of tumour cell dissemination. Representative images of three mice per

group were illustrated (n¼ 5). (e) After 28 days, mice were killed and local tumours and viscera of the mice were imaged to determine tumour growth and

evidence of tumour cell dissemination. Representative images of the dishes are shown, and the number of mice which had metastatic tumours was counted

(n¼ 5). (f) The mouse kidneys from the same experiment as d were histopathologically evaluated. The number of mice that had kidney injury was counted

(n¼ 5). Scale bars: the black scale bar is 0.5 cm (left) and the white scale bar is 100mm (right). Data represent the mean±s.d. *Po0.05, **Po0.01,

***Po0.001 by one-way ANOVA followed by Bonferroni multiple comparison test.
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As demonstrated in Fig. 3e,f, AIL reduced the expression of
AR protein and its target genes but had no effect on the AR
molecular chaperones HSP90, HSP70 and HSP40 in vivo.
AR downregulation and proliferation inhibition by AIL
treatment in 22RV1 orthotopic xenografts were also confirmed
by immunohistochemistry (Fig. 3g). In addition, in an in vivo
assay, treatment with AIL decreased the mRNA level of the
AR-splice variant AR-V7 as well as total AR (Fig. 3f), which
might be caused by a secondary effect of long-term AIL
treatment.

Induction of AR degradation by AIL. To investigate why AIL
reduced the expression of AR protein but not its molecular

chaperones, we tested the effect of AIL on AR protein stability.
Surprisingly, AR protein stability was significantly reduced under
AIL treatment (Fig. 4a). However, there was no significant effect
on AR and AR-V7 mRNA when treated with the same con-
centration of AIL, although the PSA mRNA level was decreased
(Fig. 4b). To test whether AIL induced AR degradation through
the proteasome pathway, we treated cells with the proteasome
inhibitor MG-132, which resulted in a marked suppression of
AIL-induced AR depletion (Fig. 4c). More importantly, treatment
with AIL induced ubiquitination of AR (Fig. 4d). Interestingly,
while AIL treatment decreased AR, AKT as well as Cdk4 protein
levels, it did not influence their chaperones HSP90, HSP70 and
HSP40 which were all essential for the HSP90-HSP70 chaperone
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complex (Supplementary Fig. 7f). To further illustrate this
mechanism, we performed co-immunoprecipitation and observed
that AIL prevented the interaction of AR with HSP90 and HSP70
as well as HSP40 (Fig. 4e). Together with the decreased protein
stability, these data suggested that AIL might induce AR
degradation by disrupting the interaction of AR with its
chaperones HSP90 and HSP70, resulting in AR ubiquitination
and degradation. In addition, AIL treatment led to AKT
and Cdk4 downregulation, potentially driving the decreased
proliferation in AIL-treated cells.

Given that AIL disrupted the interaction of AR with its
chaperone HSP90, we then tested whether AIL inhibited HSP90
activity. Using the geldanamycin-FITC fluorescence polarization
assay, we found that AIL did not inhibit HSP90 activity (Fig. 4f).
We also observed that 17-AAG induced upregulation of HSP90
and HSP70 protein but AIL did not influence them
(Supplementary Fig. 7e), suggesting that AIL, unlike 17-AAG,
was not an HSP90 inhibitor.

Interaction of AIL with p23 in vitro. Foldosome complex
assembly occurs through a series of steps, beginning with HSP40
and HSP70 binding to AR, followed by HSP90 and HOP, and
then succeeded by ATP-dependent binding of p23, FKBP51 and
FKBP52 which displace HSP40, HSP70, and HOP24. Additional
foldosome proteins include cdc37 and HDAC6 (ref, 36).
Accordingly, we next determined whether AIL disturbed the
interaction between these proteins and HSP90. AIL obviously
prevented the interaction between p23 and HSP90, but had no
significant influence on the interaction of other proteins with
HSP90 (Fig. 5a). By Biacore assay, we confirmed that there was no
interaction between AIL and HSP90 (Supplementary Fig. 9a;
Supplementary Methods). However, AIL interacted directly with
p23 (KD¼ 1.79� 10� 6 M) (Fig. 5b). Celastrol (CEL) was used as
a positive control of p23 interaction (Supplementary Fig. 9b).
We also performed a molecular docking modelling simulation
using the X-ray crystal structure of the p23 functional domain,
and identified a potential binding site on the surface of p23 that
could reasonably accommodate AIL binding (Fig. 5c and
Supplementary Fig. 9c). In addition, both treatment with AIL
and CEL downregulated the protein level of AR rather than the
chaperones HSP90 and HSP70 (Supplementary Fig. 10a),
indicating that AIL and CEL might share a similar mechanism.
Furthermore, p23 knockdown ablated the ability of AIL treatment
to induce cell growth arrest (Supplementary Fig. 10b). Also,
overexpression of p23 dose-dependently rescued AIL-mediated
cell proliferation inhibition (Supplementary Fig. 10e), suggesting
that p23 might be a critical target of AIL. Besides, we found that
AIL indeed suppressed the activities of both glucocorticoid
receptor and progesterone receptor (Supplementary Fig. 7g),
suggesting that AIL is not specific in targeting AR since p23 has
different client proteins. However, compared with AR, the
inhibition of glucocorticoid receptor and progesterone receptor
by AIL is less sensitive. For example, 0.4 mM AIL resulted in 70%
inhibition of AR-induced reporter activities, but AIL just blocked
the progesterone receptor and glucocorticoid receptor-induced
reporter activities by about 30% (Supplementary Fig. 7g).

To investigate whether AIL suppressed the functioning of
continually active AR lacking the LBD, we performed RNA-seq
after treating LNCaP cells with or without AIL in the absence or
presence of AR1–651. Indeed, as shown in Fig. 5d (top) and
Supplementary Data 1, AIL strongly suppressed AR1–651-induced
gene expression, supporting the potential therapeutic use of
AIL in CPRC. Those genes not only included the classic
androgen-regulated genes for example, KLK3, FKBP5 and
NKX3.1 (indicated by red), but also involved other non-classic

androgen-induced genes for example, MYCBP, WNT10A, CDK2
(indicated by black), indicating that AR mutations causing LBD
loss might lead to extra transcriptional functions and contribute
to drug resistance. Gene Ontology analysis (Fig. 5d, bottom;
Supplementary Methods) demonstrated that AR1–651-induced
genes were involved in cell cycle, proliferation and cell adhesion,
suggesting that AR lacking the LBD has oncogenic functions.

To sum up, all these data indicate that AIL prevented the
interaction of p23 and HSP90 and decreased the interaction
between AR and the chaperones, resulting in the ubiquitination
of AR. Consequently, AR was degraded by the proteasome,
AR target gene expression declined and PCa growth was blocked
(Fig. 5e).

Evaluation of AIL pharmacokinetics and CYP inhibition.
Compounds with good absorption, distribution, metabolism,
excretion and toxicity (ADME/Tox) properties are likely to
increase the odds of drug discovery success. Since AIL was
pharmacologically potent against CRPC in animal models, we
evaluated the drug-like properties of AIL. Both oral (p.o.) and
intraperitoneal (i.p.) administration of AIL were highly efficient
in animal models. As shown in Fig. 6a and Supplementary Fig. 11,
compared with the control group, i.p. administration (2 mg kg� 1

per day AIL) and p.o. administration (5 mg kg� 1 per day AIL)
reduced the tumour volume of MDV3100-resistant 22RV1
xenografts by 77.5%. We noted a modest decrease in mouse body
weight in the p.o. treated group (Fig. 6g), which was caused
by neither overdose nor liver toxicity (Fig. 6e), but rather by AIL-
induced stomach injury (Fig. 6h).

Next we determined the pharmacokinetics of AIL based on the
pharmacodynamic efficiency of AIL in 22RV1 xenografts, because
the pharmacokinetics–pharmacodynamic model of AIL could
confirm the dose levels and drug exposures necessary for AIL to
achieve potent antitumour activity in vivo. The concentration of
AIL in nude mouse plasma was 1,216.2 ng ml� 1 at 10 min after
i.p. administration. This concentration far exceeded its effective
concentration in vitro (IC50¼ 69 nM, 25.94 ng ml� 1), although
the minimal effective concentration in vivo is unknown. The
period that the concentrations of AIL in the plasma remained
above the in vitro IC50 lasted for up to 2 h (44.83 ng ml� 1)
(Fig. 6b).

In the p.o. administration group, the plasma AIL concentration
reached 203.9 ng ml� 1 at 15 min after administration (Fig. 6b).
The period that the AIL plasma concentration remained above
IC50 in vitro was about 6 h because of the absorption process.
Moreover, the p.o. exposure was lower than the i.p. exposure after
dose normalization because of intestinal absorption as well as
first-pass metabolism. Since the concentration of AIL remaining
in the plasma immediately before the next administration was
1.43 ng ml� 1 for the i.p. group and 1.84 ng ml� 1 for the p.o.
group, respectively, the efficacy of AIL in vivo might not last for
the whole 24 h treatment interval time.

The preclinical pharmacokinetics of AIL were also evaluated in
Sprague–Dawley rats (Supplementary Methods). Our previous
studies have shown that the pharmacokinetic profiles of AIL
in rats after intravenous (i.v.) administration exhibit linear
pharmacokinetics37. Here we found that AIL was absorbed
quickly, eliminated rapidly and distributed widely in tissues after
oral administration (Fig. 6f and Table 1). Moreover, the oral
bioavailability of AIL was 25.7%, which was well within the range
of acceptable bioavailability (420%), suggesting that AIL could
be a potential drug candidate in clinical trials.

In addition, the effect of AIL on the activity of CYP enzymes
was evaluated. As shown in Fig. 6c, AIL (1.25 to 100mM) had no
significant inhibitory effects on the main CYP isoforms (CYP1A2,
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2C9/11, 2D1/6, 2E1 and 3A1/2/4) in humans and rats. Finally,
we noticed that AIL did not exert obvious hepatotoxicity or
significant influence on the expression of CYP2C11, CYP3A1/2
and CYP1A2 in the livers of mice (Fig. 6d,e).

Discussion
AR mediates transcriptional programs in CRPC distinctly38.
Current therapies have concentrated on the androgen-dependent
activation of AR through its LBD, but do not provide a
continuing clinical benefit for patients with CRPC and
presumably fail due to multiple mechanisms including the
expression of a constitutively active splice variant AR lacking
the LBD. These AR-Vs can signal in the absence of ligand and are
therefore resistant to LBD-targeting AR antagonists or agents that
repress androgen biosynthesis13,14,39.

In this work, we identified a natural compound AIL that
potently blocked the activities of ligand-induced full-length AR
and constitutively active truncated AR which lacks the LBD.
Moreover, this compound reduced the expression of both the
full-length AR and the truncated AR in vitro and in vivo.
Furthermore, AIL was able to inhibit MDV3100-resistant AR-Vs
expressing PCa. Notably, not only i.p. administration but also p.o.
administration of AIL had excellent efficiency for blocking the
growth of CRPC xenografts. In pharmacokinetic studies, AIL
exhibited good solubility in water and good bioavailability
(420%). In addition, AIL effectively suppressed CRPC tumour
growth, despite not reaching a steady state of plasma drug
concentration during the course of treatment. The stomach injury
we observed may be attributable to gastrointestinal toxicity of AIL
after oral administration, which is likely to be dosage-dependent.
Thus, we speculate that if we shorten the treatment time interval
or reduce the dosage of AIL, it would become even more effective
and less toxic. In addition, we also addressed some key safety
issues of AIL, such as CYP inhibition and hepatotoxicity. In vitro
CYP inhibition data are particularly important during drug
discovery for providing early warning of potential safety issues
and for planning human clinical studies. Hence, the US Food and
Drug Administration (FDA) recommended that CYP-associated
metabolic studies in vitro should be performed. The current study
showed that AIL had no obvious inhibitory effects on the main
CYPs in humans and rats, including CYP1A2, CYP2C9 (human)/
2C11 (rat), CYP2D1 (rat)/2D6 (human), CYP2E1 and CYP3A1/2
(rat)/3A4 (human) isoforms. In addition, AIL did not influence
the expression of CYP enzymes and had no significant
hepatotoxicity after a 5-day administration in the present study.
Therefore, AIL would have a low potential to cause possible
toxicity and drug–drug interactions involving CYP enzymes,
suggesting a sufficient safety window for its putative use as a
promising anticancer agent. Meanwhile, various physicochemical
properties of AIL were calculated on the ACD/I-Lab and the

results showed that the physiochemical parameters of the natural
compound AIL met with ‘Lipinski’s Rule of Five’ (Supplementary
Methods). Indeed, compounds possessing properties that exceed
the Lipinski rules tend to have low oral bioavailability. Our results
suggest that, if potential gastrointestinal toxicity can be overcome
through dosage modulation, AIL can be developed as a potential
drug candidate with various drug formulations because of its ideal
solubility and bioavailability.

This study also explored the mechanism of AIL-induced AR
degradation. We found that AIL disrupted the interaction
between AR and the chaperones HSP90, HSP70 and HSP40,
and consequently AR was ubiquitinated and degradated through
the proteasome-mediated pathway. When not bound to ligand,
AR resides in the cytosol bound to the foldosome, a complex of
heat shock, chaperone and co-chaperone proteins including
HSP90, HSP70, HSP40 and p23, among others24. The HSP90
dimer undergoes an ATP-driven reaction cycle. Various cofactors
were regulated in this cycle: CDC37, which delivers certain kinase
substrates to HSP90 and inhibits the ATPase activity; HOP,
which reversibly links together the protein chaperones Hsp70 and
Hsp90; p23, which stabilizes the dimerized form of HSP90 before
ATP hydrolysis36; and HDAC6, which mediates acetylation/
deacetylation of HSP90 (ref. 40). Inhibiting the chaperone HSP90
causes AR instability or blocks nuclear translocation41–43. Since
AIL did not bind to HSP90 or affect chaperone expression, our
results suggest that AIL is not an ATP competitive inhibitor of
HSP90 like 17-AAG. However, AIL could bind to p23 protein
which is very important for the stabilization of the HSP90-
complex36 and AIL prevented the interaction of HSP90 with p23.
Given that AIL was able to bind to p23 and knockdown of p23
substantially prevented AIL-induced cell growth arrest (Fig. 5b
and Supplementary Fig. 10b; Supplementary Methods), we
propose that AIL induces AR degradation through binding to
p23 and disrupting the HSP90-client complex. Furthermore,
constitutively active AR variant expression does not
confer resistance to AIL. Indeed, recent papers have shown that
constitutively active AR variants played their roles independently
of the HSP90 chaperone but did not confer resistance to HSP90
inhibitors44,45, indicating that the mechanisms of AIL also
include HSP90 complex inhibition. Not surprisingly, AIL also
suppressed the activities of other nuclear receptors including
progesterone and glucocorticoid receptor (Supplementary
Fig. 7g), indicating that repression of glucocorticoid and
progesterone receptor signalling might contribute the
therapeutic efficiencies of AIL in CRPC. At higher
concentrations (up to 10 mM as well as 50mM), AIL also
significantly decreased the cell growth of PC3 and DU145
(Fig. 1e and Supplementary Fig. 2), which might be caused by the
degradation of other p23 clients (AKT and Cdk4). Indeed,
prostate cancer cells that express AR showed greater sensitivity to
inhibition of growth by AIL at lower concentration, suggesting
the degradation of AR by AIL plays a major role in inhibiting cell
growth of AR-positive prostate cancer cells at low concentrations
of AIL. Alternatively, the degradation of AR and other clients
including AKT and Cdk4 may have induced synthetic lethality by
blocking multiple signal pathways in AR positive cells, rendering
AR positive cell lines sensitive to AIL. Knockdown of AR
achieved only about 30% growth inhibition, whereas p23
knockdown was more effective in inhibiting 22Rv1 cell growth
(Supplementary Fig. 10b), suggesting that other downstream
targets of AIL mediated by the inhibition of p23, such as AKT,
Cdk4 or others are important for prostate cancer cell growth
inhibition. Therefore, we conclude that targeting p23 is the major
mechanism of AIL. Meanwhile, AIL-induced AR degradation is at
least a critical mechanism of AIL-dependent cell growth
inhibition in prostate cancer. Since overexpression of p23 could

Table 1 | The pharmacokinetic parameters of AIL after oral
administration or intravenous injection in rats (mean±s.d.).

Pharmacokinetic
parameters

p.o. (5 mg kg� 1)
n¼6

i.v. (1 mg kg� 1)
n¼6

T1/2 (min) 730.2±155.9 113.3±39.6
Tmax (min) 23.3±31.8 —
Cmax (ng ml� 1) 87.0±16.4 —
Cmax (nM) 231.1±43.6
C0 (ng ml� 1) — 1,653.2±98.6
C0 (nM) 4,392.1±261.9
AUC0–t (min ng ml� 1) 67,324.5±7,405.3 57,874.3±6,871.1
AUC0–N (min ng ml� 1) 79,053.9±14,616.6 61,517.4±5,986.2
Bioavailability 25.7% —
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not totally rescue the AIL-induced cell growth inhibition
(Supplementary Fig. 10e), we conclude that p23 also has other
potential targets including protein synthesis46.

In fact, how AIL regulates the molecular conformation of p23
and prevents the interaction of p23 with HSP90 remains
undetermined in our work. Clarifying the mechanism of AIL
remains to be further investigated.

p23 is able to increase the AR protein level and AR
transcriptional activity which is independent of its role in the
HSP90 foldosome complex30. Significantly, p23 expression is
implicated in resistance to HSP90 inhibitors28, and plays a role in
PCa metastasis. Consequently, inhibition of p23 is likely to
counteract CRPCs that have developed resistance to HSP90
inhibitors, and AIL may serve to synergistically enhance the
efficacy of HSP90 inhibition in ablating CRPC in addition to its
efficacy as a solitary agent against CRPC. CEL that effectively
inhibits prostate cancer cells47,48 has been reported to inhibit p23
function and to bind to three cystine residues of p23: Cys-40,
Cys-58 and Cys-75 (ref. 49). Importantly, our molecular
modelling indicates that AIL binds to a different region of p23
(Fig. 5c; Supplementary Methods), suggesting that AIL has the
potential to synergize with CEL in inhibiting p23. Finally, p23 has
also been implicated in breast cancer lymph node metastasis and
drug resistance31, highlighting the potential value of AIL in
treating multiple cancer types.

In conclusion, we screened and characterized AIL, a novel
compound with excellent drug-like characteristics that is able to
overcome MDV3100-resistance in prostate cancer cell lines. AIL
was efficacious in suppressing the growth and metastasis of CRPC
via targeting p23. As a result, AIL can be considered a new
potential drug candidate for prostate cancer, and it is worthy of
further research and investigation.

Methods
Cell culture. Prostate cancer cell lines c4-2b, LAPC4 and normal prostate
epithelial cell line RWPE-1 used in this study were kindly provided by
Dr Ying-Hao Sun (Department of Urology, Changhai Hospital, Shanghai, China).
Other human prostate cancer cell lines were purchased from the Cell bank of the
Chinese Academy of Science. The cell lines were authenticated by short tandem
repeat analysis and mycoplasma contamination was tested by the PCR
Mycoplasma Detection Set (Takara, Otsu, Japan). 293T cells were routinely
maintained in DMEM (Gibco), while prostate cancer cells were cultured in RPMI
1640 (Gibco). Media were supplemented with 10% FBS (BioWest, catalogue
no. S1580-500) and 1% penicillin/streptomycin unless otherwise specified.
RWPE-1 was cultured in serum-free medium (Invitrogen, Carlsbad, CA).

Dual luciferase screening assay. For dual luciferase screening assay, prostate
cancer cells were transfected with MMTV-luc, Renilla-luc (phRL-TK, Promega),
AR or AR1-651 (vector: pFLAG-CMV-1) plasmids (provided by Dr Jie-Min
Wong)50 using lipofectamine 2000 (Invitrogen) according to the manufacturer’s
instructions. After transfection for 24 h, the transfected cells were treated with
DHT (Sigma, catalogue no. A8380) or DHT with compounds for 12 h. Renilla and
firefly activities were then determined by luminometry using the Dual-Luciferase
Reporter Assay System (Promega) and the ratio calculated. Results were expressed
as the ratio of firefly to Renilla luciferase activity.

Quantitative real-time PCR. Cells were cultured with RPMI 1640 with 5%
charcoal dextran-treated FBS for 5 days before treatment with R1881 (Sigma,
catalogue no. R0908) alone or R1881 and AIL for 12 h. Total RNA was extracted
using TRIzol (Takara, Japan) according to the manufacturer’s instructions. One
microgram of total RNA was used for complementary DNA synthesis using a
cDNA reverse transcription kit (Takara, Japan). Real-time PCR was performed in
triplicate using gene-specific primers on a Stratagene Mx3005P PCR system

(Agilent Technologies) machine. The mRNA expression levels were normalized to
b-actin expression or GAPDH. All analysis was performed using Microsoft Excel
2010 and GraphPad Prism 5 software. The gene-specific primers are listed in
Supplementary Table 2.

SRB assay. For SRB assay, cells were cultured in complete RPMI 1640 and
incubated with indicated concentrations of AIL or cells were maintained in
fresh phenol red-free RPMI 1640 medium with 5% charcoal-stripped FBS
(c-FBS; Wisent), 1 nM DHT and indicated compounds. After 48 or 72 h, the cells
were then fixed and the cell growth was detected with the SRB assay51. AIL was
purchased from Shanghai Zhanshu Chemical Technology, Co., Ltd (Shanghai,
China). BIC and MDV3100 (MDV) were purchased from Selleckchem.

Cell colony formation assay. For colony formation assay, prostate cancer cells
were incubated with indicated concentrations of AIL in complete RPMI 1640 for
2 weeks and then cells were fixed with 4% paraformaldehyde and stained with
crystal violet. Colonies were visualized under a microscope, and all of the fields
were imaged and counted. Colony formation as a percentage of vehicle control for
each cell line is presented.

Western blotting. Cells were treated as described in the corresponding section of
Results and then lysed by boiling for 10 min in sample buffer (2% SDS, 10%
glycerol, 10% b-mercaptoethanol, bromphenol blue and Tris-HCl, pH 6.8). Lysates
were fractionated on polyacrylamide gels and transferred to nitrocellulose. The
blots were probed with specific antibodies followed by secondary antibody then
membranes were examined using the LI-COR Odyssey infrared imaging system
(LI-COR Biotechnology, Lincoln NE). The AR (N20, sc-816 and H280, sc-13062;
1:1,000), HSP90 (sc-7947; 1:1,000), and Cdk4 (sc-260; 1:1,000) antibodies were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The HSP70 (1776-1;
1:5,000), HSP40 (3532-1; 1:1,000) and ubiquitin (1646-1; 1:1,000) antibodies were
purchased from Epitomics (Burlingame, CA). p23 (ab92503; 1:1,000) and Hop
(ab126724; 1:1,000) antibodies were purchased from Abcam (Cambridge, MA).
Akt (4691; 1:1,000) and HDAC6 (7558; 1:1,000) antibodies were purchased from
Cell Signaling Technology (Danvers, MA). CDC37 (4222S; 1:1,000) antibody was
purchased Biogot Biotechnology Co., Ltd (Shanghai, China). The b-actin antibody
(1:10,000) was purchased from Sigma (St Louis, MO). The secondary antibody was
conjugated with IRDye 680/800 (Millennium Science; 926–32221, 926–32210;
1:10,000). Uncropped western blots are shown in Supplementary Fig. 13.

Co-immunoprecipitation. 22RV1 and LNCaP cells were treated with or without
AIL in the presence of 10mM MG132. After 24 h, cells were washed with cold PBS
and collected in immunoprecipitation buffer (0.1% Triton X-100, 2 mg ml� 1

aprotinin, 100 mg ml� 1 PMSF, 100 mM NaCl in 50 mM Tris-HCl, pH 7.2). The
lysate was lysed for 1 h at 4 �C and centrifuged at 16,000g. The supernatants were
incubated with 2 mg antibody to AR (Santa Cruz, H280), HSP90 (Santa Cruz,
sc-7947) or HSP70 (Epitomics, 1776-1) with 20 ml of protein A/G (Abmart) and
rocked for 2.5 h at 4 �C. The protein A/G beads were pelleted and washed three
times with immunoprecipitation wash buffer. The precipitates were resolved on
SDS– polyacrylamide gel electrophoresis gel and subjected to western blot analysis.

In vivo subcutaneous tumour growth xenograft models. BALB/c-nude mice
(6–8-weekold, male) were purchased from the Sino-British Sippr/BK Lab Animal
Co., Ltd (Shanghai, China) and maintained under pathogen-free conditions. The
animal use protocol was approved by the Institutional Animal Care and Use
Committee of East China Normal University. The 22RV1, LNCaP and VCaP
xenograft tumour models were developed by injecting 3� 106 22RV1 cells or
5� 106 LNCaP or VCaP cells in suspension into the right flank of a BALB/c-nude
mouse; cells were suspended in 100 ml PBS or 50% matrigel (LNCaP and VCaP),
respectively. Specifically for LNCaP and VCaP cells, continuous release
testosterone pellets (15 mg testosterone per pellet, Sigma-Aldrich) were implanted
subcutaneously to stimulate the growth of LNCaP and VCaP xenografts. Tumour
nodules were allowed to grow to a volume of about 100 mm3 before initiating
treatment. Tumour-bearing BALB/c-nude mice were randomly assigned to three
groups and treated with the indicated compound or drug. The tumour volume
and mouse body weight were measured twice a week. The tumour volume was
calculated using the following equation: tumour volume (V)¼ length�width
�width� 0.52.

Orthotopic castration-resistant prostate cancer model. For orthotopic
castration-resistant prostate cancer xenografts, male BALB/c-nude mice (8–9 weeks
of age) were anaesthetized using 150 mg kg� 1 2, 2, 2-tribromethanol plus
350 mg kg� 1 tert-amyl alcohol and then 5� 105 22RV1-luc cells suspended in
30 ml 50% matrigel were surgically injected into the dorsolateral prostate lobes.
One week after injection, the tumour-bearing mice were castrated and randomly
assigned to three groups. A week later, animals were intraperitoneally injected with
AIL (2 mg kg� 1), MDV (10 mg kg� 1) or DMSO (as controls). Prostate tumour
growth and local metastasis were monitored weekly using the IVIS Imaging

Table 2 | Parameters of docking studies.

X Y Z

Centre 3.261 19.118 33.447
Size of box 42 40 44
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System (Xenogen Corporation, Alameda, CA). Images and measurements of
bioluminescent signals were acquired and analysed using Living Image and
Xenogen software52.

Histology and immunohistochemistry. Tumours or mouse tissue samples were
immediately fixed in 10% neutral buffered formaldehyde for 24 h, progressively
dehydrated in solutions containing an increasing percentage of ethanol (75, 85,
95 and 100%, v/v), and embedded into paraffin blocks. For immunohistochemical
(IHC) staining, sections were cut from the paraffin blocks and IHC was carried out
using anti-Ki-67 (1:250), and anti-AR (1:50; N-20) as primary antibodies. Samples
were stained with haematoxylin–eosin (HE) to indicate nucleus and cytoplasm,
respectively.

Geldanamycin-FITC fluorescence polarization assay. Fluorescence polarization
assay53 measurement of binding affinities between AIL and p23 as well as HSP90
was used to confirm whether AIL inhibited fluorescein-conjugated geldanamycin
(FITC-GA) binding to the ATPase site of the HSP90a isoform. Detailedly, FITC-
GA (Invivogen, catalogue no. ant-fgl-1) was dispensed into wells containing AIL at
a final concentration of 0.16 nM FITC-GA. HSP90a recombinant protein (BPS,
catalogue no. 50290) in buffer (50 mM KCl, 5 mM MgCl2, 20 mM HEPES,
pH 7.3� 7.5, 0.1% CHAPS (Sigma, catalogue no. C5070), 0.1% bovine gamma-
globulin (Sigma, catalogue no. G7516) and 2 mM dithiothreitol (Sigma, catalogue
no. 646563) was then added to the well at final concentration of 30 nM. For IC50

determination, 100 mM AIL was serially diluted 1:4 by transferring 20 ml into 60 ml
of 100% DMSO into successive wells for a total of 10 final concentrations. As a
positive control, 10mM 17-AAG (Selleckchem, catalogue no. S1141) was serially
diluted 1:10 by transferring 10 to 90 ml of 100% DMSO in the next well repeatedly
for a total of 10 final concentrations. The assay plate was covered and incubated at
4 �C overnight. Data were collected on Victor-3 with the setting Ex480/Em535. mP
values were converted to percent inhibition values. Percent inhibition¼ (sample
RLU�min)/(max�min)� 100%. ‘min’ means the mP of no enzyme control and
‘max’ means the mP of DMSO control. Data were graphed in MS Excel and the
curves were fitted by XLFit Excel add-in version 4.3.1.

AIL-p23 docking studies. The protein structure of p23 was obtained from Protein
Data Bank (PDB ID: 1EJF) and the PDB file was processed by removing water
molecules and cations for the next docking step. Docking studies were performed
by using Autodock Vina 1.1.2, and all images were generated in UCSF Chimera 1.8.
The protein structure of p23 was obtained from Protein Data Bank (PDB ID: 1EJF)
and the PDB file was processed by removing water molecules and SO4

2� for the
next docking step. Docking studies were performed by using Autodock Vina 1.1.2,
and all images were generated in UCSF Chimera 1.8. The active site was similar to
the reported site49,54,55. The correlative parameters were listed in Table 2 and other
parameters chosen were: num_modes¼ 9 and exhaustiveness¼ 16. The lowest
energy conformation was chosen for binding model analysis.

Pharmacokinetic studies and CYP-associated metabolic studies. Pharmaco-
kinetic studies in vivo37 and CYP-associated metabolic studies in vitro56 were
performed using the method reported previously in our laboratory. In this study,
the effects of AIL on CYP activities were investigated using rat and human liver
microsomes, employing phenacetin (CYP1A2), tolbutamide (CYP2C9/11),
dextromethorphan (CYP2D1/6), chlorzoxazone (CYP2E1) and testosterone
(CYP3A2/4) as the probe substrates. They were analysed on an Agilent 1260 series
instrument with DAD detection and separated by an Agilent ZORBAX Eclipse
XDB-C18 column (4.6� 150 mm, 5 mm) with a guard column in the respective
gradient elution procedure. The incubation system, sample preparation and
chromatography conditions are as described previously56.

AIL treatment of tumour-bearing BALB/c-nude mice. 22RV1 xenografts
were performed as descripted in ‘In vivo subcutaneous tumour growth xenograft
models’ above. After the volume of a tumour nodule reached about 100 mm3,
tumour-bearing BALB/c-nude mice were randomly assigned to three groups and
treated with 2 mg kg� 1 AIL (intraperitoneal injection, i.p.) or 5 mg kg� 1 (oral
administration, p.o.) and the control group was orally treated with an equal volume
of PBS (p.o.). Since we found that AIL was water soluble, AIL was dissolved in PBS
in this experiment. After 30 days of treatment, all nude mice were subjected to
retroorbital bleeding to obtain blood samples, and then were killed. Plasma samples
were collected at the indicated time points after the last administration.

HPLC-MS/MS determination of AIL concentrations. A simple and sensitive
method for the determination of AIL in plasma was developed, using high-
performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).
Brusatol was used as an internal standard. Separation was achieved on an Agilent
Zorbax Eclipse Plus C18 column (2.1� 50 mm, 1.8 mm; USA) with gradient elution
using water–methanol as mobile phase at a flow rate of 0.2 ml min� 1, and total run
time was 7.0 min. A triple quadrupole mass spectrometer operating in the negative
electrospray ionization mode with multiple reaction monitoring was used to detect

AIL and IS transitions of 375.2-301.1 and 519.1-437.4, respectively. The details
of this HPLC-MS/MS method and sample preparation are described in our
previous study37.

Statistical analysis. The statistical analysis was performed by SPSS 22.0 software.
The differences between control group and experimental groups were determined
by one-way analysis of variance. Since treatment and time course was investigated,
two-way analysis of variance followed by post hoc test was also applied. Data
were expressed as mean and s.d., and Po0.05 was considered significant.
Pharmacokinetic parameters were calculated by WinNonlin software version 5.2.1
(Pharsight Corporation, Mountain View, USA) based on noncompartmental
analysis.

Data availability. RNA-seq data have been deposited into NCBI Gene Expression
Omnibus with accession number GSE85541. (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token=kbavwmoqdrahfel&acc=GSE85541).
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