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Two-dimensional flow nanometry of biological
nanoparticles for accurate determination of their
size and emission intensity
Stephan Block1,w, Björn Johansson Fast1, Anders Lundgren1,2, Vladimir P. Zhdanov1,3 & Fredrik Höök1

Biological nanoparticles (BNPs) are of high interest due to their key role in various biological

processes and use as biomarkers. BNP size and composition are decisive for their functions,

but simultaneous determination of both properties with high accuracy remains challenging.

Optical microscopy allows precise determination of fluorescence/scattering intensity, but not

the size of individual BNPs. The latter is better determined by tracking their random motion in

bulk, but the limited illumination volume for tracking this motion impedes reliable intensity

determination. Here, we show that by attaching BNPs to a supported lipid bilayer, subjecting

them to hydrodynamic flows and tracking their motion via surface-sensitive optical

imaging enable determination of their diffusion coefficients and flow-induced drifts, from

which accurate quantification of both BNP size and emission intensity can be made.

For vesicles, the accuracy of this approach is demonstrated by resolving the expected radius-

squared dependence of their fluorescence intensity for radii down to 15 nm.
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B
iological nanoparticles (BNPs) like viruses, micelles,
exosomes, vesicles or biologically functionalized
particles are of high relevance for current research as

they are involved in a multitude of processes (for example,
transmission of viral diseases1,2 and exosome-mediated cell–cell
communication3,4) or are promising candidates for novel
therapeutic approaches (for example, functionalized vesicles and
NPs for targeted drug delivery5,6). A full characterization of
BNPs requires determination of their size (typically ranging
between 20 and 200 nm) as well as the amount of a particular
biocompound (for example, expression levels of surface
proteins/markers on NPs or DNA/RNA content carried by
exosomes). The latter is accessible using appropriate staining
procedures, allowing the compound of interest to be quantified
based on the emitted fluorescence intensity.

For mm-sized objects such as cells, flow cytometry has proven
to be a versatile approach for such measurements7. Since its
first introduction in 1953 (ref. 8), it has been developed into
sophisticated high-end tools for characterization of living cells
based on their scattering and fluorescence intensity, allowing now
up to 34 different cell parameters to be scrutinized9. However,
direct application of this technique to smaller objects like BNPs
remains challenging as the passage time across the detection
region is too short to enable conversion of the weak scattering
and fluorescence signals into a quantitative analysis of BNP size,
optical density or biomarker content and, importantly, to make
correlations between these parameters10–16.

During the past years, nanoparticle tracking analysis (NTA)
has emerged as an attractive alternative to flow cytometry.
By light-scattering and/or fluorescence imaging combined with
the analysis of the Brownian motion of suspended sub-micron
particles, high-precision size distributions of BNPs with radii
smaller than 50 nm have been demonstrated17. However, since
the position of randomly diffusing NPs with respect to the
illumination profile varies over time, scattering/fluorescence
intensity signals are subject to large variations, causing
disturbing fluctuations in plots correlating NP intensity and
size18. Consequently, it is usually not possible to correlate NP size
to optical density and/or specific biomolecular content on the
single-NP level.

To reach high accuracy in the determination of the
fluorescence intensity emitted by BNPs, Stamou and co-workers19

developed an assay, in which fluorescently labelled vesicles were
immobilized at a glass interface and imaged using confocal
microscopy. This setup has the advantage that the BNPs are
spatially fixed, allowing their intensity profile to be extracted
with high reproducibility. Due to the immobilization, however,
Brownian motion cannot be used to extract the BNP size
distribution. Hence, two different fluorescent dyes generally have
to be used for BNP characterization: one to extract the size
distribution19, and one to detect the biomolecular compound of
interest20. Furthermore, recent measurements from the same
group cast doubts on the validity of this approach, since especially
for small vesicles (diameter B100 nm) large heterogeneities in the
dye distribution among the vesicles were observed causing
uncertainties in the size determination21,22.

Accurate BNP characterization would therefore benefit from an
approach that sufficiently restricts the BNP movement to
allow for an accurate quantification of their emitted scattering
or fluorescence intensity, while still permitting a Brownian
movement, which can be used for accurate size determination.
Herein, we describe such an approach, in which the BNPs of
interest are linked to a fluid interface or, more specifically, a lipid
bilayer supported at the bottom of a microfluidic channel, while
the in-plane BNP movements are recorded using microscopy.
Application of hydrodynamic forces on the BNPs induces their

drift in flow direction, while the movement perpendicular to the
flow remains random, allowing the BNP size to be accurately
determined by quantifying the deterministic and random
components of the movement. The concept is demonstrated
using different linking strategies, all being capable of restricting
the movement in two dimensions while keeping the BNPs
mobile, and on different BNPs (functionalized gold NPs and
small unilamellar vesicles, (SUVs)). Finally, high accuracy in
the determination of BNP size and intensity is confirmed by
clearly resolving the expected physical dependence between both
parameters.

Results
Theoretical considerations. The conventional NTA for deter-
mination of NP size distributions using single-particle tracking
(SPT) exploits the fact that the bulk-diffusion coefficient Db of
spherical NPs (for example, vesicles, exosomes and so on) within
a viscous medium is connected to the hydrodynamic NP radius R
by the Stokes–Einstein relation23,

Db ¼
kB � T

6p � Z � R ; ð1Þ

where kB is the Boltzmann constant, T the absolute temperature
and Z the dynamic viscosity. The random NP movement is tracked
using microscopy and Db is extracted for each recorded NP
trajectory, allowing to create R histograms using equation (1). The
measured NP trajectory is usually a two-dimensional (2D)
projection of a three-dimensional (3D) movement onto the focal
plane of the microscope, as only those NPs can be tracked that are
sufficiently close to the focal plane.

As shown in Supplementary Note 1, the main source of
random errors in such bulk-based size determination is given by
the stochastic noise that is inherent to random walks and has a
relative standard deviation sR/R given by

sR

R
¼ DR2h i1=2

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
� Np

N �Np

s
; ðfor NpooNÞ ð2Þ

where N denotes the number of frames of the analysed track and
Np the maximum data point separation used in the internal
averaging (that is, the product of Np and the time between two
consecutive frames, Dt0, gives the maximum lag time involved in
the extraction of Db; see Supplementary Note 1 for details). High
accuracy in the determination of R therefore requires trajectories
covering as many frames N as possible, which is limited, however,
by the fact that a NP has to be sufficiently close to the focal plane
to be trackable. The average track length can be estimated by
(Supplementary Note 1):

oN4 ¼ Dt=Dt0 ¼ z2
R=2DbDt0; ð3Þ

where zR denotes the depth of focus. Inserting typical values
of commercial implementations (zRB5 mm, acquisition rate
1/Dt0¼ 30 f.p.s.)24 leads to an average trajectory length o100
frames for spherical NPs having R¼ 50 nm (Db¼ 4.4 mm2 s� 1 in
water at 20 �C) and therefore to measurement uncertainties
exceeding 9% (equation (2) with Np¼ 1) for R.

The random NP movement through the focal plane obviously
limits the accuracy in bulk-based SPT. This can be avoided,
however, by restricting the movement of NPs in 2D, for example,
by linking them to a fluid interface like a fluid-phase supported
lipid bilayer (SLB). This procedure keeps the NPs within the focal
plane, thereby increasing the observation time and the accuracy
in the measurement of NP properties (for example, its 2D
diffusion coefficient, D, as well as its fluorescence or scattering
intensities; see Supplementary Note 1). Such attempts, however,
have not yet been successful for size determinations, since due to
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the high friction the linkers experience within the SLB, the
D value of the NPs is after linking determined by the used
linkers rather than by the NP’s hydrodynamic size25. Hence, the
Stokes–Einstein relation (equation (1)) cannot be applied to
extract R from D, as done in bulk-based approaches.

As shown here, this apparent shortcoming can be
circumvented, if one instead studies linker-constrained 2D NP
movement within a microfluidic channel under the influence by a
shear flow parallel to the SLB (Fig. 1a). This generates a
hydrodynamic shear force Fs acting on the NP in the direction of
the flow, causing a NP drift in the flow direction, while
perpendicular to the flow the constrained movement remains
random (Fig. 1b). In theory, the NP D value and average velocity
vx in the flow direction (denoted as x-axis in the following, see
Fig. 1b) are connected by the Einstein–Smoluchowski relation23:

D
kB � T

¼ vx

Fs
: ð4Þ

This relation can be derived from the fluctuation-dissipation-
theorem, which states that the forces, causing random
fluctuations in the equilibrium state (here, the random forces
generated by the diffusing lipids interacting with the linker), also
create a dissipation/friction if the system is subject to a non-
random force (here, the shear force creating a directed NP
movement)26.

The derivation of equation (4) implies that the flow-induced
motion of the SLB is negligible. This is the case provided that
the channel flow rate is below a certain threshold value
(B100ml min� 1 for the channel design shown in Fig. 1)27,
otherwise equation (4) should be complemented by additional
parameters28. This constraint, however, creates no real limitation,
since all flow rates used in this study are far below this threshold.
It is also of interest that equation (4) is applicable irrespective of
the tiny mechanistic details of NP diffusion, numbers of linkers
per NP, and the mechanism of force formation. In our case, as
already mentioned, D is determined by the linker–lipid
interaction, because for single linkers the diffusion coefficient is
typically much smaller (DB1mm2 s� 1) (refs 25, 29–31) than that
for NP in bulk provided R is below 200 nm. In contrast, the value
of the drift-inducing force is determined primarily by the NP-
solution interaction, while the role of a linker is nearly negligible.

If vx and D are extractable from single-NP trajectories,
application of equation (4) allows us to directly calculate Fs acting
on the particular NP. Furthermore, since this force dependends on
the NP hydrodynamic radius, it can be used to determine R. We
will in the following denote this interface-based approach as 2D
flow nanometry. If z is the coordinate perpendicular to the SLB
(with the SLB interface at z¼ 0 and z pointing towards the centre
of the channel), an analysis shows that Fs scales, in laminar flows,
with the product of flow velocity at z¼R, that is, at the middle of
the NP27,28,32 (provided the linker length is negligible), allowing us
to write (Supplementary Note 2)

FsðRÞ ¼ A � Z � v0 � R � ðRþ lÞ; ð5Þ
with A denoting a constant pre-factor (that accounts for the
inhomogeneous flow profile around the NP), v0 the flow rate
through the channel and the length l specifying the solution
behaviour just near the SLB-solution interface (this length is
expected to be a few nm; in general, it may include the linker
length above the SLB, but in our case this contribution to l is
negligible). Note that neither A nor l depend on R or NP type and
that both can be determined using calibration measurements
(see the subsection ‘Calibration using well-defined gold NPs’ given
below). Consequently, equation (5) can then be employed generally
to relate Fs (measured using equation (4)) and R, once the used
channel design has been calibrated.

Calibration using well-defined gold NPs. To test the concept of
NP size determination based on 2D flow nanometry, it is most
convenient to analyse particles of well-defined size. This was done
here using gold NPs, the size distribution of which had been
determined by electron microscopy (EM). These NPs were linked
via streptavidin to biotin-conjugated lipids in the SLB (Fig. 2a; see
the ‘Methods’ section for details). Due to their high refractive
index contrast to the surrounding liquid, SPT of SLB-linked NPs
was done label-free using surface-enhanced ellipsometric contrast
imaging33.

Figure 1b shows typical trajectories of gold NPs (RE30 nm)
measured for flow rates of 5, 10 and 15 ml min� 1, respectively.
The flow rate was observed to increase the rate of the movement
in the direction of the flow, which is well reflected in the x- and
y-components of the trajectories (that is, in components parallel
and perpendicular to the flow direction). While a predominantly
linear increase of the x-position was observed (Fig. 2b), indicating
a drift in the flow direction, the movement along the
y-axis indeed appeared to be purely random, as indicated by
non-directed fluctuations of the y-position displaying no obvious
trend (Fig. 2c). The drift was, however, superimposed
by fluctuations, causing minor deviations from a perfect linear
increase in x-position over time (Supplementary Fig. 1).
A stringent analysis revealed (Supplementary Note 3) that vx
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Figure 1 | Size determination of nm-sized objects using 2D flow

nanometry. (a) The objects (for example, gold nanoparticles or liposomes)

are linked to a fluid interface (for example, a fluid-phase SLB) within a

microfluidic channel (using a design as recently described27). The linking

confines the object’s movement into two dimensions, but maintains its

ability to move freely. Its movement is monitored from below, for example

using scattering, confocal or TIRF imaging. This is demonstrated in b for the

particular example of streptavidin-functionalized gold nanoparticles

(hydrodynamic radius 30 nm) that are linked to biotinylated lipids in the

SLB and label-free monitored using surface-enhanced ellipsometric contrast

(SEEC) imaging. Application of a flow through the channel creates a shear

force, which depends on the flow rate (applied to the channel; 5 ml min� 1,

10ml min� 1 and 15ml min� 1 from top to bottom in b) and the object’s

hydrodynamic size. Shown are only the first 100 frames (¼ steps) of each

trajectory corresponding to an observation time of 3 s. The red trajectory is

further analysed in Fig. 2.
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can be extracted from the linear increase of the x-position, while
the diffusion coefficients in the x- and y-directions, Dx and Dy,
can be determined from the fluctuations of the x- and y-
components, respectively. Since the SLB is a 2D isotropic
medium, Dx and Dy are expected to be equal, which is (within
experimental error) observed for the gold NPs (Supplementary
Fig. 2), demonstrating that the data-extraction procedure
successfully decouples the directed and random NP movements
and allows calculating the 2D diffusion coefficient D (as an
arithmetic average of Dx and Dy) and Fs using equation (4).

Furthermore, equations (4 and 5) suggest that vx scales linearly
with v0 and D, which is consistent with our observations
(Supplementary Fig. 3). Hence, after normalizing vx by the
applied flow rate v0, all data points collapse onto a single master
curve (red line in Supplementary Fig. 3d), allowing to
quantitatively relate experiments performed at different v0 by
regarding rather the normalized velocity vx/v0 instead of vx itself.
Note that the noise in Supplementary Fig. 3 decreased with
increasing v0, which is attributed to the fact that higher flow rates
induce larger NP displacements between consecutive frames.
This in turn increases the signal-to-noise ratio in the
measurement of vx. Hence, the random error in the determina-
tion of Fs can be reduced by increasing v0 (as suggested in
Supplementary Note 1), an optimization strategy that is not
supplied by bulk-based approaches.

As already noted, substituting vx and D into equation (4)
makes it possible to directly extract Fs acting on each tracked NP.
Fig. 2d shows histograms of the normalized hydrodynamic
force, Fs/v0, measured for NPs having average hydrodynamic
radii of 30, 50 and 105 nm, exhibiting peaks in the Fs/v0-
distributions at 1.60, 4.05 and 10.83 fN min ml� 1, respectively.
These measurements allowed determining the calibration

parameters A and l in equation (5) (Fig. 2e, solid line), and
therefore to calibrate the microfluidic channel for the determina-
tion of full size distributions yielding l¼ 24.4 nm and AZ¼ 1
fN min ml� 1 (see also Supplementary Note 4 for detailed
description and discussion of the calibration procedure).

This is further demonstrated in Fig. 3 and Supplementary
Fig. 4 comparing size distributions obtained from 2D flow
nanometry and EM. Both methods yielded essentially the same
distributions if a shift of 5 nm is taken into account, which is
attributed to the PEG corona formed on the NP surface that is
not resolvable in the EM images34. Repetition of such
measurements indicated high reproducibility (Supplementary
Fig. 5a). In addition, linking the gold NPs specifically to
transmembrane proteins (using an antibody-functionalized PEG
corona as recently described by Johansson Fast35) instead of using
biotin–streptavidin-links did not affect the extracted distributions
(Supplementary Fig. 5b), indicating also minor influence of the
particular linking strategy.

Correlation of size and fluorescence intensity of SUVs. For
further validation of the proposed 2D flow nanometry approach,
it was applied to analyse sub-100 nm vesicles (Fig. 4). The
vesicles (fluorescently labelled by incorporation of lissamine
rhodamine-conjugated lipids) were linked to the SLB using
cholesterol-conjugated DNA-tethers (Supplementary Fig. 6 and
Supplementary Note 5) and tracked using total internal reflection
fluorescence microscopy (TIRFM), as previously described25,29.
A good agreement between the 2D flow nanometry size
distributions and those obtained with NTA (Fig. 4b) and
dynamic light scattering (DLS, Fig. 4c) was observed (see also
Supplementary Figs 7 and 8). Interestingly, while the NTA size
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Figure 2 | Calibration using well-defined gold nanoparticles. Streptavidin-functionalized gold nanoparticles (a; with a PEG shell thickness of 5 nm) are

linked to biotinylated lipids (linker length of B5 nm) in the SLB and label-free monitored using surface-enhanced ellipsometric contrast (SEEC) imaging.

(b,c) give a decomposition of a representative trajectory (30 nm gold nanoparticle; 15 ml min� 1 flow rate) into its component in flow direction (x-axis) and

perpendicular to the flow (y-axis). Due to the flow, the x-component is dominated by a directed movement (indicated by its linear increase with time),

allowing to extract the induced velocity vx, while the y-component remains (due to absence of shear force in this direction) fully random and allows to

extract the linker diffusion coefficient Dy (see Supplementary Note 3 for details). Combining both information yield the hydrodynamic shear force Fs

acting on the particular nanoparticle. Histograms (d) of Fs (after normalization to the flow rate) exhibit a peak at 1.60 fN min ml� 1 for 30 nm (blue),

at 4.05 fN minml� 1 for 50 nm and at 10.83 fN minml� 1 for 105 nm gold nanoparticles (hydrodynamic radius). These calibration measurements allowed to

fit equation (5) (e), which is required to convert distributions of the hydrodynamic force into size distributions. The solid line in e gives the result of a

weighted least squares fit that also takes the standard deviation of the Fs distribution (error bars) into account and yields l¼ 24.4 nm and

AZ¼ 1 fN minml� 1.
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distribution showed no vesicles with hydrodynamic radii below
25 nm (Fig. 4b), such vesicles were resolved using 2D flow
nanometry and DLS (Fig. 4c). This is one order of magnitude
better than reported for commercial flow cytometers10–16.

In contrast to DLS, which does not offer single-vesicle
resolution, 2D flow nanometry and NTA allow information
about vesicle size and fluorescence intensity to be extracted
(Fig. 5). However, the intensity traces extracted with these
methods differed considerably, which is attributed to the fact that
in 2D flow nanometry the tracked vesicles remain within the focal
plane during their passage through the field of view, leading to
stable intensity traces (Fig. 5a), while in NTA the vesicles were
free to move in 3D and therefore continuously enter and exit the
focal plane, leading as expected (especially for small vesicles) to

strong fluctuations of I (Fig. 5b). Linking the vesicles to a fluid
interface thus led to much better defined I values, which is well
reflected in a plot of R versus I for both vesicle batches (Fig. 5c,d).
In particular, the NTA data points (grey dots) showed strong
fluctuations, making it impossible to resolve the expected scaling
(IpR2, solid line) in this parameter plot. For 2D flow nanometry
(black dots), much lower fluctuations were observed and the
expected scaling (IpR2, solid line)36 is clearly resolved in
the range down to 15 nm, illustrating that maintaining vesicles in
the focal plane during the whole measurement enables accurate
determination of I.

Discussion
A new approach was introduced for the size determination of
NPs, which are linked to a fluid interface within a microfluidic
channel. A shear force (generated by a channel flow) induced a
directed NP movement, while the movement perpendicular toba
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this shear force remained random. This allowed to directly extract
the shear force acting on the NP and therefore its hydrodynamic
size. The approach is versatile (see Supplementary Note 6
for present limitations), which was demonstrated by successful
application on inorganic (gold NPs) and biological NPs
(fluorescent SUVs), using label-free detection based on
surface-enhanced ellipsometric contrast imaging and TIRFM,
respectively. In contrast to the well-established bulk NTA
approach, linking confines the NP movement within the focal
plane in 2D flow nanometry, enabling also accurate extraction of
the emitted NP intensity.

The NP passage time through the field of view can be adjusted
by the channel flow rate, thereby allowing optimizing the
measurement accuracy. Other size-determination approaches lack
such an optimization strategy. The flow rate should be chosen in
such a way that the distance travelled by the directed movement,
vx �Dt0, is larger than the square root of the mean squared
displacement, that is, vx4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � D=Dt0

p
. As D is given by the

diffusion properties of the linker (and not of the NP itself), which
is typically on the order of 1mm2 s� 1, this suggests that vx exceeds
5mm s� 1 for typical acquisition rates of 1/Dt0E10 f.p.s. Using
equation (4) this in turn indicates that the shear force acting on the
NPs should be larger than 25 fN, a value which is independent of
the NP size as it follows from the diffusive properties of the linkers
and acquisition rate of the microscope. Referring back to Fig. 2e,
this shows that (in this study) a flow rate of 15ml min� 1 is
sufficient for NPs with R as small as 20 nm, which is far below the
threshold to induce directed lipid movement in the SLB27.

Further, the field of view of the microscope used in this study
(x-extension B200mm) was large enough to track many of the
gold NPs for at least 150 frames and most of the vesicles for at
least 200 frames. The difference in these numbers is caused by the
slightly lower D value of the vesicles due to the different linking
strategy. This leads (Supplementary Note 1) to expected relative
random errors sR/R of 5% for the gold NPs, corresponding to a
size accuracy of±2 nm for the batches in Fig. 3c,d. These values
seem to be reasonable since the size distributions extracted with
2D flow nanometry and EM are very similar and since the latter is
known to offer nm-resolution for metal NPs.

For vesicles, the expected relative random errors are even lower
with sR/R¼ 4%, translating into±1.5 nm for the batches shown
in Fig. 5. Such high accuracies are indeed necessary to resolve the
R-I relationship (Fig. 5c,d), since increased fluctuations would
otherwise smear out the data points into a point cloud. We
therefore tried to suppress such fluctuations in NTA-derived R-I
plots by increasing the minimum number of frames required
for trajectories to be included in the data analysis. This
indeed reduced the fluctuations, but still did not permit to
unambigeously resolve the expected R-I relationship.

Motivated by Larsen et al.22 we calculated the ratio of
measured and expected intensity (Fig. 5c,d; black dots versus
solid line) to assess heterogeneities in dye-labelled lipid
distributions across individual vesicles (Supplementary Fig. 9).
The s.e. of this ratio is 0.41 and 0.30 (for Fig. 5c,d, respectively),
which is lower than expected from ref. 22, since the standard
deviation increases with decreasing R and since Larsen et al.22

report similar values, although for much larger vesicles (radii
ranging between 50 and 400 nm).

Note that the length l in equation (5), (connecting R and Fs)
was found to be important, since attempts to fit equation (5)
failed for l¼ 0. In particular, the size distribution of the 30 nm
gold NP batch was systematically overestimated, while the ones of
the larger gold NP batches and all vesicle batches became
systematically underestimated. The extracted l value of 24.4 nm is
somewhat larger than intuitively expected, but on the same order
of magnitude as in recent reports37–39. Including also the SUV

data sets into the calibration procedure, which was initally
restricted to the gold NP data sets, yielded essentially the
same fitting parameters (Supplementary Fig. 10), indicating
self-consistency of the approach. Further, flow-induced vesicle
deformation was not observed (Supplementary Fig. 11 and
Supplementary Note 7).

In summary, our experiments have shown that the concept of
2D flow nanometry makes it possible to combine 2 different
approaches, which seemed to be incompatible in the past, that is,
sufficiently restricting the NP movement to allow for accurate
measurements of NP emission, while still permitting them to obey
a Brownian motion, which is required for accurate measurements
of their size. Although so far demonstrated on two generic
examples, application to other BNPs like viruses, micelles and
exosomes appears to be feasible and marks the next steps.

Methods
Materials. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), DSPE-
PEG(2k)biotin (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl
(poly(ethylene glycol))-2000] and rhodamine-DOPE (1,2-dioleoylsn-glycero-3-
phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)) were obtained from
Avanti Polar Lipids Inc. (Alabaster, AL, USA). Cholesterol-terminated DNA
strands were obtained from Eurogentec S.A. (Seraing, Belgium) with the following
sequences: 50-TGGACATCAGAAATAAGGCACGACGGACCC-chol-30 (a);
50-chol-CCCTCCGTCGTGCCT-30 (a0); 50-TATTTCTGATGTCCAAGCCACG
AGTTCCCC-chol-30 (b0); 50-chol-CCCGAACTCGTGGCT-30 (b). Tris(hydrox-
ymethyl)-aminomethane hydrochloride (TRIS-HCl), sodium chloride and calcium
chloride were obtained from Sigma Aldrich (Steinheim, Germany). a-Hydroxy-o-
mercapto-PEG, a-carboxy-o-mercapto-PEG and a-biotinyl-o-mercapto-PEG
(all having a molecular weight of 5 kDa) were purchased from RAPP Polymere
(Tübingen, Germany). If not otherwise stated, all solutions were prepared or
diluted using a TRIS-HCl buffer consisting of 100 mM Tris-HCl, 50 mM NaCl,
5 mM CaCl2 that was adjusted to pH¼ 7.4 using HCl.

Vesicle preparation. SUVs were prepared by the extrusion method as described
earlier40, or, alternatively, by sonication. For extrusion, lipid films were formed in
round-bottom flasks under flowing nitrogen and dried in vacuum, hydrated by
adding 1 ml of the Tris-HCl buffer, followed extruding the mixture through
polycarbonate membranes (Avanti Polar Lipids Inc.). Alternatively, to produce
SUVs with different size distribution, these were formed by sonicating the
lipid–buffer mixture (contained in a test-tube immersed in an ice-bath) using a tip
sonicator for five times 5 min.

Vesicles for SLB formation consisted of 99.8 mol% POPC and 0.2 mol%
DSPE-PEG(2k)biotin, and were extruded (pore size 100 nm), while for SPT two
vesicle batches were created having a composition of 97 mol% POPCþ 3 mol%
rhodamine-DOPE (sonicated; shown in Fig. 5c) or of 98 mol% POPCþ 2 mol%
rhodamine-DOPE (extruded with pore size 50 nm; shown in Fig. 5d).

Gold nanoparticles. Gold NPs with a hydrodynamic radius of 30 nm were syn-
thesized by seed-mediated growth according to a modified version of the protocol
presented by Park et al.41 using ascorbic acid as a reducing agent. The larger gold
NPs were synthesized using the protocol presented by Perrault et al.42 with
hydroquinone as the reducing agent. Gold NPs were surface functionalized by
chemisorption of thiolated poly(ethylene) glycol (PEG) ligands from a mixture of
a-hydroxy-o-mercapto-PEG, a-carboxy-o-mercapto-PEG and a-biotinyl-o-
mercapto-PEG in water solution. With the aim to modify each gold NP with a single
biotinylated ligand, the relative content of a-biotinyl-o-mercapto-PEG in the
mixture was adjusted for the different particle sizes in relation to their different
surface areas. This was done assuming an approximate grafting density of 1 nm� 2

(independent of NP size) for the different thiolated ligands, which means that for
NPs with radius B25 nm and corresponding surface area B8,000 nm2, the content
of a-biotinyl-o-mercapto-PEG was 1/8,000 relative the total content of thiolated
PEG in the mixture. After surface modification, NPs were purified from excess
ligand by filtration using centrifuge filter columns with 300 kDa-cutoff (PALL, USA).
The gold NPs were further conjugated with streptavidin by adding gold NPs to a
solution containing streptavidin in excess, followed by filtration as described above.

NP size distributions were determined by transmission EM. Electron
micrographs were recorded on a FEI Tecnai G2 microscope operated at 160 kV
acceleration voltage. The gold NPs were applied on formvar and carbon-coated
cupper grids (FCF300-Cu-TB, Electron Microscopy Sciences, USA). These samples
were hydrophilized by ultraviolet/ozone treatment for 5 min using an UV/Ozone
ProCleaner from Bioforce Nanoscience and then further treated with poly-L-lysine,
which was applied by positioning the grid upside-down on a small droplet of
poly-L-lysine solution (20mg ml� 1 in MilliQ water). Such-treated grids were
coated with gold NPs by first positioning grids upside-down on top of droplets with
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gold NP suspension (concentrated by centrifugation) for 15 min whereupon grids
were blotted on a filter paper.

TIRF-Microsopy. TIRFM was performed on an inverted Eclipse Ti microscope
(Nikon, Japan) that was equipped with a high-pressure mercury lamp, an Apo
TIRF 60� oil objective (NA 1.49), and an Andor Neo CCD camera (Andor
Technology, Belfast, Northern Ireland). A rhodamine filter set (TRITC, Semrock,
Rochester, NY, USA) was used, while focus drift was effectively reduced using the
microscope’s Perfect Focus System.

SLB formation and vesicle tethering. All TIRF experiments were performed on
glass microscope coverslips as surfaces, which were supplemented with a
home-made polydimethylsiloxane microfluidic channel (using the design as
recently described27). SLBs were formed by injecting POPC vesicles (0.1 mg ml� 1,
flow rate 20ml min� 1 for 20 min), followed by rinsing with the Tris-HCl buffer
(flow rate 20ml min� 1 for 20 min). Vesicles were linked to a SLB using cholesterol-
modified DNA strands as described earlier25,29. In brief, SLBs and vesicles were
incubated separately with two different types of DNA strands, which carry a
double-cholesterol group at one end that self-inserts the strands into the lipid
bilayers. Both types of DNA strands share a conjugated single-stranded
part at the other end, which allows linking vesicles to the SLB via hybridization
(see Supplementary Note 5 for details).

Data analysis. All data analysis was done using home-made scripts written in
MatLab (MathWorks, Natick, MA, USA). SPT was implemented using local
nearest-neighbour linking43. Diffusion coefficients were calculated using the
internal averaging procedure44 with a maximum data point separation Np¼ 2
as described in Supplementary Notes 1 and 3 and corrected for motion blur45.

Data availability. The data that support the findings of this study are available
from the corresponding authors on request.
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geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
Annalen der Physik 322, 549–560 (1905).

24. van der Pol, E., Coumans, F. A., Sturk, A., Nieuwland, R. & van Leeuwen, T. G.
Refractive index determination of nanoparticles in suspension using
nanoparticle tracking analysis. Nano. Lett. 14, 6195–6201 (2014).
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