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Intrinsic limits to gene regulation by global
crosstalk
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Gene regulation relies on the specificity of transcription factor (TF)-DNA interactions.
Limited specificity may lead to crosstalk: a regulatory state in which a gene is either
incorrectly activated due to noncognate TF-DNA interactions or remains erroneously
inactive. As each TF can have numerous interactions with noncognate cis-regulatory
elements, crosstalk is inherently a global problem, yet has previously not been studied as
such. We construct a theoretical framework to analyse the effects of global crosstalk on gene
regulation. We find that crosstalk presents a significant challenge for organisms with
low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory
schemes acting at equilibrium, including variants of cooperativity and combinatorial
regulation. Our results suggest that crosstalk imposes a previously unexplored global
constraint on the functioning and evolution of regulatory networks, which is qualitatively
distinct from the known constraints that act at the level of individual gene regulatory

elements.
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ife depends on the specificity of molecular recognition to

ensure that essential reactions only occur between cognate

substrates even when similar non-cognate substrates are
present, sometimes in large excess. A paradigmatic example is
that of the aminoacyl transfer RNA synthetase!, which uses
kinetic proofreading? to load appropriate amino acids onto
matching tRNAs. This and other examples—including DNA
replication, ligand sensing®, protein-protein interactions*™?,
recognition events in the immune system!®!! and molecular
self-assembly!?—indicate that biology places a large premium on
the reduction of unintended ‘crosstalk’, a generic term that
encompasses all potentially disruptive processes due to reactions
between non-cognate substrates.

Molecular recognition is fundamental also to transcriptional
regulation, the primary mechanism by which cells control gene
expression. The specificity of this regulation ultimately originates
in the binding interactions between special regulatory proteins,
called transcription factors (TFs), and short regulatory sequences
on the DNA, called binding sites. Although each type of TF
preferentially binds certain regulatory DNA sequences, a large
body of evidence shows that this binding specificity is limited,
and that TFs bind other non-cognate targets as well'>~17,
These additional binding targets were previousl¥ discussed in
the context of their effect on the TF concentration'®1?. However,
if these sites happen to also be regulatory elements of other genes,
non-cognate binding not only depletes TF molecules but could
also actively interfere with gene regulation. This suggests that the
crosstalk problem is global: in a pool of TF molecules of different
chemical species co-expressed at any one time, each molecule has
a small probability of erroneously regulating some subset of all
genes. As the regulatory system grows in complexity, the number
of potential non-cognate interactions will grow faster than the
number of cognate interactions. Although this makes the problem
biologically relevant and theoretically interesting, existing work
has mostly considered a reduced setting, by computing binding
probabilities for a single TF to cognate versus non-cognate
sites?23. Such a reduced description thus overlooked the
effect of this TF on the (mis)regulation of genes that were not
its cognate regulatory targets. Motivated by this observation, our
primary goal here is to develop a new framework for crosstalk
that captures its global nature, by simultaneously treating
multiple TFs and multiple regulatory binding sites. Moreover,
the focus of prior work has been on how to achieve reliable gene
regulation by cognate TFs?, whereas the complementary
question of how to prevent erroneous regulation by non-
cognate TFs has remained largely unexplored (but see ref. 25).
As a result, it remains unclear whether crosstalk places strong
constraints on the ability of cells to orchestrate their gene
expression programmes, and to what extent different molecular
mechanisms could relax any such constraints.

A model of crosstalk in transcriptional regulation should satisfy
three key requirements for biophysical plausibility. First, the model
should be global. Global models, where many targets are
simultaneously regulated by different TFs, will properly capture
the faster-than-linear growth in the number of possible non-cognate
interactions as the number of TFs increases, and the difficulty in
ensuring that recognition sequences for all TFs remain sufficiently
distinct. Second, the model should explicitly account for differential
activation of genes depending on regulatory conditions.
Consequently—and in contrast to previously studied cases of
molecular recognition’—the distinction between ‘erroneous’ and
‘correct’ outcomes of regulation will depend on the presence/
absence of the regulatory signals. In particular, the ability of the
regulatory system to keep genes reliably inactive when appropriate,
despite crosstalk interference, will emerge as an important
consideration. Third, textbook models of transcriptional regulation
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assume that TE-DNA interactions happen in equilibrium?22°, This
assumption, which is supported experimentally for prokaryotic
regulation?”?8 and which underlies the majority of modelling and
bioinformatic applications, puts strong constraints on models of
crosstalk. In this work, we explore its consequences in depth; we
report on out-of-equilibrium schemes elsewhere?’.

Here we construct a biophysical model for crosstalk in
transcriptional regulation that accounts for all cross-interactions
between regulators and their binding sites. We identify the
parameters that have a major influence on crosstalk severity.
Although some of these parameters, such as the free
concentration of TFs, are difficult to estimate, we show that
there exists a lower bound to crosstalk with respect to these
parameters. This implies the existence of a ‘crosstalk floor’, which
cannot be overcome even if TF concentrations were optimally
adjusted by the cell, by various feedback mechanisms or
otherwise, and compensated for sequestration at non-cognate
sites. Our model allows us to ask a number of fundamental
questions: How does the severity of crosstalk depend on the
number of (co-expressed) genes or the biophysical properties of
TF-DNA interactions, such as binding site length and
binding energy, for which we have reliable estimates? How
do the regulatory strategies of prokaryotes compare with those
of eukaryotes? Do complex regulatory schemes, such as
combinatorial regulation by activators and repressors, or
cooperative activation, lower crosstalk, as is often implied*4?
Many biophysical constraints have been shown to shape the
properties of genetic regulatory networks, for example,
programmability?’, response speed®, noise in gene expression
and dynamic range of regulation® 34 robustness’> and
evolvability of the regulatory sequences®®3’. Most of these
constraints, however, could be understood at the level of
individual genetic regulatory elements. We find that crosstalk is
special: although it originates locally due to biophysical limits to
molecular recognition, its cumulative effect only emerges globally.
At the level of a single genetic regulatory element, crosstalk can
always be avoided by increasing the concentration of cognate TFs
or introducing multiple binding sites in the promoter. It is only
when we self-consistently consider that these same cognate TFs
act as non-cognate TFs for other genes, or that new binding sites
in the promoter drastically increase the number of non-cognate
binding configurations, that crosstalk constraints become clear.

Results
A thermodynamic model of global crosstalk. We start by
introducing a basic model of regulation, in which each gene will
be regulated in the simplest possible manner by a dedicated TF
type and the mechanism of regulation will be identical for every
gene. For this basic model, where the limits to crosstalk are
analytically computable, we will outline the reasoning, sketch the
derivation and interpret the results in the main text. We will then
relax our simplifying assumptions in a variety of ways and extend
the analysis to more elaborate regulatory schemes, such as
different flavours of cooperative or combinatorial regulation. We
will summarize the corresponding results later in this section and
present detailed computations in the Supplementary Information.
We consider a cell that contains M genes, which need to be
transcriptionally regulated. In the basic model, each gene is
associated with a single binding site of length L basepairs and a
unique kind of TF, which—in environments where the TF is
expressed—preferably binds to that binding site to activate
transcription. We assume that the genes are inactive, unless a
TF binds to their binding site. We later relax this simplification
to cases where each TF regulates several genes. Every TF can
also bind other (non-cognate) binding sites, albeit with lower
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probability, as schematized in Fig. la, b. These non-cognate
interactions will contribute to crosstalk in our model.

Gene regulation gives cells the ability to differentially activate
subsets of their genes in a manner appropriate to the
environmental conditions, signals, cell type or time. In our basic
model, we imagine a cell that responds to different environments
by activating different subsets of Q genes (out of a total of M
genes), while keeping the remaining M — Q genes inactive
(see Fig. 1c). As regulation unfolds, the regulatory network thus
switches between equilibrium states where any choice of Q out of
M genes could be activated; to make the problem tractable, we
assume that all these choices are equally probable. In a given
environment, activating a particular subset of Q out of M genes is
achieved by expressing the corresponding Q TF types. The
remaining M — Q TF types, corresponding to the genes that
should remain inactive, are absent in the cell.

How does the cell express the correct set of TFs for any
particular environment and at what concentrations are these TFs
expressed? The issue is made seemingly even more complicated
by the fact that the TF concentration reflects the total number of
TF molecules in the cell, as well as any possible effects due to
nonspecific TF localization or sequestration on the DNA and
elsewhere!®1%38, What we will show below is that even if the TF
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Figure 1 | Crosstalk in gene regulation. (a) A TF preferentially binds to its
cognate binding site, but can also bind non-cognate sites, potentially
causing crosstalk—an erroneous activation or repression of a gene. (b) In a
global setting where many TFs regulate many genes, the number of possible
non-cognate interactions grows quickly with the number of TFs; in addition,
it may become difficult to keep TF recognition sequences sufficiently
distinct from each other. (¢) Cells respond to changing environments by
attempting to activate subsets of their genes. In this example, the total
number of genes is M =4 and different environments (here, 6 in total) call
for activation of different subsets with Q =2 genes. To control the
expression in every environment, TFs for Q required genes are present,
whereas the TFs for the remaining M — Q genes are absent. Because of
crosstalk, TFs can bind non-cognate sites, generating a pattern of gene
expression that can differ from the one required.

presence and concentrations were perfectly adjusted to the
environment, a residual level of crosstalk—representing a lower
bound or intrinsic limit—is inevitable. As we are interested
precisely in this limit, we will not need to specify the mechanisms
by which cells control their TF concentrations, which probably
involve complex regulatory network dynamics with feedback
loops; instead, we will mathematically look for the lowest
achievable crosstalk and show that even in an optimal scenario
crosstalk can present a serious regulatory problem.

Using the mismatch energy model to describe the interactions
of TFs with their binding sites and basic statistical mechanics?%3,
we can compute crosstalk, X, which we define to be the average
fraction of all genes in erroneous regulatory states (see Methods).
Erroneously regulated genes are genes that should be expressed in
a given environment but are not, because their corresponding
TFs failed to bind the required activator sites; genes that should
be unexpressed in a given environment but are erroneously
induced due to spurious binding of non-cognate TFs; or genes
that should be expressed, but are expressed due to binding of
non-cognate (instead of cognate) TFs. Global crosstalk X ranges
between zero (no erroneous regulation) and one (every gene is
mis-regulated), and depends on the total number of genes in an
organism, M, the typical number of co-activated genes in every
environment, Q, the concentration of TFs when they are present,
C, and the binding specificity of the TFs for different regulatory
sequences (Equations (3)-(5)).

The major determinant of crosstalk is the likelihood of TFs to
bind non-cognate sites, which is determined by the similarity
between cognate and non-cognate sites. In the global setting,
making a particular site less similar to all the remaining sites can
only happen at the cost of making the remaining sites more
similar among themselves. For a large number of sites we describe
this effect by introducing an average binding site similarity
measure S; between the binding site of gene i and all others,

defined as:

Z C]€ —ed

j#i
where P(d) is the distribution of mismatches between all pairs of
binding sites in our model and C is the total concentration of all
TFs. In the following we assume full symmetry between the genes,
so that for every i, S;=S. S depends solely on the binding sites,
but it carries no functional meaning in the absence of any TF,
namely when C=0. We emphasize that this quantity, S, is not
arbitrary, but rather emerges from our calculations in equations
(3) and (4); a related measure of the likelihood of olfactory or
immune receptors to bind an arbitrary ligand from a large
repertoire has been previously introduced and measured?’. S; is
proportional to the probability of the i-th TF to bind any
non-cognate binding site. The highest level of similarity, S=1,
occurs if all sites are identical (d = 0). Similarity is very low, Sx 0,
if the sites are all significantly different from each other. The
shorter the binding site length L is and the weaker the binding
energy ¢, the larger S gets and the less distinguishable the sites are
(Fig. 2a); simultaneously, we expect the crosstalk to increase, an
intuition we will make precise in the following section.

Binding site similarity S(¢, L) of equation (1) could be directly
measured, by experimentally probing the average TF-binding
affinity to a large repertoire of known binding sites. Alternatively,
S can be estimated from bioinformatic data. In Fig. 2b we used
databases of known TF-binding sites to extract organism-specific
estimates for S. Under certain assumptions about how binding
sites are organized in sequence space, S can be also computed
theoretically. If the binding sites were random sequences of
length L, one can derive a simple analytical expression for S
(see Supplementary Note 1): S(¢,L) = (i—l—%e")L. We also

CSi(e,L) = CY_P(d)e™*“, (1)
d
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Figure 2 | Binding site similarity S and number of genes M are basic determinants of crosstalk. (a) Binding site similarity, S(¢, L), determines the
likelihood that a TF will bind non-cognate sites, if recognition sequences are of length L and the energy per mismatch is e. A schematic diagram of sequence
space packing by different TFs: sequences (dots) in a coloured circle are likely to be bound by the TF whose consensus is the circle’s centre star.
Smaller L contracts the sequence space and makes crosstalk (circle overlap) more likely (larger S); crosstalk is increased (larger S) also by smaller ¢, which
expands the circle radius. (b) Typical values for the number of genes, M, and binding site similarity, S(¢, L), across different taxa, estimated from genomic
databases. For each organism, we find a distribution of S over its reported TFs (dots = median of the distribution, black bars = + 1-quartile range;

see Supplementary Note 2 for details).

studied more realistic models for how TF-binding sites are
organized, for example, taking into account the possibility of TFs
to bind reverse-complemented sites, an improved biophysical
model for mismatch energy that saturates with the number of
mismatches and a model of binding sites that have evolved to be
maximally distinct (Supplementary Note 2). All these variations
ultimately only affect the value of S, while leaving the crosstalk
formalism unchanged. We therefore carried out our main
computations as a function of S directly. To estimate typical
crosstalk for values of S that are biophysically realistic, we
assumed that binding sites are distributed as randomly as possible
in the sequence space, while avoiding excessive similarity (that is,
we used the results of Supplementary Fig. 7 with d;, =2).

Basic crosstalk model exhibits three regulatory regimes.
Although we can reasonably estimate the major determinants of
crosstalk in our model—the number of genes typically
coactivated, Q, the total number of genes, M, and the binding site
similarity S—it is harder to determine the appropriate value for
the total concentration of available TFs, C. This is not only due to
the lack of quantitative data, but also because the relation between
the total copy number of TFs in a cell and the concentration of
TFs that are available for binding may be complicated8. We thus
opted for an alternative approach: we look for a concentration C*
that minimizes the crosstalk error X. An optimal C* emerges as a
trade-off between activating the Q genes that should be active
(for which a higher concentration is beneficial) and avoiding the
activation of the remaining M — Q genes (for which a lower
concentration is beneficial). Such a minimum, X* =X(C*), is a
lower bound on crosstalk, which can be analytically computed in
the mean field approximation (Supplementary Note 1), as well as
validated numerically by simulation (Supplementary Note 3).
This level of crosstalk cannot be decreased even if a cell could
perfectly adjust its TF concentrations to the environment and
optimally compensate the concentrations for nonspecific binding
and sequestration.

First, we consider a fixed number of total genes, M = 5,000, and
ask how crosstalk depends on the number of co-activated genes,
Q, and the binding site similarity, S, in our basic model,
summarized in Fig. 3a. The optimization yields three distinct
regulatory regimes, illustrated in Fig. 3b, c. For larger values
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of S where binding sites are very similar, regulation is so
nonspecific that crosstalk is minimized by having no TF at all,
that is, at C*=0 (region I). This regime, which happens
whenever $>1/(M — Q), is dysfunctional and thus biologically
implausible. Interestingly, the resulting fundamental limit to S, or
to how similar binding sites can ever get while still permitting
functional regulation, is set by M — Q, the typical number of
genes that must remain inactive in each environment. This
highlights the strong constraint on the regulatory system of
keeping undesired gene activation levels low despite crosstalk
interference.

As the organism tries to activate increasingly large subsets of
genes in each environment and Q increases, the optimal
concentration C* climbs until we reach a regime where C*
formally diverges (region II), shown in Fig. 3c and Supplementary
Fig. 2. In this limit, however, a biologically plausible solution
would simply be to constitutively express the majority of the
genes rather than using transcriptional regulation to do so, thus
avoiding any possible crosstalk interference. This strategy might
be applicable for organisms living in nearly constant environ-
ments, such as obligatory parasites.

Finally, there is a broad region (region III) in the (S, Q) plane
where crosstalk is minimized by a finite positive value for
the optimal TF concentration. In this regime, which we call the
‘regulation regime’, as it corresponds to the biological notion of
regulation, crosstalk is given to a very good approximation by

X*:A—Q/I(—S(M—Q)+2\/S(M—Q)). 2)

This simple expression for X* is one of our key results. It is
independent of the energy gap between cognate and unbound
states, E, increasing this gap only lowers the optimal
concentration, C*, while leaving the crosstalk unchanged. The
crosstalk depends both on the fraction of genes that need to be
activated, Q/M, as well as on the total number of genes that need
to be inactive, M — Q, in a typical environment. This dependence
also suggests that it is costly to maintain genes that are never
expressed, arguing against unlimited accumulation of obsolete
genes in organisms. Crosstalk X* in the regulation regime is
dominated by the second term of equation (2) and thus increases
as ~ /S and as QYM—Q/M for sufficiently small
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Figure 3 | Basic model with one activator binding site per gene exhibits three distinct regulatory regimes. (a) Each binding site can be in either of the
three possible states with different corresponding energies: bound by a cognate factor (E=0, green molecule), bound by a non-cognate factor with d-
mismatches (E = ed, here a blue molecule with d=2), or unbound (E=E,, pink molecule). The table shows which of these states lead to transcription and
which of these outcomes is considered as crosstalk when the cognate TF is present and the gene is required to be active (left), or if it is absent and the gene
is required to be inactive (right). (b) Minimal crosstalk X*, shown in colour, as a function of the number of coactivated genes Q and binding site similarity,
S. Three different regulatory regimes are separated by black and white boundary lines (analytical expressions in Supplementary Note 1), identical
between b and c. Dotted lines refer to the 'baseline parameters’ (Q =2,500, M =5,000, log(S) = —10.5—represents L =10, ¢ = 2 with dmni, = 2) that we
use in all subsequent figures if not specified differently. (¢) Optimal TF concentration, C*, that minimizes the crosstalk, relative to C;, the optimal
concentration at baseline parameters. For high binding site similarity (large S), the crosstalk is minimized at C* = 0 (white region, I: 'no regulation regime").
For Q—M and intermediate S, the crosstalk is minimized at C* — oo (black region, II: ‘constitutive regime’). In a large, biologically plausible intermediate

regime, crosstalk is minimized at a finite non-zero TF concentration (colour, Ill: ‘regulation regime").

S. At the boundary between regions I and III, where regulation
breaks down, S(M — Q) =1; hence, X* = Q/M and is independent
of § throughout region I, because all genes that need to be active
are in a crosstalk state due to the absence of TFs. Alternatively, we
can view equation (2) as a function of M, the total number of
genes, at a fixed fraction of genes typically activated, Q/M. In that
case we can see that the average binding site similarity, S, sets the
limit to the maximum number of genes in the organism, M <1/S,
if the system is to stay in region III where regulation is effective.
This is confirmed in Supplementary Fig. 1 by a detailed analysis
of crosstalk for an organism with M =20,000 genes, a typical
number for a metazoan.

A quick inspection of Fig. 3b shows that crosstalk in the basic
model is surprisingly high for an organism of M = 5,000 genes of
which typically a half (Q=M/2) would be activated in each
environment and with TF specificity typical of metazoans
(log(S) = —10.5). At these ‘baseline’ parameters, the crosstalk
limit is X*~0.23, implying that almost a quarter of the genes at
any time would be in an erroneous regulatory state. This suggests
that global crosstalk is a serious constraint, and that more
complex regulatory mechanisms have evolved, in part, to permit
reliable regulation despite non-cognate TF binding.

We also examined a number of variations of the basic model:
(i) a variant where the expression of unnecessary proteins is not

penalized equally to the incorrect expression of the necessary
proteins (Supplementary Note 1); (ii) a variant where some genes
are more ‘important’ than others and thus should preferentially
have small crosstalk errors (Supplementary Fig. 6); (iii) a variant
where each TF can regulate ® genes, which decreases the
crosstalk by a factor of Ve (Supplementary Note 1); and (iv) a
variant where repression (Supplementary Note 1), or a mix of
repression and activation (Supplementary Note 4), is used to
regulate downstream genes. The results are detailed in the
Supplementary Information and are summarized in Table 1.

Crosstalk is not mitigated by complex regulatory schemes. So
far, we considered the simplest cis-regulatory element architecture
with a single TF binding site. Most genes, especially in eukaryotes,
employ complex regulatory elements with multiple TF binding
sites, some of which have been suggested in the literature to
increase the effective binding specificity of TFs or protect the
binding sites from spurious binding?*?>. By implication, such
effects are expected to also reduce crosstalk. We next use our
theoretical framework to study quantitatively under what
conditions that may be the case.

We extend our basic model such that each gene is influenced
by two nearby binding sites of length L to which cognate TFs can
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Table 1 | Comparison of crosstalk levels between the

different variants of the model.

Model Crosstalk Remarks

(at baseline
parameters)

Basic model 0.23

(activators-only)

Basic model 0.23

(repressors-only)

Mixed model 0.14 2,000 genes expressed in

(activators + repressors) 20% of the env., 3,000 genes
in 70%

Genes of unequal 0.31 10% of the genes are

importance important and penalized
10 x the 'normal’ rate
The resulting error per
important gene decreases to
0.1, but for the other genes
increases to 0.33.

Unequal weights for the 0.17 b=0.5, weight of erroneously

two error types active genes is half that of
genes that are erroneously
inactive

Each TF regulates 0.08 Also holds for P(®) ~ Poisson

exactly ® =10 genes (©=10)

Activators + global 0.23 Cannot reduce crosstalk

nonspecific repressor

Activators + specific 0.2

repressors

(non-overlapping)

Activators + specific 0.15

repressors (overlapping)

Perfect AND-gate 0.07 Uses only ~ /M TF species

combinatorial regulation

Generic cooperativity 0.064 For example, dimerization,
direct TF-TF contacts, TF/
nucleosome competition and
so on. Two bindings sites, each
of length L=10

Cooperativity exclusive 0.006 Currently unknown molecular

to cognate binding mechanisms, two bindings
sites, each of length L =10.

Baseline parameters are: Q=2,500, M = 5,000, log(5) = —10.5—equivalent to a model where

binding sites for distinct TFs are different from each other in at least 2 bp (dmi, = 2) with binding

sites of L =10bp and binding energy ¢ = 2kgT per mismatch.

bind cooperatively. For simplicity, we assume that cooperativity
occurs between TFs of the same type, although the framework can
be extended to more general cases. This molecular configuration
of two cognate DNA-bound proteins is favoured by an additional
energy contribution A. We assume that only one of the two sites
controls transcriptional activity directly (here, the site proximal to
the gene start, for example, by polymerase recruitment?’),
whereas the other—here, the distal site—helps stabilize the
binding to the proximal site, as schematized in Fig. 4a. In this
model, as A goes to zero, the distal binding site has no effect on
regulation and we recover the basic model of regulation by a
single binding site (Fig. 3).

To assess whether cooperative regulation can reduce crosstalk,
we compute the minimal achievable crosstalk, X7, and compare
this in Fig. 4b with the minimal crosstalk of the basic model, X*.
We find that cooperativity can significantly reduce crosstalk in a
large part of the ‘regulation regime,” which itself extends towards
larger S. Examining in detail how the crosstalk behaves in Fig. 4c,
we see that at a fixed binding site length L, minimization of
crosstalk prefers strong cooperativity A; nevertheless, the
improvement in crosstalk is bounded and as A grows, saturates
at a limiting value. In this limit, crosstalk can approach and even
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drop below the crosstalk of the basic model with a binding site
that is twice as long. This is a relevant comparison, because
cooperative regulation does, in fact, have access to a total of 2L
base pairs of recognition sequence. Furthermore, the optimal TF
concentration C* required in the cooperative case is lower than in
the single site case (Fig. 4d), making cooperativity a realistic
crosstalk reduction mechanism.

The crucial assumption of the cooperative model presented
above is that cooperative interaction between two TF molecules
can only occur when they bind their cognate binding sites and
never otherwise. This is a very restrictive assumption that is
unlikely to hold in many documented models of cooperativity.
For example, if cooperative interaction energy A originates in
protein—protein interactions between the two TF molecules
of the same species, this energy will plausibly be gained
even when these same TF molecules come into contact while
binding two nearby non-cognate sites. Similarly, synergistic
activation’* or nucleosome-mediated cooperativity*! models
also imply that noncognately-bound factors could contribute
towards cooperativity, violating our assumption that
cooperativity is exclusive to cognate binding.

To relax this assumption and study the effects of the resulting
‘non-cognate cooperativity’, we recompute accordingly the cross-
talk improvement relative to the basic model, as shown in
Supplementary Fig. 18. Not surprisingly, we find that allowing
cooperative interactions between TFs of the same type when bound
non-cognately leads to much smaller reductions in crosstalk
compared with cooperativity that is exclusive to cognate binding,
as shown in Table 1. When non-cognate cooperativity is allowed,
we can also look at the strong cooperativity (large A) limit and
compare crosstalk improvement due to two TFs cooperatively
binding two sites of length L, with the basic model of a single TF
binding a site of length 2L. Now, cooperative regulation by two TFs
is always inferior to the regulation by a single factor with a longer
binding site (see Supplementary Note 5).

Dimerization of TFs is very common among prokaryotes, where
TF monomers often dimerize in solution before binding to DNA. If
the two binding sites in our model predominantly act as half-sites
for the binding of a single dimer, the relevant equations for
crosstalk are identical to non-cognate cooperativity in the large
A limit, with C being the concentration of monomers. Thus, our
theory is also applicable to this case, although dimerization in
solution is often not considered a canonical example of cooperative
regulation. Cooperative interactions conditional on DNA binding
have been less frequently reported but are also known to occur in
prokaryotes (for example, on proximal binding of two dimers); in
experimentally documented cases, the interaction energies are
weaker, A ~ 3 kgT (ref. 27), which still facilitates crosstalk reduction
although it is accordingly smaller (Supplementary Fig. 18).

The two cases of cooperativity we considered here represent
two extremes of a spectrum: cooperative interaction is either
possible exclusively at the cognate site or at all sites equally.
There probably exist intermediate situations, which help limit
the occurrence of spurious cooperative interactions. A simple
example of such a mechanism could use the positioning of the
binding sites on the DNA: TF cooperative binding is limited
only to pairs of sites, which are appropriately spaced. If different
TF types use different spacing, the harmful effects of cooperativity
at a particular non-cognate site pair will be restricted to a subset
of TFs. More complex geometrical arrangements, for example,
cooperative interactions involving DNA looping or allosteric
effects between the two TFs and the DNA*% could provide
similar benefits. Although possible in principle, these benefits
should be considered as hypothetical, as direct experimental
support for cooperativity that is exclusive to cognate binding is
still lacking.
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Figure 4 | Cooperative regulation reduces crosstalk and the required optimal TF concentration. (a) Cognate binding configurations (non-cognate not
shown) for two sites of length L leading to transcription (green check) or not (red cross); doubly occupied promoter gains a cooperative energy A.
Transcription proceeds only when the proximal (rightmost) site is occupied. (b) Difference in minimal crosstalk, shown in colour, between the cooperative
model and the basic model of Fig. 3, X¢,,, — X*, for cooperative interaction strength A=10. Cooperativity significantly reduces crosstalk (blue; at baseline
parameters shown with white dashed lines, X, = 0.006 here versus X* =0.23 in the basic model) and shrinks the ‘no regulation’ (C* = 0) regime.
(e) Minimal crosstalk error, X*, versus binding site length L for different values of cooperative energy A shows that strong cooperativity can decrease the
crosstalk beyond the basic model with binding site of length 2L (red). (d) Optimal TF concentration, C*, required to minimize crosstalk, decreases with
increasing cooperativity A for all L and is consistently below the single-site basic model with site length of either L (black) or even 2L (red). Circles denote
transition to the 'no regulation’ (C* =0) regime at low L (large S), showing that cooperativity extends the ‘regulation regime. In ¢,d, we convert S values to

the equivalent binding site lengths L using the random sequence model.

An important contribution to crosstalk is the erroneous
activation of genes that should remain inactive. One might argue
that any kind of global repression could alleviate this problem by
preventing spurious transcription. We explored this scenario by
extending our basic model to include an additional nonspecific
repressor (Supplementary Note 6). Perhaps not surprisingly, we
find that the minimal achievable crosstalk error in this extended
scheme is exactly the same as in the basic setup, regardless of the
concentration and the affinity of the sites.

We next turned our attention to a sequence-specific repression
mechanism. In an extension to our basic model, we equipped
each gene with both an activator and a repressor site, such that
each of these sites has its own cognate regulator (activator or
repressor). For the Q genes that should be active, only their
Q cognate activators (but not repressors) were present. For the
remaining M — Q genes that should be inactive, only their
cognate repressors (but not activators) were present. Repressor
sites could have a different affinity (E,) than the activator sites
(E,). To look for the minimal achievable crosstalk, we optimized
over the concentration of activators, repressors and the affinity E,.
Importantly, we considered two possible molecular arrangements
on the promoter: in the non-overlapping sites scenario (Fig. 5a,
left) the two binding sites could be occupied by regulatory
molecules simultaneously, whereas in the overlapping sites

scenario (Fig. 5a, right), either the activator or repressor site,
but not both, could simultaneously be occupied. Whether this
exclusion happens because the two binding sites literally overlap
or due to more complex mechanisms is not crucial for our results.
We assumed that a bound repressor inactivates transcription,
regardless of the activator state; for a detailed list of molecular
configurations on the promoter, see Supplementary Note 7.

In the non-overlapping case, small (~10% at baseline
parameters) decreases in crosstalk error are nominally possible,
as shown in Fig. 5b. A detailed examination, however, argues
against this mechanism for crosstalk reduction. Optimization in
Fig. 5d assigns the repressor sites a very weak, or even vanishing,
affinity for the TFs, E,<<E,: in essence, the repressor sites
energetically favour staying empty to the same amount as binding
a cognate repressor, to fight off non-cognate binding. As a costly
consequence, the optimal concentration of the required TFs needs
to be larger by an unreasonable factor, ~20,000-fold, relative to
the basic model, to achieve this small crosstalk reduction gain.

The overlapping case provides a greater crosstalk reduction
(~35% at baseline parameters), as shown in Fig. 5c. The optimal
repressor sites have similar affinity to their cognate TFs as do the
optimal activator sites, E,~E,; the benefit of the repressors
quickly vanishes if this condition is not met. The total required
regulator concentration now no longer has a clearly defined
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Figure 5 | Combinatorial regulation by activators and repressors yields marginal improvements in crosstalk error. (a) Separate (left) or overlapping
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lines), X* = 0.2 for the non-overlapping case, X* = 0.15 for the overlapping case and X* = 0.23 in the basic model. (d) Dependence of the crosstalk on the
repressor binding affinity E, (activator affinity fixed at E,=15). When E,>E,, the crosstalk quickly increases: instead of helping prevent erroneous
activation, repressors themselves bind too frequently in noncognate configurations, aggravating the crosstalk. For non-overlapping sites scenario,

E. << E, is optimal, whereas in the overlapping sites case, E, =E, is optimal. (e) Dependence of crosstalk on the total concentration, C, of transcription
factors, for non-overlapping sites case (orange-brown curves representing different E,, as indicated) and overlapping sites case (green curves representing
different E, as indicated). The total concentration is optimally split between activators and repressors for each C, and is reported relative to the optimal

concentration C; of the basic model.

optimum, but does exhibit a plateau where the crosstalk is
minimized. Importantly, as shown in Fig. 5e, this plateau is
reached for concentrations only somewhat higher than in the
baseline case, making this solution biologically plausible.

In sum, the case for combinatorial regulation by activators and
repressors is complicated. Combinatorial regulation provides a
smaller absolute improvement than cooperativity, but this
improvement is also centred around smaller values for binding
site similarity, log (S) < — 10, where the crosstalk of the basic
model is itself already lower. In contrast to our initial expectation,
this small gain is realistically achievable only with one of the two
regulatory schemes considered and only when its parameters are
properly tuned.

Lastly, we considered the simplest AND-gate regulation
scenario. The expression state of each gene is determined by
the occupancy of two binding sites; in particular, activation is
achieved by binding of a precisely specified, unique pair of

8

cognate activating TFs. Crucially, in the ‘perfect combinatorial
regulation’ scenario, V2M TF species (instead of M, as in the
basic model) are sufficient to specifically regulate any subset of
the M genes. As we show in Supplementary Note 8 and
summarize in Table 1, this leads to a sizeable crosstalk reduction.
Using v/2M TF species means, on average, ® = M/\/2M
regulated genes per TF. If sets of © genes were regulated jointly
by a common TF, crosstalk should decrease as ~ O, as we
argued above. Supplementary Fig. 21 shows that for the AND-
gate the decrease is somewhat smaller, but unlike in the simple
scenario where each TF regulates groups of ® genes with no
possibility of control over individual genes, the AND-gate
allows each gene to be regulated individually. Although this
combinatorial strategy allows crosstalk reduction and has been
documented at specific promoters, we point out that the
predicted, square-root scaling of the number of TF species with
the total number of genes, M, is inconsistent with published
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reports*>#, making it unlikely that crosstalk reduction is

achieved through genome-scale combinatorial control as
analysed here.

Discussion

Finite specificity of recognition reactions is a fact of life at the
molecular scale. In transcriptional regulation, which takes place in
a mix of cognate and non-cognate TF species, the consequences
of this fact could be severe—but have surprisingly not been taken
to their logical conclusion so far. Here we constructed a
theoretical framework for crosstalk that accounts for all possible
cross-interactions between regulators and their binding sites.
This global model enabled us to compute the lower bound on
crosstalk and assess the effectiveness of various regulatory
schemes. We derived limits to reliable gene regulation that
depend only on the total number of genes M, the typical number
of co-activated genes, Q, and the average level of similarity
between pairs of binding sites, S.

We find that these parameters robustly define three possible
regulatory regimes. A non-zero TF concentration that minimizes
crosstalk exists only when binding sites are sufficiently
distinguishable from each other and the typical number of
co-activated genes is not extreme. We call this the ‘regulation
regime.’ The other two regimes are anomalous cases where
regulation is dysfunctional. Looking closely at the boundaries
between the three regulatory regimes, we find that the average
similarity between binding sites, S, puts an upper bound to the
total number of genes that an organism can effectively regulate®.

An analogous problem exists in protein-protein interaction
networks, where protein function requires strong binding to a few
partner proteins but avoidance of binding to all the others®”.
Previous works have studied the evolution of such networks by
applying a combination of positive and negative design using
computer simulations, concluding that ‘negative design’
seriously constrains the possible architectures®#048, As a
quantitative measure for the likelihood of specific versus
nonspecific interactions, Johnson et al® used the minimal
energy gap between specific and nonspecific interactions, in
analogy to our measure of binding sites similarity S. They found a
power-law scaling of the energy gap with the total number of
proteins in the network and also found that it depends inversely
on the size of binding surface, L—both results are in qualitative
agreement with ours for the total number of genes M and length
of the binding sites L. Similarly, a larger binding domain was
found to enable a larger number of specific interactions in a
protein mixture when other nonspecific interactions are
excluded?”. Johnson et al.® also found that network designs in
which some proteins have multiple specific partners (‘hubs’) have
higher crosstalk compared with networks with only pairwise
interactions. At this point, protein-protein interaction networks
significantly differ from TF-DNA interactions: if multiple
binding sites share a common TF, these binding sites cannot
bind each other, as would be the case for different protein species
interacting with a common hub. Zhang et al.” identified a trade-
off between proteome diversity and concentration due to
crosstalk considerations, concluding that the numbers found
experimentally are close to the possible limit. Protein
concentrations face trade-off: they should be high enough to
form specific interactions, but not so high as to form many
nonspecific ones. The optimal TF concentration in our model is
determined by a similar trade-off. Analogous problems due to
explosion of non-cognate configurations were studied in the
context of prebiotic metabolism*® and the immune system, where
receptors are selected to recognize foreign peptides, but avoid
binding self-peptides®. In the context of TE-DNA interactions

Sengupta et al.! studied how the evolutionary mutation-selection
balance tunes TF specificities to its DNA targets and how this
depends on the number of targets. They identified a trade-off
between avoiding the loss of current targets (for which a lower
specificity is favoured) and avoiding the spurious recruitment of
new ones (for which a higher specificity is favoured); they also
report an inverse relation between the number of different targets
and the TF specificity for each. An intriguing direction for future
research is to explore how crosstalk might limit the complexity of
regulatory networks in an evolutionary setting.

Where do real organisms find themselves in this parameter
space? Prokaryotes tend to have longer binding sites and fewer
genes than eukaryotes. In Table 2 we present typical biophysical
parameters for each and the resulting crosstalk estimates.
Although for prokaryotes we expect crosstalk to easily be between
1 and 10% even if each gene is regulated by a single site, and
below 1% for biophysically realistic cooperative regulation, for
eukaryotes the situation is significantly different. Even for a
short genome of M=5,000 genes, such as yeast, or for longer
genomes of metazoans where most of the genes have been
non-transcriptionally silenced, we expect minimal crosstalk of
X*=0.23. In an organism with M =20,000 regulated genes,
crosstalk would increase substantially according to the basic
model: >40% of all genes would be erroneously regulated.
Incorporating known constraints on the biophysics of TF-DNA
interaction (Supplementary Figs 16 and 17) increases crosstalk
even further and pushes metazoan regulation towards the
anomalous regime.

Complex regulatory schemes increase the specificity of gene
regulation by cognate factors and high specificity was tacitly
assumed to provide automatic resilience against crosstalk. In
contrast, our analysis of several complex regulatory mechanisms
reveals a more intricate picture. We focused on two broad classes
of regulatory mechanisms. The first class comprises various
schemes of cooperative regulation. Cooperativity can lower
crosstalk, because it effectively increases the binding site length
and energy and thus reduces binding site similarity. We found
that the effectiveness of cooperativity for reducing crosstalk
crucially depends on the strength of the cooperative interaction
and on whether cooperative interactions are restricted exclusively
to cognate sites. With respect to cooperative interaction strength,
the optimal crosstalk reduction happens at very strong
cooperativity, but this might be hard to realize biophysically.
Commonly reported values are indeed small (3—5 kgT),
comparable to the energetic contribution of only 1 —2bp in the
TF-DNA interaction”?8, With respect to cooperative
interactions being exclusive to cognate binding, such regulatory
schemes, while optimal for crosstalk reduction, would require
additional sequence recognition mechanisms and it is unclear to
what extent they exist or how effective they are. If cooperative
interactions can occur at non-cognate sites as well as is the case
for most documented mechanisms of cooperativity, its

Table 2 | Comparison of relevant parameters and crosstalk
values between prokaryotes and eukaryotes.

Prokaryotes Eukaryotes
10-20 bp 6-10 bp
—20<log (9)<—13 —155log ()< —9

Binding site length
Binding site similarity, S

Number of genes, M A few thousands 5,000-20,000

Crosstalk in the basic model 1-10% 20-50%
(Depending on M)

Crosstalk with cooperative <1% ~10%

regulation
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effectiveness in mitigating crosstalk is significantly diminished.
The second class of mechanisms we considered relies on
combinatorial regulation by multiple TFs. As a representative
example we studied combinatorial regulation by activators and
repressors. Contrary to the common expectation that repression
should eliminate spurious gene activation?#?>, we found
various mechanisms to be either ineffective (global repression)
or providing marginal global improvement at best (activator-
repressor regulation with overlapping binding sites). Although
crosstalk can indeed be mitigated for particular gene(s) by
employing a complex promoter architecture, this inevitably
comes at a cost for the regulation of other genes. The intuitive
explanation for the limited benefit of combinatorial schemes is
that adding new regulatory components—in this case,
repressors and their respective binding sites—drastically
increases the number of possible non-cognate interactions,
thereby potentially aggravating, instead of mitigating, the
crosstalk problem. A similar detrimental effect due to growth in
the number of undesired configurations with the number of
molecular species has been reported in the study of molecular
self-assembly!2. A potentially powerful set of mechanisms are
therefore schemes in which combinatorial regulation is used
primarily to decrease the required number of molecular
species, as in the simple AND-gate example we explored in
Supplementary Note 8. Further work is needed to fully elucidate
crosstalk limits in more general models of combinatorial
control and cooperativity, with interesting parallels to
precision in biochemical sensing, in equilibrium as well as
out-of-equilibrium scenarios>2%>1:92,

An interesting result of our study is that various schemes of
molecular control logic at promoters and enhancers®, while
nearly equivalent in the absence of crosstalk, can behave very
differently in the presence of non-cognate regulators®®. For
example, the issue of cooperative interactions during non-cognate
binding is a striking demonstration of how a seemingly
microscopic detail may influence global crosstalk, whereas it
has no bearing on the aspects for which cooperativity
has been studied traditionally: its ability to sharply activate
the cognate gene in response to small increases in TF
concentration. A similar remark applies for the case of
overlapping versus non-overlapping binding sites in the
combinatorial regulation scenario. By going beyond mean-field
approximations, this could be extended to biologically relevant
situations where pairs of binding sites overlap so as to share
large sequence fragments®®. Clearly, there is a need to
further understand signal processing at complex promoters®
and for experimental measurements of crosstalk in various
regulatory architectures.

Direct measurements of crosstalk are challenging, precisely
because crosstalk is a global effect and experimentally influencing
non-cognate binding in a controlled manner is difficult.
An alternative approach would be to search for indirect
signatures of crosstalk®’. A promising line of research
supported by a large body of recent experimental evidence
would be to examine ‘pervasive transcription” in eukaryotes'>>8
as a proxy for erroneous initiation, perhaps due to crosstalk
interference.

Taken together, our findings suggest that global crosstalk
represents a strong constraint in eukaryotic regulation that can be
mitigated, but not easily removed. Initially, this conclusion was
based on a greatly simplified model of gene regulation. We
succeeded in relaxing many of our assumptions only to find that
crosstalk constraints remain significant. This is because the major
determinant of crosstalk is the binding site similarity S, which
primarily depends on the typical mismatch energy ¢ and the
length of the binding sites, L. Although crosstalk could be reduced
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by extending binding site length and/or augmenting the binding
energy, both parameters are severely constrained by a
combination of biophysical and evolutionary factors. The scale
of the mismatch energy is set by the energetics of hydrogen
bonds to ~2-4 kgT, whereas the length of individual binding
sites in eukaryotes appears strongly constrained by evolutionary
considerations to ~ 10bp?!>%60, Moreover, the performance of
complex regulatory schemes, which appear beneficial at first
glance, is also limited by the explosion of possible non-cognate
configurations that may lead to erroneous regulation. These
constraints should apply universally, beyond the specific
mechanisms we analysed in detail: any regulatory scheme
operating at equilibrium, no matter how complex, faces a
fundamental limit to its achievable error, for reasons that led
Hopfield? to propose kinetic proofreading.

The main conclusion of our work is that crosstalk in gene
regulation is far from being a solved problem. We find
several commonly studied regulatory mechanisms to be
insufficient for eliminating crosstalk in metazoans, at least
when acting alone. Although it is theoretically possible
that a combination of equilibrium mechanisms acting in
unison could achieve low crosstalk levels, this possibility
is by no means obvious and indeed appears unlikely.
Alternatively, cells might have evolved out-of-equilibrium
solutions where energy is deliberately spent to counteract the
detrimental effects of crosstalk; example mechanisms could
include permanent gene silencing, localization of transcriptional
activity to specific cellular compartments or molecular reaction
schemes for gene regulation that implement variants of kinetic
proofreading®.

Methods

We employ a thermodynamic model of regulation , which postulates that the
gene expression level depends on the equilibrium occupancy of TFs at the
regulatory sites on the DNA. This model has been widely used to predict gene
expression and has been experimentally validated in various systems®>~%4, In this
framework, the binding probability of a TF to any binding site, cognate or
non-cognate, is determined by two factors: the effective concentration of TFs and
the binding energy.

We assume that the binding energy only depends on the number of mismatches
between a particular binding site and the consensus sequence unique to the
given TF. Each binding site can thus exist in either of the three possible states
(i) bound by a cognate TF; (ii) bound by a non-cognate TF; or (iii) unbound.
Binding of the cognate factor (i) is energetically the most favourable state and is
assigned the energy E=0. The unbound state (iii) is usually energetically

least favourable with energy E,> 0. Between these two extremes there exist
non-cognate-bound configurations (ii) with intermediate energies that depend
only on the number of nucleotide mismatches d between the consensus sequence
of the TF and the sequence of a given binding site, that, E(d) = cd, where ¢

is the energy per mismatch. This mismatch energy model provides a tractable
approximation to more detailed models?® and has been extensively used in the
literature?%-3.

In our model, the crosstalk error can be separated into two contributions that
can be computed using basic statistical mechanics:

1. For a gene i that should be active and whose cognate TF is therefore present,
error occurs if its binding site is bound by a non-cognate regulator (activation out
of context due to crosstalk), or if the binding site is mistakenly unbound (gene is
inactive). This happens with probability

23,27,61

61,

e Bt 3. Ge

x1(i) = ,
1) Cite Bty Ce

where C; is the concentration of the jth TF, d;; is the number of mismatches
between the jth TF consensus sequence and the binding site of gene i, and € is the
energy per mismatch; all energies are measured in units of kT. Here we consider
activation by a non-cognate TF as crosstalk; reasons for this choice, as well as an
alternative model where such cross-activation is not considered an error state, are
presented in Supplementary Note 9.

2. For a gene i that should be inactive and whose cognate TF is therefore absent,
crosstalk error only happens if its binding site is bound by a non-cognate regulator
(erroneous activation) rather than remaining unbound. This happens with
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We define the global crosstalk X as the expected fraction of erroneously

regulated genes. In our basic model where all genes are identically regulated and
TFs for genes that need to be activated are present at equal concentrations (that is,
G=ClQ where C is the total concentration of all TFs and Q is the number of
distinct TF species present simultaneously), we show in Supplementary Note 1 that
the crosstalk is

Q M-Q

x=2
MY M

X (5)

Global crosstalk X ranges between zero (no erroneous regulation) and one (every
gene is mis-regulated).
Further methods are described in Supplementary Notes 1-9.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information file.
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