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Interaction-induced hopping phase in
driven-dissipative coupled photonic microcavities
S.R.K. Rodriguez1, A. Amo1, I. Sagnes1, L. Le Gratiet1, E. Galopin1, A. Lemaı̂tre1 & J. Bloch1,2

The Bose-Hubbard model (BHM) describes bosons hopping across sites and interacting

on-site. Inspired by the success of BHM simulators with atoms in optical lattices, proposals

for implementing the BHM with photons in coupled nonlinear cavities have recently emerged.

Two coupled semiconductor microcavities constitute a model system where the hopping,

interaction and decay of exciton polaritons—mixed light-matter quasiparticles—can

be engineered in combination with site-selective coherent driving to implement the

driven-dissipative two-site optical BHM. Here we explore the interplay of interference and

nonlinearity in this system, in a regime where three distinct density profiles can be observed

under identical driving conditions. We demonstrate how the phase acquired by polaritons

hopping between cavities can be controlled through polariton-polariton interactions.

Our results open new perspectives for synthesizing density-dependent gauge fields using

polaritons in two-dimensional multicavity systems.
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U
nderstanding the emergence of collective phenomena in
condensed matter systems is an example of a problem
that quantum simulators may address. Ultracold atoms

in optical lattices have enabled great progress in this direction1.
Recently, photonic systems have been proposed for simulating
the hopping and interaction of bosonic particles as described
by the Bose-Hubbard model (BHM), but in non-equilibrium
conditions2–5. In particular, driven-dissipative lattices of coupled
nonlinear cavities can display strongly correlated steady-state
phases characterized by the number of available stable modes6.
Moreover, for strong nonlinearities polaritons can crystallize7.
For the minimal Bose-Hubbard system comprising two sites, that
is, a dimer, intriguing quantum interference effects and single
photon emission have been predicted8,9. As we will show, the
driven-dissipative Bose-Hubbard dimer (BHD) displays striking
phenomena even at the mean-field level due to the interplay of
interference, nonlinearity and site-selective coherent driving.

Under time-harmonic driving of one site, the mean fields cj
of the driven-dissipative BHD are described by the coupled
equations:

i‘ _c1 ¼ð‘o1 � i
g1
2
Þc1 þU c1j j2c1 � Jc2 þ Fe� iot ;

i‘ _c2 ¼ð‘o2 � i
g2
2
Þc2 þU c2j j2c2 � Jc1:

ð1Þ

where ‘oj and gj=2 ðj ¼ 1; 2Þ are the on-site energy and decay
rate, J is the hopping energy and U is the interaction energy.
F and o are the driving amplitude and frequency on site j¼ 1.
The BHD dynamics without driving (F¼ 0) has been thoroughly
studied with atoms, especially in relation to the self-trapping
occurring when the total interaction energy, U(N1þN2) with
Nj ¼ jcjj

2 being the mode populations, exceeds J (refs 10,11).
For dissipative (for example, photonic) systems, the non-
Hermiticity of the BHD Hamiltonian12 gives rise to distinct
nonlinear phenomena. A dissipation-limited self-trapping time13,
a dissipation-induced classical to quantum transition14 and
spontaneous symmetry breaking15, have been observed with
photons. With coherent driving on one site (Fa0), parametric
instabilities16 and nonclassical correlations8,9 have been predicted
as hopping, interactions and decay compete in setting a stationary
state. Despite impressive theoretical efforts in this direction, the
driven-dissipative BHD has remained experimentally unreported
with photons so far.

An excellent system for implementing the driven-dissipative
optical BHD comprises exciton polaritons in coupled semicon-
ductor microcavities. Polaritons are hybrid light-matter quasipar-
ticles formed by strong coupling between cavity photons and
quantum well excitons17. Polaritons can be confined and coupled
by micro-patterning planar cavities, thereby acting on the photonic
part of their wavefunction18. In this way, Hamiltonians describing
molecular orbitals19 or particles in lattices20 can be implemented.
In addition, Kerr nonlinearities associated with the excitonic part
of polaritons21 yield effective polariton-polariton interactions.
Steady-state nonlinearities such as bistability22 and polarization
multistability23 have been observed in single cavities. Accessing the
physics of the driven-dissipative non-equilibrium BHM requires
spatial coupling of nonlinear cavities, which, in contrast to the
coupling of the two polariton spin components23, can include
many degrees of freedom.

Here we demonstrate spatial multistability in a polariton BHD,
and we discover an interaction-induced phase for polaritons
hopping between cavities. This nonlinear phase control could
enable the realization of non-Hermitian Hamiltonians with
density-dependent gauge fields if extended to two-dimensional
cavity arrays.

Results
Linear regime. The two slightly overlapping cavities we
investigate are shown in Fig. 1a inset. The coupled cavities behave
as a photonic molecule (PM), where strong coupling between
polaritons in each cavity forms hybridized states18. Figure 1a
shows the linear spectrum of the PM. We drive the left cavity
with a laser of variable frequency and quantify the cavity
populations from spatially resolved transmission measurements
(see Methods). The low- and high-energy peaks are the
bonding and antibonding resonances of the PM, respectively.
At the energy of the antibonding resonance, the exciton
fraction of the polaritons is B16% (see Supplementary Note 1
and Supplementary Fig. 1 for details). From Lorentzian fits to the
spectra (black lines) we extract a bonding-antibonding splitting of
2J¼ 358±1 meV, well above the sum of the linewidths
gBþ gAB¼ 75±3 meV. Figure 1b shows the bonding mode, with
nonzero density at the centre of the dimer reflecting the
even parity of the wave function. In contrast, the antibonding
mode in Fig. 1c shows suppressed density at the centre due to the
odd parity of the wave function.

Number of modes in the nonlinear regime. To illustrate the
wealth of nonlinear phenomena expected in the PM according to
equation (1), we present in Fig. 2 the calculated total number of
modes as a function of the dimensionless frequency detuning
‘ o�o0ð Þ=J and driving power (F/g)2. We consider two
identical cavities (o1 ¼ o2 � o0 and g1¼ g2¼ g) with repulsive
interactions (U40) within each cavity. Figure 2 shows that
for weak driving (negligible interactions here achieved for
ðF=gÞ2t300Þ and any o, or any power and ‘ ðo�o0Þo� 0:8J ,
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Figure 1 | Linear spectrum and eigenmodes. (a) Mean polariton number

per polariton lifetime in two coupled microcavities under continuous driving

of one cavity. The central inset illustrates the spatial and colour code used

throughout the manuscript: blue data points for the driven cavity on the left

(N1), and red data points for the undriven cavity on the right (N2). Black

curves are Lorentzian fits. The dashed grey line indicates the driving energy

used in Fig. 3 and Fig. 4. The right inset shows a scanning electron

micrograph of the structure, where the scale bar denotes 5 mm. (b,c) show

the spatial distribution of the normalized transmitted intensity (I/Imax) at

the low- and high-energy peaks corresponding to the bonding and

antibonding resonances, respectively. The dashed lines delimit the two

coupled microcavities. The solid lines indicate the integration area used to

evaluate the population in each cavity in this paper.
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the PM is monostable: there is a single input-output relation.
When � 0:8Jt‘ ðo�o0Þt1:6J , the PM can support up to
three modes, two of which are stable, that is, bistability22. The
monostable and bistable regimes are well known; their
observation in our system is presented in Supplementary Notes
2 and 3 and Supplementary Figs 2 and 3. The third and most
interesting driving condition is when ‘ ðo�o0Þ1:6J , where up to
nine modes exist but no more than five are stable. In the
following, we show experiments and calculations for
‘ ðo�o0Þ ¼ 1:67J (dashed line in Fig. 2), where we observe
three distinct stable modes and one branch displays an
interaction-induced hopping phase.

Tristability and interaction-induced hopping phase. Figure 3a,b
shows experiments where the left cavity is driven at an energy of

1476.87meV (dashed line in Fig. 1a). We observe a pronounced
hysteresis in the populations as a function of the irradiance.
The hysteresis involves three branches. Changes in density are
reversible along each branch. In the shaded region in Fig. 3a,b,
the PM is tristable: three different stable density profiles can be
observed at the same irradiance. Figure 3e–g illustrates three
density profiles at the same irradiance, indicated by the stars
in Fig. 3a,b. Which one of these profiles is observed depends
on the history of the system, or in which direction the irradiance
is scanned.

The nonlinear jumps and the branches in Fig. 3a,b can be
understood by comparing the total interaction energy U(N1þN2)
with the energy detuning between the laser and the linear
eigenmodes of the system. At the first upwards threshold, the
antibonding mode blueshift brings it in resonance with the laser.
The signature of the antibonding mode—a suppressed population
at the centre of the dimer—can be recognized throughout the
middle branches, as illustrated in Fig. 3f. For greater irradiance
the second upwards threshold brings the bonding mode in
resonance with the laser. This sets the populations into the
highest branches, where the features of the bonding mode can be
recognized (see the mode profile in Fig. 3e resembling the linear
bonding mode in Fig. 1b). We stress that these are all qualitative
similarities, since bonding and antibonding are linear eigenmodes
of the system. The evolution of the spectrum of the PM in the
nonlinear regime is shown in Supplementary Fig. 4 and discussed
in Supplementary Note 4.

The measurements in Fig. 3a,b are qualitatively reproduced
using equation (1). Figure 3c,d shows calculated populations
using parameters deduced from the fits to the linear spectrum
(see Methods). Besides the stable modes (solid curves), the
calculations show two branches of unstable modes (grey lines)
and a regime of parametric instability (open circles) along the
middle branch. The unstable branches emerge when a fixed
point loses its stability and a new fixed point is created. The
parametric instability arises between the first and the second
upwards threshold. For a limited power range therein, parametric
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Figure 2 | Calculated total number of modes. The total number of modes

(stable and unstable) admitted by equation (1) is shown in colour as a

function of the energy detuning �hðo�o0Þ divided by the hopping energy J,

and of the driving power (F/g)2, with F being the driving amplitude and g the
loss rate of each cavity. Identical cavities with eigenfrequency o0 are

assumed. The dashed line indicates the driving energy used in Figs 3 and 4.
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in Fig. 1a). Shaded areas indicate the irradiance range for tristability; (e–g) show three mode profiles obtained for the same irradiance, as indicated with the
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processes involving the driving laser and the hopping energy J
(determining the bonding-antibonding splitting) generate new
frequencies, that is, a signal and an idler16. However, since the
new frequencies are generated with a low efficiency, the dominant
contribution to the measured populations has the frequency of
the driving laser. Consequently, we can continuously and
reversibly monitor the cavity populations along the middle
branches by varying the irradiance, as would be the case if the
entire middle branches were stable. Beyond the qualitative
agreement between experiments and calculations along
the three observed branches, some quantitative differences are
observed. These are likely due to power fluctuations in the driving
laser, which make it difficult to access the end points of the
branches where instabilities take place. Further differences stem
from the fact that in theory, (i) the populations in the driven and
undriven cavities are perfectly separable, and (ii) the driving force
acts on one cavity only. Both (i) and (ii) are not strictly true in
experiments due to the spatial overlap of the cavities and the
finite beam waist.

A striking feature in Fig. 3a,c is the pronounced population dip
along the middle branch. The occurrence of this dip between the
two upwards thresholds and its absence in the undriven
cavity suggests that this is an interference effect. To elucidate
the underlying mechanism, we calculate in Fig. 4a the difference
f1–f2 between the phases of the field in each cavity (see
Methods). This is the phase picked up by a polariton hopping
between cavities. Since polaritons must hop twice to interfere
with the driving field in the first cavity, the stationary population
depends on the round-trip phase 2(f1–f2). Figure 4a shows that
2(f1–f2)E0 (modulo 2p) for the lowest and upper branches,
irrespective of the driving strength. These branches correspond to
the lowest and highest branches in Fig. 3a,b, where interference in

the driven cavity is constructive. Note that for the lowest
(resp. upper) branch, f1–f2E� p (resp. 0), which is the
characteristic phase relation of the antibonding (resp. bonding)
mode. Interestingly, for the middle branch in Fig. 4a, f1–f2

varies from �p to 0. Therefore, the round-trip phase makes the
interference in the driven cavity change from constructive to
destructive and back to constructive for increasing intensity.

We performed power-dependent interferometry measurements
to directly observe the predicted interaction-induced hopping
phase. For this purpose, the cavity transmission was interfered
with an expanded section of the excitation laser beam (see
Methods). Next, we fitted cosine functions to the normalized
interferogram in each cavity. Figure 4b shows the difference
between the fitted phases, f1–f2, in good agreement with
our calculations. Figure 4c–h shows representative density (left
panels) and interferogram (right panels) plots along the middle
branch (black squares in Fig. 4b). Figure 4c,d and g,h show a
significant density in the driven cavity when f1–f2E�p and
f1–f2E0, respectively; these are conditions of constructive
interference. In contrast, Fig. 4e,f shows that the driven cavity is
dark at the destructive interference condition f1–f2E�p/2, that
is, a round trip phase of �p. The observation of this
density-dependent interference demonstrates that the hopping
phase can be optically controlled through interactions.

Discussion
Beyond the BHD, an interaction-controlled hopping phase in
two-dimensional lattices could enable the exploration of BHMs
with density-dependent gauge fields. The proposed extension
relates to the seminal work by Aharanov and Bohm24 and
Berry25, who realized that a nonzero phase acquired by a particle
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in a closed-loop trajectory implies the existence of a nonzero
vector potential A. Specifically, the phase acquired when hopping
from site i to j can be expressed as fi;j ¼ e

h

R rj
ri
A � dl, where e

is the elementary charge26. Thus, synthethic magnetism27–31 and
topologically non-trivial states32–34 could be achieved with
photons in two-dimensional arrays of coupled nonlinear
cavities by engineering an interaction-induced hopping phase.

Methods
Sample. The planar cavity was grown by molecular beam epitaxy and comprises a
l GaAs cavity between two Ga0.9Al0.1As/Ga0.05Al0.95As distributed Bragg reflectors
with 26 and 30 pairs for the top and bottom one, respectively. One 80-Å-wide
InGaAs quantum well with an exciton energy of 1480.7meV is positioned at the
centre of the cavity. Strong exciton-photon coupling leads to a Rabi splitting of
3.4meV. The coupled microcavities are fabricated by electron beam lithography
and dry etching of the planar cavity. Based on the linear transmission spectra, we
estimate a polariton ground-state energy for each microcavity of 1476.6meV and a
linewidth of 37.5±1.5 meV. Based on the polariton dispersion in the planar cavity
(see Supplementary Figure 1 and Supplementary Note 1), we estimate a photon
fraction |C|2¼ 0.84±0.03 (C being the photonic Hopfield coefficient) at the driving
energy of the experiments in Figs 3 and 4.

Experiment. All experiments are performed at 4 K in transmission geometry,
collecting the driving laser-transmitted intensity from the substrate side. The laser
is a tunable MSquare Ti:Sapphire oscillator with o10MHz linewidth. The exci-
tation and collection objectives have a numerical aperture of 0.5 and 0.4, respec-
tively. The excitation laser beam is linearly polarized parallel to the dimer axis
(horizontal line at 0 mm in all density and interference colour plots).

We quantify the population in each cavity as follows. The transmitted intensity
is recorded with a CCD camera without any spatial or spectral filtering. The counts
detected within the left and right squares delimited by the grey solid lines in Fig. 1
are attributed to the driven and undriven cavities, respectively. The count rate for
each cavity nj is converted to the polariton population Nj via the following relation:
Nj ¼ 2njtF� 1 Cj j2. The factor of 2 takes into account that roughly half of the
population decays in the direction opposite to the detector; t¼ 18 ps is the
polariton lifetime, F is the detection efficiency (including collection) and |C|2

quantifies the fraction of polaritons that decay radiatively.
For the measurements in Fig. 4 we used a Mach-Zender interferometer as

described next. The first beam splitter directed half of the power in the driving laser
to the coupled cavities, and the other half of the power bypassed the cavities and
served as a reference. The reference beam was expanded, making its beam waist at
the position of the detector about three times the diameter of the cavity. The
intensity in the reference beam was controlled with a neutral density filter. We
recorded the transmitted intensity by the coupled cavities Ic, and the intensity in
the reference beam Ir. Next, Ic and Ir were combined by a second beam splitter
placed between the output of the cavities and the detector. We call the combined
total intensity It. The data were analysed with the two-beam interference equation
It ¼ Ic þ Ir þ 2

ffiffiffiffiffiffiffi
IcIr

p
cosðkzÞ. The quantity kz corresponds to the optical path

difference between the two arms of the interferometer, which is controlled by the
position of the second beam splitter and the alignment of the two beams.
Figure 4d,f,h plots the cos(kz) term in colour as a function of space. We call this
quantity, bounded between � 1 and 1, the normalized interferogram. To retrieve
the interaction-induced hopping phase in Fig. 4b, we repeated this procedure while
scanning the driving power along all three branches. Next, we analysed the
normalized interferogram as follows. We took cuts of the interferogram along
vertical lines (dash-dotted lines in Fig. 4d,f,h) at a distance of ±0.5 mm from the
centre of the dimer. The cuts at � 0.5 mm correspond to the driven cavity, and the
cuts at þ 0.5 mm correspond to the undriven cavity. To each cut we fitted a
function of the form Ajcos(Bjyþfj)þCj, where Aj, Bj, fj and Cj are fit parameters
corresponding to the jth cavity (j¼ 1, 2), and y is the vertical dimension. Figure 4b
plots the difference between the fitted phases f1–f2. The behaviour reported for
f1–f2 at ±0.5 mm is robust over distances greater than 1 mm with respect to the
centre of the dimer. For larger distances, the phase patterns in Fig. 4f,h exhibit
dislocations where the mode intensity vanishes near the walls of the driven cavity.
The origin of these dislocations is the presence of parasitic scattered laser light,
which interferes with the weak cavity transmission at the detector. Due to the
highly nonlinear transmission through the driven cavity, the contribution of the
parasitic light can be more than 2 orders of magnitude greater at high irradiance
than at low irradiance. The contribution of the parasitic light to the measured
phase patterns is only significant in the regions of vanishing mode intensity at the
edges of the driven cavity. Hence, the measured phase patterns in these regions do
not reflect the intracavity field phase only. For these reasons we consistently analyse
the phase patterns in Fig. 4 far from these artefacts and near the centre of the
dimer, that is, at ±0.5 mm.

Calculations. For all calculations we seek the stationary solutions cs
j (j¼ 1, 2) to

the differential equation (1). We start by inserting the ansatz cðtÞ ¼ cs
j e

� iot in

equation (1). This leads to the algebraic equations

‘oj �‘o� i
gj
2

� �
cS
j þU Njc

S
j � JcS

3� j þ dj 1F ¼ 0; ð2Þ

where Nj ¼ jcjj
2 are the mode populations. The populations are obtained by

writing the above equations as a polynomial in powers of N2, calculating the roots
of that polynomial, and then inserting the solutions in the remaining equation to
obtain N1. The phase difference between the intracavity fields, f1–f2, is calculated
by inserting the populations in the supplementary equations cs

j ¼
ffiffiffiffiffi
Nj

p
e� ifj .

Finally, we assess the stability of the stationary solutions by analysing the spectrum
of small fluctuations in their vicinity, that is, cjðtÞ ¼ ½cs

j þ dcjðtÞ�e� iot . This is
performed following the procedure outlined by Sarchi et al.16. Sections 2 and 3
from ref. 16 describe the physics of the model we employ throughout this
manuscript (equation (1)), including the various kinds of stable solutions and
instabilities that the two coupled nonlinear modes support. However, the analysis
therein is restricted to the populations of the two modes and not to their relative
phases. The phase analysis in Fig. 4a and the counting of the number of modes in
Fig. 2 are results from the present work.

Based on Lorentzian fits to the measured linear spectrum, we set
‘o1 ¼ ‘o2 ¼ 1; 476:6meV, g1¼ g2¼ g¼ 37.5 meV, and J¼ 179 meV for all
calculations. U¼ 0.07 meV was set to match the multistability experiments in Fig. 3.
Taking the cross-sectional area A of each cavity into account, the two-dimensional
polariton-polariton interaction constant is 0.8 meV mm2. Dividing by |X|2¼ 0.162

we get 30meV mm2 for the pure exciton-exciton interaction constant. A similar
value for the exciton-exciton interaction constant has been theoretically estimated
in ref. 21.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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