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Free-carrier-induced soliton fission unveiled by
in situ measurements in nanophotonic waveguides
Chad Husko1,*,w, Matthias Wulf2,*,w, Simon Lefrancois1, Sylvain Combrié3, Gaëlle Lehoucq3, Alfredo De Rossi3,

Benjamin J. Eggleton1 & L. Kuipers2

Solitons are localized waves formed by a balance of focusing and defocusing effects. These

nonlinear waves exist in diverse forms of matter yet exhibit similar properties including

stability, periodic recurrence and particle-like trajectories. One important property is soliton

fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or

nonlinear perturbations. Here we demonstrate through both experiment and theory that

nonlinear photocarrier generation can induce soliton fission. Using near-field measurements,

we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a

nanophotonic semiconductor waveguide. We develop an analytic formalism describing the

free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum

threshold by an order of magnitude. We confirm these observations with a numerical

nonlinear Schrödinger equation model. These results provide a fundamental explanation and

physical scaling of optical pulse evolution in free-carrier media and could enable improved

supercontinuum sources in gas based and integrated semiconductor waveguides.
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S
oliton fission occurs when a fundamental soliton is ejected
and temporally separates from a higher-order soliton
due to a sufficiently strong perturbation to the system.

This behaviour strongly contrasts with the expected periodic
recurrence for ideal higher-order solitons1. In the optical domain,
soliton fission or ‘soliton decay’ as it is also known, was first
numerically shown to occur due to perturbations of the
traditional nonlinear Schrödinger equation including self-
steepening (SS), third-order dispersion (TOD) and Raman
scattering2–4 with experimental demonstrations following soon
after5,6. Since that time, nonlinear optical waveguides have
evolved from glass optical fibres to new platforms such as
semiconductors7 and gas-filled microstructured fibres8 where the
dominant perturbation is a plasma effect due to nonlinear
photogeneration of free electrons or free carriers (electron–hole
pairs) similar to light in bulk ionized gases9.

The free-carrier plasma modifies the nonlinear pulse evolution
with both dispersive (FCD, nFC) and absorptive (FCA, s)
contributions leading to non-trivial dynamics unavailable in
other optical systems. While in the spectral domain optical pulses
undergo a spectral blueshift due to FCD8–10, in contrast the
temporal properties are governed by the dynamic interaction of
FCD and dispersion together leading to, for example, nonlinear
pulse temporal broadening11. These free-carrier effects can also
interplay with and modulate the classical soliton evolution.
Temporal solitons in free-carrier media have been shown12–14

including soliton self-frequency blueshift15 and soliton
acceleration16,17. While recent numerical simulations suggest
that free carriers could cause soliton fission15, both a theoretical
formulation and direct temporal measurements establishing a
causal link remain open challenges to the field.

Here we provide both an experimental demonstration
and a theoretical explanation of the physics underpinning
soliton fission induced by a free-carrier perturbation. Using an
interferometric near-field scanning optical microscope (NSOM),
we observe both the spatial and temporal pulse evolution in situ
along a semiconductor waveguide. This direct measurement is
essential to unraveling the localized nonlinear dynamics in
nanophotonic waveguides as traditional cut back methods used
for macroscopic devices are impractical at these length scales.
From the theoretical side, we derive an analytic formalism to
reveal the physical parameters governing the system. With this
new formalism we determine a quantitative threshold required to
observe soliton fission induced by FCD and show that our
experimental conditions exceed the threshold by an order of
magnitude. In our experiment, the fission occurs on a length scale
as small as 160mm due to a slow-light enhancement of the optical
field in the photonic crystal waveguide (PhCWG) device. This
value represents the shortest fission length we could find reported
in the literature. We confirm these results with a numerical
model based on the generalized nonlinear Schrödinger equation
(GNLSE) incorporating the higher-order effects.

Results
Near-field measurements of nonlinear pulse propagation. The
structure under study is a two-dimensional PhCWG made of
air-holes etched in a GaInP slab (see Methods, Supplementary
Note 1 and Supplementary Table 1 for additional details). These
structures are known to enhance the nonlinear optical properties
due to slow light in the periodic medium18. We note the increased
group index ng¼ 15.1 is achieved using the dispersion-engineered
design outlined in ref. 19 in a region away from the band edge so
as to avoid scattering losses20 and minimize TOD21. The earliest
investigations of nonlinear evolution of optical pulses in
PhCWGs examined the pulse spectra after the pulse propagated
through the waveguide22. Figure 1a shows the measured spectral
transmission in our current experiment (solid) at the waveguide
output for low and high power levels for the optical pulse of 2.2 ps
(TFWHM, full-width at half-maximum of a hyperbolic secant).
Note that the oscillations in the measured spectra arise from
disorder in the periodic media20. The measured waveguide
transmission spectrum is shown as Supplementary Fig. 1. The
dashed curves are the result of model calculations detailed below.
Spectra measured at different power levels are shown in
Supplementary Fig. 2 and described in Supplementary Note 2.
We observe a clear spectral blueshift at high power due to FCD7,
as well as a less intense satellite peak. Such satellite peaks have in
the past been attributed to soliton fission in fibres, though no
similar observations in semiconductor waveguides have been
reported to date.

To determine the origin of the satellite peak it is highly
desirable to investigate the pulse evolution as it occurs.
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Figure 1 | Spectral transmission and time-resolved near-field microscopy

of soliton fission. (a) Spectral transmission properties of the optical pulse

measured at the waveguide output. (b) Time-resolved near-field optical

microscope (NSOM) apparatus used in the experiment. (c) Experimental

cross-correlation measurements as a function of power (vertical axis) at

two spatial positions along the nanostructured photonic waveguide. It is

clear that as the power is increased a break up of the pulse occurs as it

propagates.
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Traditionally, this is done through cut back of an optical fibre,
wherein measurements are taken at multiple spatial points albeit
at the cost of device destruction23. This method is impractical for
nanoscale devices without high risk of damage to the sample.
Fabricating devices of different lengths overcomes this limitation,
though with the drawback of device-to-device variation.
Non-destructive techniques such as NSOM24 or photomodulation
spectroscopy25 are well suited to evaluate the propagation dynamics
of sub-wavelength structures.

Figure 1b illustrates the time-resolved NSOM we used to
measure the pulse evolution in the waveguide21. With this set-up
we are able to measure the temporal dynamics of the propagating
pulse inside the waveguide at the position of the near-field probe.
In detail, we measure a temporal electric-field cross-correlation
between the pulse in the sample and a pulse in the reference
branch of the interferometric set-up. Details about the working
principle of the NSOM can be found in the Methods. This cross-
correlation contains all crucial information about the evolution of
the temporal pulse envelope of the electric field. For example,
it has been shown that the temporal broadening due to
group-velocity dispersion (GVD, b2)26 or the reshaping due to
higher-order dispersion21 transfers directly from the temporal
pulse envelope to the measured cross-correlation. We utilize
this relation between the cross-correlation and temporal pulse
envelope to describe the results in this work.

Figure 1c shows a summary of the NSOM measurements of the
temporal pulse dynamics as a function of coupled peak power Po.
The horizontal direction indicates two spatial positions that
we measured along the device with the near-field probe: 250 mm
(left-hand side) to 700 mm (right-hand side). A clear modulation
of the pulse dynamics is seen as a function of Po in the vertical
direction. The soliton number N2¼ LD

LNL
indicates the relative

balance of the characteristic length scales for linear dispersion LD
and the nonlinear Kerr effect LNL and determines the pulse
propagation regime. These lengths will be defined as they are used

in the text. In the linear regime the soliton number is N¼ 0.5
(P0¼ 0.5W) and temporal broadening due to GVD (b2)
dominates the propagation from 250 to 700mm (ref. 27).
This makes sense given the dispersion length of 410mm

ðLD¼0:322 T2
FWHM
b2

Þ and a sample length of L¼ 1.5mm. The
power-dependent behaviour at the two spatial locations
indicates noticeably different evolution patterns. At 250 mm,
the pulse narrows with increasing power, indicative of higher-
order soliton temporal compression28. In contrast, at 700mm
distinct solitons have formed and separated in time for the
initially injected NE2 soliton (P0¼ 5.9W). This temporal
separation is the essence of soliton fission.

To understand the physical origin of this separation from an
intuitive perspective we first recall that a change in frequency
(spectral shift O) in a dispersive medium corresponds to a change
in group velocity. This ultimately translates into a shift in
temporal position according to the moment evolution equation
dTc
dz ¼b2O (ref. 29). Since all solitons have anomalous GVD
(b2o0), and here O is blueshifted (positive), the result is a
temporal advance. This is opposite to the well-known case of
solitons in a Raman medium which redshift and therefore slow
down30–32. In the context of soliton fission, it has been shown
that the fissioned constituents have well predicted and very
different energies and power levels33. As a consequence, the
constituent solitons with larger peak power experience a greater
self-frequency shift and a larger temporal advance compared with
smaller amplitude solitons. Notice in our experiment that the
more energetic main soliton is advanced in time due to FCD and
dispersion16,29.

Confirmation of free-carrier induced fission by modeling. The
nonlinear pulse propagation in the GaInP semiconductor waveguide
can be described by a GNLSE model (Supplementary Note 3). The
nonlinear dynamics here are dominated by the w(3) optical Kerr effect
(nonlinear parameter g) with free carriers generated by nonlinear
three-photon absorption (3PA, a3) acting as a perturbation in the
wide-gap material (Eg¼ 1.9 eV) for our 1,553nm (B0.8 eV) pulses
(ref. 12). Figure 2a–f show detailed GNLSE modelling (dashed blue
and green) with the experimental data (solid red) from Fig. 1
superimposed. In particular, we highlight (a),(b) low and (c),(d) high
power at the propagation distance of 250 and 700mm, respectively.
The temporal shapes are in good quantitative agreement and excel-
lent qualitative agreement with the experimental data and capture the
essential physics of the nonlinear pulse propagation in the nano-
photonic waveguide. The good agreement between the experiment
and the GNLSE model is even conserved if only the free-carrier
effects are included as perturbation to the soliton propagation, as
presented in Fig. 2e,f. These results indicate FCD is the dominant
perturbation and the cause of the soliton fission. We now perform
additional GNLSE modelling to verify this observation and to
examine the physical origin of the fission.

Figure 3 summarizes our GNLSE modelling and confirmation
that the fission event is triggered by FCD. In particular, we show
the modelled pulse temporal P(t) profile along the waveguide.
As a baseline, Fig. 3a,b show the GNLSE model in the linear
(P0¼ 0.5W) and nonlinear (P0¼ 5.9W) regimes, respectively,
with identical conditions to Fig. 2. The highest power level results
in LNL¼ (gPo)� 1¼ 90mm. The dashed white lines correspond to
the two experimental spatial locations. We observe the pulses
already split after B160 mm. We attribute the short fission length
to a slow-light enhancement in the photonic crystal waveguide18.
We now discern the roles of the different effects by switching
them on and off independently in the model.

Figure 3c shows the case where we neglect free carriers
by setting the carrier density Nc¼ 0 and include only TOD (b3)
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Figure 2 | Comparison of experiment and model of the nonlinear pulse

propagation. (a,b) Time-resolved NSOM measurements and GNLSE

modelling at a peak power of at a peak power of 0.5W at a propagation

distance of (a) 250mm and (b) 700mm. Temporal broadening of the pulse

envelope due to GVD is visible in experiment (red line) and the model (blue

line). (c,d) Same as above with a peak power of 5.9W. The multiple peaks

characteristic of soliton fission are clearly observable in both theory and

experiment. To illustrate that the main features observed in the experiment

are related to free-carrier generation, (e,f) compare the experimental

results with GNLSE modelling results (green line) taking only the soliton

terms and FCD/3PA into account, which still results in a good agreement.

Note here we show the cross-correlation of the electric field of the temporal

pulse envelope for the modelling as well as the experimental results as

defined in the Methods.
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and the soliton terms (Kerr and GVD). The pulse clearly does not
undergo fission but rather periodic recurrence as expected from
soliton theory in the absence of perturbations28,31. This is not
surprising due to the small relative magnitude of the TOD effect3.
A similar result holds for SS. We conclude TOD and SS cannot be
the fission mechanisms here. In contrast, Fig. 3d shows that
setting b3¼ 0 (including only FCD, 3PA and the soliton terms)
yields a profile in which the main soliton advances in time with
the smaller amplitude fissioned pulse trailing behind. The notable
qualitative similarity of this result with both the full model
(Fig. 3b) and the experimental result (Fig. 2d,f) confirms that
FCD is the physical origin of the fission event. We note FCD
scales as P3

0, whereas 3PA scales as P2
0, thus the reason for the

strong FCD effect. Further, FCA is essentially negligible as shown
by the ratio of the two effects 2k0nFC

s �10. Now that we have
established that FCD is the dominant perturbation in our system,
we develop an analytic description to obtain deeper insight.

Derivation of the free-carrier perturbation. It is common to
write the GNLSE in a non-dimensional form to analyse the pulse
evolution27. Here for our case of solitons for a free-carrier
perturbation generated by 3PA this is:

i @U@x �
sign b2ð Þ

2
@2U
@t2 þN2 Uj j2U ¼ N2k 3ð Þ

FCU
R t

�1 Uj j6dt0; ð1Þ

where x, t and U are the dimensionless parameters for propagation
distance, time and pulse envelope, respectively (Supplementary Note
4). The terms on the left-hand side of the equation are related to
soliton propagation. The right-hand side is reserved for
perturbations, where the magnitude of the non-dimensional
parameter governs the conditions to trigger soliton fission. A
higher-order soliton will break apart when the magnitude of these
parameters exceeds a minimum threshold. Conversely, when the
parameter is below the threshold, the higher-order soliton remains
intact and recurrent behaviour is retained. The numerical value of the
minimum threshold depends on the specific physical effect causing
the fission (that is, TOD, SS and FCD). An important additional
property is that the minimum threshold to break a soliton decreases
with increasing soliton number N, a topic we will treat in further

detail below. Importantly, we have introduced the new term k 3ð Þ
FC to

elucidate the role of the FCD perturbation:

k 3ð Þ
FC ¼ LNL

L 3ð Þ
FCD

¼ 1
gPo

� �
k0 nFCj jNo

c

¼ 1
gPo

� �
ko nFCj jr 3ð Þ

FCP
3
oTo: ð2Þ

We have also defined L 3ð Þ
FCD, the FCD length for the free-carrier

density generated dynamically from intrapulse 3PA with a peak

carrier amplitude No
c¼r 3ð Þ

FCP
3
oTo, the free-carrier generation efficiency

r 3ð Þ
FC (ref. 11), and To¼TFWHM/1.76 for hyperbolic secant pulses. The

physical interpretation of k 3ð Þ
FC is the relative nonlinear phase shift due

to the Kerr effect compared with FCD per unit length.
In terms of characteristic physical scaling, we see that

k 3ð Þ
FCpP2

oTo, with the material contributing via constants. The
power dependence comes from the nonlinear 3PA carrier
generation, whereas the To term arises due to the fact that free
carriers accumulate over the pulse duration, as represented by the
integral in Equation (1). It is worth highlighting that the exact
scaling of kFC depends on the specific nonlinear mechanism
generating the free carriers (for example, two-photon absorption,
ionized gas tunneling and so on). We describe this point further
in the Discussion. Note that this carrier perturbation has a
completely different form to perturbations caused by TOD,
Raman and SS which scale as 1

To
due to a derivative term @

@t in the
GNLSE, indicating these effects scale with the local pulse shape,
rather than the non-local free-carrier effects31. Figure 4a shows
the calculated k 3ð Þ

FC parameters as a function of coupled peak
power for our experimental conditions. We have also included
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the scaling of the soliton number to show the comparative
evolution of these two parameters (N /

ffiffiffiffiffi
P0

p
and k 3ð Þ

FC pP2
0).

Analytic estimate of FCD-induced fission threshold. We now
predict the minimum threshold of k 3ð Þ

FC required to observe a
fission event using this formalism and the characteristic scales for
soliton period (zo) and time duration (To) from the literature.
First, we define the criteria to call an event a soliton fission. This
is non-trivial as the fission is an adiabatic process characterized as
a continuous spectral and temporal walk-off of the two con-
stituent solitons31,33. We consequently define a clean fission to be
a separation of T0 between the two pulses. Since even for the
weakest FCD perturbation this separation can occur at very long
distances, we further imposed the condition that the fission must
occur within one soliton period z0 (ref. 3). Under these
constraints for a soliton of order N¼ 2 we derived an analytic
threshold of k 3ð Þ

FC;min analyticð Þ¼ 0:039 employing a moments
method formalism and the equations in the text29. We show
the full derivation in Supplementary Note 5. The maximum
experimental value of k 3ð Þ

FC;exp¼ 0:35 is approximately an order of
magnitude larger than this minimum threshold and clearly of
significant strength in the experiments. Note that one can choose
arbitrary lengths, temporal separation and soliton number in
these equations for desired experimental conditions (see
equation 18 in Supplementary Note 5). For higher-order
solitons one must consult the analytic relations for the
constituent soliton powers following ref. 34 and substitute the
appropriate values into the derived equations.

To confirm our analytic theory, we performed GNLSE
simulations and varied the strength of k 3ð Þ

FC . We did this by
numerically reducing nFC so as not to modify the relationship
between the soliton number and L 3ð Þ

FCD. Figure 4b shows the
simulation with k 3ð Þ

FC;min GNLSEð Þ¼ 0:029, which is the minimum
strength to meet our criteria. This is on the same order as the
analytic theory with the difference attributed to momentum
conservation from soliton recoil4. This is expected since our
analytic formalism treats the constituents independently and
neglects soliton interactions. Similar to the known behaviour for
other perturbations, we found larger soliton numbers require
smaller perturbations to break up the higher-order soliton3. This
observation is supported by our analytic theory which shows
k 3ð Þ
FC;min scales as 1

N2 (see equation 21 in Supplementary Note 5).
We compare the FCD perturbation strength derived here with
known perturbation mechanisms such as TOD and SS in
Supplementary Note 6.

Discussion
From a fundamental physics perspective, these results apply to
the general class of optical systems with nonlinear photocarrier
(photoelectron) generation. Knowledge of the specific carrier
generation mechanism is critical as the physical parameters
governing the kFC perturbation scale differently in the tunneling
and multiphoton ionization regimes14–16,35. For example, in the
case of semiconductor waveguides, a related derivation of the
plasma length L 2ð Þ

FCD was shown for silicon (a TPA-limited
material at our wavelength) though soliton perturbation was
not addressed in that case11. We derive k 2ð Þ

FC for TPA in
Supplementary Note 7 and show that it scales linearly with
power. Supplementary Figure 3 compares the power evolution of
the 3PA and TPA cases. In the case of ionized gases, an equivalent
plasma length for static ionized gases was provided in ref. 36 and
we expect a k parameter could be defined for dynamic nonlinear
ionization based on the formalism in ref. 15 for the carrier
generation term Nc.

An important application of soliton fission is the generation of
ultrabroad coherent light known as supercontinuum (SC)31,37–39.
The demonstration of SC generation in photonic crystal fibres in
2000 (ref. 40) led to rapid adoption of SC sources in many
fields including breakthrough experiments in metrology41, optical
coherence tomography42 and optical frequency combs43. The
utility of supercontinuum generation in fibre waveguides has led
to significant interest in developing broadband light sources in
integrated platforms44–50. Examining a recent investigation on
supercontinuum in silicon, we computed a value of k 2ð Þ

FC;exp more
than two orders of magnitude larger than our predicted threshold
k 2ð Þ
FC(analytic), indicating that the FCD perturbation is required

to explain their results48 (Supplementary Note 7). We expect
these observations will facilitate improved SC sources in integrated
photonic chips envisioned for future on-chip optical communications
systems51 and lab-on-a-chip spectroscopic tools52.

In summary, we demonstrated that free-carrier dispersion can
induce soliton fission with both theoretical and experimental
approaches. Our near-field microscopy measurements enabled
the direct observation of the temporal and spatial evolution in the
nanoscale waveguide, thereby providing a key new measurement
technique for characterizing nonlinear pulses in sub-wavelength
structures. We derived an analytic formulation and characteristic
parameter k 3ð Þ

FC for the FCD perturbation and showed that our
experimental values were an order of magnitude larger than
the minimum required threshold. We supported these results
with a GNLSE model confirming both the experiments and
theory. These observations elucidate the fundamental physical
scaling and dynamics of soliton fission in free-carrier media
and could find applications in improved supercontinuum sources
in integrated photonic chips and gas-filled microstructured fibres.

Methods
Sample description and material parameters. A scanning electron micrograph
and detailed fabrication parameters of the L¼ 1.5mm air-suspended GaInP waveguide
can be found in Supplementary Note 1 and Supplementary Table 1. Our sample
includes integrated mode-adapters which reduce the total insertion losses in the linear
regime to B17 dB (including propagation loss) and suppress Fabry–Perot oscillations
at the end facets. The output coupling from the chip to the 0.4 numerical aperture
(NA) lensed fibre (OzOptics) is � 2.5 dB in agreement with our earlier work17. Due to
the need to approach the NSOM tip near to the sample input, coupling is achieved
with a 0.4 NA aspheric lens (Newport) with an estimated coupling efficiency of � 7 dB
which we suspect is due a mode-field size mismatch between the beam waist and the
lens. We report the measurements of the sample properties, material parameters and
the GNLSE model in Supplementary Notes 1 and 3.

Experimental set-up. For the nonlinear measurements, we employed a
mode-locked fibre laser (PriTel) delivering hyperbolic-secant pulses at 1,553 nm
with a temporal duration TFWHM¼ 2.2 ps as measured by autocorrelation. The
repetition rate is 20MHz and the laser light is coupled to the waveguide with
electric-field polarized in-plane with the slab (TE). The pulses are slightly chirped
as confirmed by autocorrelation measurements of the pulse input. For the
nonlinear pulse transmission measurements, we used an optical spectrum analyser
to measure the pulse spectrum as a function of input power. Two such traces are
shown in Fig. 1a with additional traces in Supplementary Fig. 2.

To measure the temporal dynamics of the pulse propagating inside
the waveguide we employ a homebuilt time-resolved NSOM53. In the set-up
the entire microscope, including the sample, is included in one branch of a
Mach–Zehnder interferometer. The near-field probe is brought in close proximity
(circa 20 nm) of the waveguide where it collects the evanescent tail of the guided
mode. As a result, a minute fraction of the guided light is transformed into far-field
radiation by the near-field probe and is interferometrically mixed with light from a
reference branch. The interference is detected on a photodiode with a heterodyne
detection scheme. By scanning an optical delay line and using a pulsed laser source
we measure a temporal cross-correlation of the electric field of the pulses
propagating in the reference branch of the interferometer and in the waveguide.
The measured temporal cross-correlation is described by the following equation:

C z; tð Þ /
Z

Es z; t� tð ÞEr tð Þdt ð3Þ

where C z; tð Þ is the cross-correlation function, z the spatial location of the
near-field probe, t the delay time and Es z; t� tð Þ and Er(t) the electric field
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of the pulse propagating in the sample and the reference branch of the set-up,
respectively. Correspondingly, the following equation holds in the frequency
domain:

C z;oð ÞpEs z;oð Þ � E�
r oð Þ; ð4Þ

where C(z, o), Es(z, o) and E*r(o) are the frequency spectra of the temporal cross-
correlation function and the electric field of the pulse in the sample and the
reference branch, respectively.

It has been shown that various changes of the temporal pulse envelope transfer
to the cross-correlation function. For example, the time of flight can be directly
extracted from the observed time delay in the experiment54. Furthermore,
symmetric temporal broadening due to GVD26, as well as asymmetrical TOD21,
exhibit similar features in the cross-correlation function as in the temporal pulse
envelope. However, the cross-correlation function will only directly represent the
temporal envelope of the pulse propagating in the sample if the pulse in the
reference branch is extremely short in time, ideally a Dirac delta function,
and its spectrum extremely broad and constant. Therefore, we show the temporal
cross-correlation function in our manuscript where we discuss the experimental
measurements (that is, in Figs 1c and 2).

To observe the nonlinear evolution of the pulse we repeat the cross-correlation
measurements at different input powers which are controlled by a set of neutral
density filtres. Further, to track the changes of the temporal pulse envelope in space
we position the near-field probe at different locations along the waveguide and
repeat the cross-correlation measurements. This measurement procedure allows,
for example, to gain information of the time of flight of the pulse or the reshaping
of the pulse envelope21. While there are a number of spatially resolved studies in
the linear regime21,55, there are few investigations of nonlinear dynamics with
NSOM24 or complementary techniques25 and, to our knowledge, no investigations
of soliton dynamics.
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19. Colman, P., Combrié, S., Lehoucq, G. & De Rossi, A. Control of dispersion in
photonic crystal waveguides using group symmetry theory. Opt. Express 20,
13108–13114 (2012).

20. Hughes, S., Ramunno, L., Young, J. F. & Sipe, J. E. Extrinsic optical scattering
loss in photonic crystal waveguides: role of fabrication disorder and photon
group velocity. Phys. Rev. Lett. 94, 033903 (2005).

21. Engelen, R. J. P. et al. The effect of higher-order dispersion on slow light
propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006).

22. Monat, C. et al. Slow light enhancement of nonlinear effects in silicon
engineered photonic crystal waveguides. Opt. Express 17, 2944–2953 (2009).

23. Dudley, J. M., Barry, L. P., Bollond, P. G., Harvey, J. D. & Leonhardt, R.
Characterizing pulse propagation in optical fibers around 1550 nm using
frequency-resolved optical gating. Opt. Fiber Technol. 4, 237–265 (1998).

24. Wulf, M., Beggs, D. M., Rotenberg, N. & Kuipers, L. Unravelling nonlinear
spectral evolution using nanoscale photonic near-field point-to-point
measurements. Nano. Lett. 13, 5858–5865 (2013).

25. Bruck, R. et al. Device-level characterization of the flow of light in integrated
photonic circuits using ultrafast photomodulation spectroscopy. Nat. Photon. 9,
54–60 (2015).

26. Gersen, H., Korterik, J. P., van Hulst, N. F. & Kuipers, L. Tracking ultrashort
pulses through dispersive media: Experiment and theory. Phys. Rev. E 68,
026604 (2003).

27. Agrawal, G. P. Nonlinear Fiber Optics 5th edn (Academic Press, 2013).
28. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of

picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45,
1095–1098 (1980).

29. Lefrancois, S., Husko, C., Blanco-Redondo, A. & Eggleton, B. J. Nonlinear
silicon photonics analyzed with the moment method. J. Opt. Soc. Am. B 32,
218–226 (2015).

30. Gordon, J. P. Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664
(1986).

31. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic
crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

32. Serkin, V. N. ‘colored’ envelope solitons in fiber-optic waveguides. Sov. Tech.
Phys. Lett. 13, 320–321 (1987).

33. Kodama, Y. & Hasegawa, A. Nonlinear pulse propagation in a monomode
dielectric guide. IEEE J. Quant. Electron. 23, 510–524 (1987).

34. Satsuma, J. & Yajima, N. B. Initial Value Problems of One-Dimensional Self-
Modulation of Nonlinear Waves in Dispersive Media. Progress Theor. Phys.
Suppl. 55, 284–306 (1974).

35. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. Sov.
Phys. J. Exp. Theor. Phys. 20, 1307–1314 (1965).

36. Wagner, N. L. et al. Self-compression of ultrashort pulses through
ionization-induced spatiotemporal reshaping. Phys. Rev. Lett. 93, 1–4 (2004).

37. Herrmann, J. et al. Experimental evidence for supercontinuum generation by
fission of higher-order solitons in photonic fibers. Phys. Rev. Lett. 88, 173901
(2002).

38. Alfano, R. R. (ed.) The Supercontinuum Laser Source 3rd edn (Springer, 2016).
39. Dudley, J. M. & Taylor, J. R. Supercontinuum Generation in Optical Fibers

(Cambridge Univ. Press, 2010).
40. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in

air-silica microstructure optical fibers with anomalous dispersion at 800 nm.
Opt. Lett. 25, 25–27 (2000).

41. Udem, T. H., Reichert, J., Holzwarth, R. & Hänsch, T. W. Accurate
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