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Wavefront shaping through emulated curved space
in waveguide settings
Chong Sheng1,*, Rivka Bekenstein2,*, Hui Liu1, Shining Zhu1 & Mordechai Segev2

The past decade has witnessed remarkable progress in wavefront shaping, including shaping

of beams in free space, of plasmonic wavepackets and of electronic wavefunctions. In all of

these, the wavefront shaping was achieved by external means such as masks, gratings and

reflection from metasurfaces. Here, we propose wavefront shaping by exploiting general

relativity (GR) effects in waveguide settings. We demonstrate beam shaping within dielectric

slab samples with predesigned refractive index varying so as to create curved space envir-

onment for light. We use this technique to construct very narrow non-diffracting beams and

shape-invariant beams accelerating on arbitrary trajectories. Importantly, the beam

transformations occur within a mere distance of 40 wavelengths, suggesting that GR can

inspire any wavefront shaping in highly tight waveguide settings. In such settings, we

demonstrate Einstein’s Rings: a phenomenon dating back to 1936.
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G
eneral electromagnetic (EM) beams propagating
through linear homogenous media experience diffraction
broadening. However, many applications would greatly

benefit from having beams that remain very narrow or
shape-invariant for large distances. The past two decades have
witnessed remarkable progress in wavefront shaping specifically
for the purpose of generating non-diffracting beams, such as
shape-preserving Bessel beams1 and accelerating beams in free
space2–5, in plasmonics6–9 and even in nonlinear materials10–15.
The concept of shape-invariant wavepackets was extended
beyond EM waves, for example to shaping wavefunctions of
electrons16–19 and generating shape-invariant acoustic
beams20,21, and even accelerating surface water gravity waves22.
All of these shape-invariant wavepackets are not square integrable
(they carry infinite power), hence physically they must be
truncated, which implies that they stay non-diffracting only for
a finite distance2. In a similar vein, there are other kind of beams
which are a priori designed to stay shape-invariant only for a
finite distance, for example, the cosine-Gauss beams23 and a class
of beams that propagate on arbitrary curved trajectories5,24,25.
Naturally, all of these beams require wavefront shaping: the
launch beam must be shaped in a specific structure (amplitude
and phase), to stay non-diffracting for the specified distance.

Wavefront shaping for generating non-diffracting optical
beams can be achieved by various methods, ranging from
annular slits1, axicon lenses26, computer generated holograms24,
spatial light modulators3,28, gratings7,23,29, metasurfaces30–32 and
diffraction from nanoparticles4,33. Importantly, non-diffracting
beams can also be generated in inhomogeneous media such as
photonic crystal slabs34–38, photonic crystals39,40 and photonic
lattices41. All these too require wavefront shaping, that is typically
done externally, outside the medium within which the beam is

propagating. However, wavefront shaping can also be done by
shaping the EM environment in which the wave is
propagating42,43. The fact that the propagation of EM waves in
static curved space is analogous to that in inhomogeneous
media42–44 is the underlying principle of emulating general
relativity (GR) phenomena in transformation optics42,43,45–52. In
transformation optics, the permittivities and permeabilities are
structured to vary according to the curvature of space53–59, giving
rise to unique trajectories55–57,60 and controlling the diffraction
of light61,62.

Here, we show that using ideas inspired by GR yields efficient
beam shaping in waveguide settings. The concept is general,
applicable to many cases where wavefront beam shaping in a
waveguide platform is required. First, we fabricate the
micro-structured optical waveguide with the specific refractive
index emulating the curved space environment generated by a
massive gravitational object. This dielectric structure yields a
very narrow beam that remains non-diffracting for many
Rayleigh lengths. Second, with the same experimental system,
we demonstrate the Einstein’s rings phenomenon, matching
Einstein’s 80 years old formula. Finally, we present a general
formalism to transform Gaussian beams to considerably narrower
shape-invariant beams accelerating (bending) along arbitrary
trajectories.

Results
Generating non-diffracting beams through gravitational
collimation. The first goal is to create a narrow beam that would
propagate in a non-diffracting fashion for a considerable distance
in a homogeneous medium. We do that by passing a Gaussian
beam through a specific refractive index structure, inspired by the
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Figure 1 | Calculated propagation of gravitational collimation resulting in a non-diffracting beam. (a) The calculated non-diffracting beam fitted to the

beam arising from the simulation of the experimental setting. (b) Spatial spectrum of the beam displaying two main peaks, as can be seen in c showing

zoom-in on the central section of the spectrum. The two pronounced peaks correspond to a superposition of non-diffracting cosine and sine distributions,

resulting in the narrow non-diffracting beam. (d) Simulated propagation of the non-diffracting beam of a, for a distance of 200mm inside a homogenous

medium, revealing the non-diffracting property.
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gravitational lensing phenomenon occurring around massive
stars. We design a specific curvature where the emulated grav-
itational lensing of the light on the micro-scale can create a very
narrow non-diffracting beam. The basic principles of diffraction
imply that non-diffracting beams can be constructed when their
plane-waves constituents accumulate phase at the same rate. The
non-diffracting property of beams depends on the dimensions
of the wavepackets, that is, a non-diffracting beam can be a
shape-invariant solution to the wave equation in three
dimensions (3D) or in two dimensions (2D). In 3D homogeneous
media, beams that are structured in both their transverse
dimensions exhibit shape-invariant propagation on a straight line
in the third dimension include the family of Bessel beams1. In 2D,
on the other hand, when the beams are structured in a single
transverse dimension (for example, when the beam is propagating
in a planar waveguide), an ideal non-diffracting beam has a
unique shape: two plane waves propagating at opposite
symmetric angles with respect to the propagation axis.
However, whereas the Bessel beams are localized, that is, they
have a main lobe carrying most of the power, the planar case is
just an interference grating—which is periodic and cannot be
used for applications that require a beam with a single main lobe.
Interestingly, providing proper spatial bandwidth to each of the
opposite waves in the one-dimensional (1D) case does lead to a
localized beam displaying non-diffracting features for some finite
distance. More specifically, superimposing two beams whose
spectrum in k-space is small compared with the wavenumber, at
opposite angles with respect to the propagation axis, gives rise to
non-diffracting propagation up to a finite distance, due to
the similar rate of phase accumulation of the different modal
(plane waves) constituents. Here, we construct such a very narrow
non-diffracting beam by drawing on intuition from GR, where it
is known that light waves are deflected by the space curvature
generated by a massive star63,64. We exploit this gravitational
lensing effect to construct a field that is a superposition of two
beams of a finite spatial bandwidth, propagating at opposite
angles with respect to the propagation axis. Such a beam remains
non-broadening for a finite distance that can be much larger than
the Rayleigh length of its main lobe. An example for such a 1D
non-diffracting beam and its spectrum is displayed in Fig. 1a,b,
respectively. Figure 1c shows zoom-in on the spectrum, while
Fig. 1d presents its simulated propagation—where it is clear that
the main lobe remains narrow for a large distance, in spite of
the fact that its width is only four wavelength. The two main
peaks in the spectrum (Fig. 1c) represent a superposition of
cosine/sine distributions, along with a central peak. The width of
the spectral peaks is two orders of magnitude smaller than the
wavenumber, enabling a non-diffracting property to a finite
distance. This structured beam, whose full-width-half-maximum
(FWHM) is 2mm, is approximately shape-preserving for
B200mm, which corresponds to six Rayleigh lengths (Fig. 1d).

To transform a broad Gaussian beam (FWHM B30 mm) into
this non-diffracting beam in a planar waveguide setting, we
fabricate a specific refractive index structure inspired by the
concepts of curved space known from GR. Namely, curved space
generated by a massive gravitational body leads to gravitational
lensing, that can in principle overcome diffraction broadening
and cause beam collimation. The planar waveguide has a unique
width profile, causing a change in the propagation constant and
effectively modifying the refractive index. The structure is shown
in Fig. 2a. During the fabrication process, a silver film is deposited
on a silica (SiO2) substrate with a thickness of 80 nm, followed
by polymethyl methacrylate (PMMA) microsphere powder
scattered on the substrate. The microspheres are distributed on
the substrate, with a small density and large separation distance
between microspheres. The sample processing includes a stage

where the sample is put on the heating table (300 �C) for 30 s. As
the melting temperature of PMMA polymer is B250 �C, the
heating process deforms the PMMA microspheres into domes,
just as shown in Fig. 2b,c. In this process, the size of resultant
PMMA domes is not uniform, and their diameters can vary
greatly, from 1 to 100mm. For the experiment presented here, we
work with one of domes that has an appropriate size, as shown in
its optical microscope image in Fig. 2b. The structure is shaped as
a dome protruding from the plane of the waveguide (Fig. 2a).
This is further confirmed by mapping the surface structure with
atomic force microcopy (Asylum Research, MFP-3D-SA, USA),
as shown in Fig. 2c. Next, a set of gratings with the period 310 nm
are drilled on the sliver film around the microdroplet with
focused ion beam (FEI Strata FIB 201, 30 keV, 150 pA). These
gratings enable to couple the light into the slab waveguide. Next,
we spin-coat the sample with a PMMA photoresist mixed with
rare earth (Eu3þ ) to a thickness of B1 mm, and subsequently dry
the sample in the oven at 70 �C for 2 h. The Eu3þ rare earth ions
are added to the sample to facilitate fluorescence imaging that will
reveal the propagation dynamics of the beam. These Eu3þ ions
absorb the beam propagating in the slab waveguide, whose
wavelength (457 nm) is specifically chosen to excite the rare earth
ions, that in turn emit fluorescent light at 615 nm wavelength. We
note that, although the 1-mm-thick PMMA layer is not single-
mode waveguide for the 457 nm beam, the designed grating
allows only one mode to be excited inside the waveguide. Here,
only the TM3 mode is excited in our experiment (The grating is
designed that only one waveguide mode is excited. Hence,
plasmonic modes are not excited in the experiment). The
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Figure 2 | The sample fabricated for generating a narrow collimated

beam. (a) Schematic view of the fabricated waveguide: the inhomogeneous

planar waveguide with the specifically designed refractive index structure.

The structure is fabricated by depositing a thin silver film on a silica (SiO2)

substrate with a thickness of 80 nm, followed by PMMA microsphere

powder scattered on the substrate. The blue arrows at the bottom

represent the incident 457 nm blue laser light, and the bright spot marks

the illumination spot where the light is incident on the grating. (b) Top-view

optical microscopy image of the microdroplet. (c) The surface structure of

the microdroplet, as mapped by AFM measurements. (d) The effective

refractive index structure calculated from c, based on waveguide theory.
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resultant 2D structure of the refractive index is displayed in
Fig. 2d, together with a 3D illustration of the entire sample
(Fig. 2a). Figure 2c shows the width of the PMMA waveguide as
mapped by AFM measurements. From this width, we calculate
the refractive index structure displayed in Fig. 2d, which is fitted
with the function n x; zð Þ ¼ n0 þ a=ð1þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
=rcÞ8Þ, with

n0¼ 1.37, a¼ 9.22� 10� 2, rc¼ 9.69. Recall that the refractive
index of bulk PMMA polymer is 1.49, hence our fabrication
process reduces the refractive index according to our design.
Specifically, in the region of the dome, the thickness is increased
to 3.5 mm, and therefore the effective index of the TM3 waveguide
mode is increased from 1.37 to 1.49.

In the experiment, we launch a Gaussian beam of 457 nm
wavelength and 11.3 mm FWHM to propagate inside the PMMA
layer that acts as a waveguide. The loss in this waveguide is quite
small, in spite of the proximity of the thin Ag layer, enabling
propagation distances of hundreds of micrometres. The specifi-
cally designed refractive index structure focuses the wide beam to
a very narrow (2 mm) beam that is subsequently propagating
without diffraction for B200 mm, as expected from the theory.
We emphasize that, after passing the ‘star’, the very narrow beam
is propagating in a completely homogeneous medium, hence its
non-diffracting property arises solely from the beam structure
generated by passing the ‘star’. Moreover, whereas most shape-
preserving beams are very broad, this beam presents a narrow
profile, only 2mm wide. For comparison, we study the dynamic of
a Gaussian beam passing through the same medium numerically
and compare it with the experimental results (Fig. 3). We do this
by numerically simulating the beam propagation, with the beam
propagation method in a medium with the specific refractive
index structure conforming to that of the sample used in the
experiment (Fig. 2d). In both the experiments and the simulations

the transformation of the wide Gaussian beam to a narrow
collimated beam is achieve within a very short propagation
distance (B20 mm), allowing the use of this scheme in integrated
photonics circuits. In Fig. 3, the diameter of the dome is roughly
25 mm. In the experiment, we can fabricate domes with different
diameters, always with circular shape. Naturally, domes of
different sizes yield collimation for different propagation
distances and with different beam widths.

Experiments emulating the Einstein rings phenomenon.
Interestingly, we find that besides producing collimated beams,
the same planar ‘central potential’ index structure can also be
used to emulate the phenomenon of Einstein’s Rings, which is a
famous phenomenon predicted by GR and observed in
astronomy65,66. The Einstein Ring phenomena occurs when light
from a point source is deformed by a mass distribution through
gravitation lensing that causes the appearance of a ring around
the mass distribution. For this case, the beam approaching the
‘star’ should emulate the radiation originating from a point
source, namely, the wave reaching the ‘star’ should be a spherical
wave. To emulate a point source, we fabricate (with focused ion
beam) an arc-shaped grating (period of 310 nm) inside the metal
film. This is shown in Fig. 4b, where the radius of the arc is
30 mm. When a plane wave is incident (from below) on the arc
grating, the grating transforms it into a spherical wave
propagating inside the waveguide layer. The region of incidence
on the grating acts as a point source, emitting a spherical wave
diverging both to the left and to the right of that point (negative
and positive z, respectively). In such a setting, the spherical
wavefront produced by the arc-grating emulates the wave
radiated outwards from a point source located at the centre
of grating arc. When this 1D spherical wavefront is passing
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Figure 3 | Experimentally observed propagation dynamics of gravitationally collimated non-diffracting beam. (a) Top-view photograph of the

experimentally observed results obtained through florescence. A broad Gaussian beam with FWWH 11.3 mm passes through the region of the dome, giving

rise to the refractive index profile described in Fig. 2c. The wide Gaussian beam focuses to a narrow collimated beam that is non-diffracting for B200mm.

The entire beam transformation process occurs within20 mm. (b) Simulated results of the same beam showing a similar effect as the experiment. The white

dashed circle corresponds to the dome region. (c) Normalized intensity profile of the beam for several propagation distances, after passing though the

dome region. (d–g) Measured (red) and simulated (blue) 1D intensity profiles for z¼ 50mm, z¼ 75mm, z¼ 100 mm, z¼ 125mm, respectively, which

correspond to the planes marked by the yellow dashed lines in a–b.
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by the star—it is focused and the beam width changes as a
function of the propagation distance, as extracted from the
experimental data. It is important to emphasize that our
optical setting represents Einstein’s rings formed by a time-
harmonic EM waves, hence the entire dynamics is in space (not in
time). Typical results for two different ‘stars’ (microdroplets with
two different radii) are displayed in Fig. 4. As the Radius of the
‘star’ is larger the convergence of the beam is more extreme, but
the final beam is wider (Fig. 4). At this point it is intriguing to
compare our emulation results with Einstein’s prediction. The
Einstein Formula for the angular diameter of the virtual ring64 is
given by b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0R0=z

p
, that depends on the convergence angle

a0, the radius of the mass distribution R0 and the distance
between the centre of the mass distribution to the observation
point. We calculate the angular diameter of the Einstein Ring
from the measured convergence angle of the beam, for several
different observation points (propagation distances). For a given
observation point, the focusing angle of the beam after passing
the ‘star’ gives the slope, from which we calculate the angular
diameter of the virtual ring that an observer located at this
specific distance (from the ‘star’) will see. To conform with the

Einstein formula, we calculate the relative angular radius between
the two mass distributions (two samples). Namely, instead of
calculating the absolute angular radius as a function of z, we
calculate the relative angular radius between the results of each

sample. We then fit the curve b z
a0

� �
¼

ffiffiffiffiffiffiffiffiffiffiffi
c=ð za0Þ

q
with c as a free

parameter and compare the relative constant extracted from the
experiment with the constant expected from Einstein’s formula.
In comparing the ratio and not the absolute number, we avoid the
factor 2 between the relativistic Einstein formula and our
experiment that represents Newtonian dynamics. As Fig. 4h
shows, the experiments agree well with theory, although at large z,
the experimental values are slightly lower than the model.
This minute discrepancy arises from the difference between the
fabricated optical potential (refractive index structure) and the 1/r
gravitational potential of a point source. Consequently, for large
values of z (distances), the focusing angle of the light deviates
from Einstein’s formula, hence the measured focusing angle is
somewhat smaller than the theoretical curve.

Shaping beams accelerating on arbitrary trajectories. Finally,
we present a general formalism for transforming broad Gaussian

Einstein’s ring formation
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beams to accelerating beams that bend along arbitrary (convex)
trajectories in a planar waveguide setting. As above, we do that by
passing an incident broad Gaussian beam (11.3mm FWHM)
through a miniature refractive index structure that is designed
specifically for this task. Accelerating beams are beams with a
well-defined peak intensity that propagates along some non-
straight trajectory, depending on the phase of the initial
beam4,5,29. From the point of view of GR, the peak intensity of the
beam does not follow geodesics paths67, which are the shortest
paths that light propagated along (by the Fermat principle). This
important property of accelerating beams had been exploited for
various applications, such as curved plasma channels65,
manipulating microparticles68,69 and micromachining70. We
design accelerating beams by utilizing the formalism suggested
in ref. 5, for finding the specific 1D phase f(x) required for
shaping the wavefront of an accelerating beam that will propagate
along a specific trajectory. This ID phase can be achieved by a 2D
refractive index structure that the beam passes through, and
obeys the relation

f xð Þ ¼ k0

Z zf

zi

n x; zð Þdz; ð1Þ

under the assumption that the propagation of the beam is in the
paraxial regime. Using this method, there is no unique solution
for n(x, z). We therefore suggest a simple method that solves
equation (1) for one specific refractive index profile to a specified
phase, by assuming n(x, z) is constructed from a function that is
separable in x, z, namely n(x, z)¼ f(x)g(z). For simplicity, we take
g(z)¼ exp(� z2/s2), and assume the Gaussian width (in z) is
small compared with the propagation distance (soozf� zi). This
allows setting the boundaries of the integral to infinity which after

integrating over z yields:

f xð Þ ¼ f xð Þ
k0

ffiffiffiffiffiffi
ps

p : ð2Þ

It is important to emphasize that the approximation we used for
solving the integral of the phase only, causes additional
effects. Due to the 2D refractive index distribution the beam is
shifted to some different direction of propagation—z’¼ zeiy while
propagating through the inhomogeneous area. Consequently,
n(x, z)¼ f xð Þ

k0
ffiffiffiffi
ps

p exp(� z2/s2). To present an example for this
method, we find the refractive index profile required to create the
phase for an accelerating beam along the trajectory f(z)¼ az03. In
this specific case, the propagation of the resulting beam can be
solved analytically using the method presented in ref. 5. In more
complicated cases, a numerical solution for the ordinary
differential equation (ODE) is required. We then use equation
(1) to calculate the 2D refractive index structure that will provide
the beam with the appropriate phase. By simulating the dynamic
of a broad Gaussian beam passing through the designed refractive
index structure, we find that the main lobe indeed accelerates
along the expected trajectory, for a distance of 20mm as displayed
in Fig. 5. In this regime, it is possible to design a beam that will
accelerate beam on an arbitrary trajectory. As any accelerating
beam, the structure of such a beam involves a main lobe
accompanied by oscillations on one side, and exponential decay
on the other side. An example is shown in Fig. 5c, where the beam
cross-sections at several propagation distances is displayed. This
technique for beam shaping inside a slab waveguide is general,
and can be used to shape the wavefront of non-diffracting beams
accelerating on any convex trajectory, by designing the refractive
index structure using equations (1 and 2), which relates the initial
phase front (assumed here to be of a broad Gaussian beam) and
the desired phase front f(x) to the refractive index structure
required for such wavefront shaping.
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Discussion
To conclude, we have presented a method for shaping optical
wavefronts in waveguide settings. Our technique is inspired by
GR and it provides a platform for emulating the spatial dynamics
of EM waves in curved space. This method can be achieved in
thin film waveguides and can be implemented in integrated
photonics settings. Specifically, we have demonstrated experi-
mentally the construction of a narrow non-diffracting beam, the
formation of Einstein’s rings, and presented a general method to
construct accelerating beans propagating along arbitrary
trajectories. This method can be used for shaping any general
beam, thereby suggesting a new way of using transformation
optics media for beam shaping in waveguide settings with a
single dielectric material. In this work, we presented beam
shaping in the spatial domain; consequently, our experiments
employed only continuous laser beams as our input waves.
However, in principle this technique can also be used to shape
ultrashort laser pulses with the traditional grating pairs, the lenses
and the spatial modulation at the focal plane, all implemented in
a slab waveguide geometry with proper design of the planar
refractive index structure. This idea will be pursued in our future
research.
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