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Ultra-high gain diffusion-driven organic transistor
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Emerging large-area technologies based on organic transistors are enabling the fabrication of
low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are
essential for the development of large-scale circuit integration, high-sensitivity sensors and
signal amplification in sensing systems. Unfortunately, organic field-effect transistors show
limited gain, usually of the order of tens, because of the large contact resistance and channel-
length modulation. Here we show a new organic field-effect transistor architecture with a gain
larger than 700. This is the highest gain ever reported for organic field-effect transistors. In
the proposed organic field-effect transistor, the charge injection and extraction at the
metal-semiconductor contacts are driven by the charge diffusion. The ideal conditions of
ohmic contacts with negligible contact resistance and flat current saturation are
demonstrated. The approach is general and can be extended to any thin-film technology
opening unprecedented opportunities for the development of high-performance flexible
electronics.
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ransistors fabricated with organic, polymeric, amorphous-

oxide and carbon-based materials are the basis of emerging

technologies for the development of lightweight, large-area
and flexible electronics! ™. Large-area electronics manufactured at
near-to-room temperature on plastic foils aims at enabling new
applications where mechanical flexibility, integration in wrapping
materials and ultra-low cost are paramount. To fabricate a transistor
in flexible technologies, nanometre-thick layers of metals, insulators
and semiconductor are stacked together and the semiconductor is
directly contacted with the metal electrodes. The overall transistor
performance intimately depends on three physical processes: the
charge injection from the source electrode to the semiconductor, the
charge transport through the semiconductor and the charge
extraction at the drain electrode. The impressive development of
high—mobilit¥ semiconductors’ and  short channel-length
transistors'®!! urgently demand high-quality contacts and proper
transistor  design'>!®.  Unfortunately, the energetic matching
between abruptly contacted metal-semiconductor materials is
challenging, especially at near-to-room temperature!®. Electrons
and holes must overcome large energy barriers to flow from a
material to the other, resulting in a large contact resistance, large
device-to-device variations and low transistor amplification!3-18,

The figure-of-merit that determines the intrinsic amplification
of a transistor is the gain=g,,/g,, where g, =0Ip/0V; is the
transconductance and g,=0Ip/0Vp, is the output conductance.
High-gain transistors are essential for the development of large-
scale and robust circuits, high-sensitivity sensors, and adequate
signal amplification in sensing systems. Unfortunately, organic
field-effect transistors (OFETS) typically show a gain of the order
of tens'”!8, The low gain measured in OFETs is due to the large
contact resistance that results in a small g, and to the channel
length modulation that results in a large g,. Therefore, high-gain
OFETs need, at the same time, both high-quality contacts and flat
current saturation.

Ohmic contacts with small contact resistance require efficient
charge injection and extraction. In organic electronics, the contact
optimization is performed on a case-by-case basis, depending on
the semiconductor, electrodes and device architecture. Despite
ad-hoc approaches'®-2> such as doping, surface treatments and
materials blending enable to reduce the contact resistance, a
general and simple method is desirable. In addition, the channel
length modulation dependents on the specific OFET architecture
and geometries, which determine how the charge carriers are
extracted at the drain!”18,

Here we show a new organic transistor with high-quality
contacts and flat current saturation. Thanks to the charge diffusion
triggered by the transistor architecture, the charge carriers are
efficiently injected and extracted from the contacts to the channel,
independently of the energy barrier at the contacts. As a prototype
and remarkable example, we fabricate Diffusion-driven Organic
Field-Effect Transistors (named DOFETs) on flexible plastic
substrates with an industrial thin-film technology. The theoretical
and experimental analysis unambiguously show that the diffusion-
driven contact, proposed in this work for the first time, is
fundamental to dramatically improve the charge injection and
extraction in organic thin-film field-effect transistors. The ideal
conditions of negligible contact resistance and fully flat current
saturation are demonstrated. These conditions maximize together
the transconductance and the output resistance of the transistors,
resulting in OFETs with exceptionally high gain (>700).

Results

Structure and electrical characteristics of the transistor. The
top-view image and the three-dimensional structure of the
diffusion-driven organic transistor are shown in Fig. la,b. The
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transistors are bottom-gate co-planar where the gate is patterned
first by using photolithography. Thereafter, we deposited by spin
coating a photoimageable polymer (polyvinylphenol) used
as a gate insulator (named insulator 1) followed by gold source
(S) and drain (D) electrodes patterned by a lift-off process. A
100-nm-thick film of pentacene is deposited by spin coating and
patterned. A thick layer of polyvinylphenol (named insulator 2) is
deposited by spin coating and used as insulator and capping layer.
Finally, two electrodes named ‘control source’ (CS) and ‘control
drain’ (CD) are patterned on the top of the insulator 2 in front of
the source and drain electrodes. The transistors are fabricated on
a plastic polyethylene naphthalate foil (Fig. 1c) and the overall
process temperature is lower than 150°C. Further details
on the transistors fabrication and geometries are shown in
Supplementary Fig. 1. The measured transfer and output curves
are shown in Fig. 1d-f and Supplementary Fig. 2.

Operation of the transistor. The DOFET operates as follow. An
appropriate voltage applied to CS and CD, creates a vertical
electric field orthogonal to the S/D contact surface. It triggers a
charge injection from the upper surface of S/D into the
semiconductor (Fig. 2a). In equilibrium (Vs=Vp=0V, no
current flows), the electric-field below CS/CD is counterbalanced
by the injected-charges that are accumulated in the semi-
conductor region below CS/CD. When a source-drain voltage is
applied (|Vps|>0), the charge carriers flow from source to drain
despite the contact energy barriers and the potential drop at the
contacts is negligible (Fig. 2b).

More in detail (Fig. 2¢), the charge carriers accumulated in the
CS region move to the right-edge of the CS region itself, attracted
by the drain potential (Fig. 2¢, arrow 2). As a consequence, the
vertical electric field at the left-hand-side of the CS region is not
shielded anymore and, despite the energy barrier, other charges
can be injected by the source electrode (arrow 1). The excess of
the charge carriers at the right-hand-side of the CS region are
pushed to the bottom channel by the diffusion against the vertical
electric field (arrow 3). As shown in Fig. 2d, few nanometres far
from the CS region the vertical electric-field changes direction
under the influence of the gate potential and the charge carriers
are eventually pulled into the transistor channel (arrow 4). As a
result, the CS region acts as an ideal source. The key physical
mechanism triggered by the transistor architecture is the charge
diffusion, which takes place in less than Lgg=50nm (Fig. 2d)
when the semiconductor thickness is tg=100nm. We also
verified that the diffusion length scales accordingly with the
semiconductor thickness (that is, Lg;¢=~25nm when fg= 50 nm).

The charge carriers injected into the channel drift to the drain
(Fig. 2¢, arrow 5) under the force of the longitudinal electric field.
When the charge carriers reach the right edge of the channel, they
are blocked by the energy barrier at the drain contact, and the
local concentration increases. The charges are no more counter-
balanced by the gate electric field, and they can diffuse to the CD
region (arrow 6) in correspondence of the CD region edge. As
shown in Fig. 2e, few nanometres far from the channel the
vertical electric field changes direction, the charge carriers are
pulled into the CD region (arrow 7) and eventually diffuse
(arrow 9) to the drain. The CD region acts as an ideal drain.

The idea is that in the DOFETs the charge injection and
extraction do not take place directly from the source and drain
metal electrodes as in conventional transistors but, instead, the
charge carries are injected by the CS region and are extracted by
the CD region. The injection and the extraction are driven by the
diffusion triggered by the transistor architecture. As a result,
when enough charge carriers are accumulated in the CS and CD
regions, the charge injection and extraction are independent of
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Figure 1 | Transistor architecture and characteristics. (a) Top-view optical image of a diffusion-driven organic field-effect transistor (DOFET) fabricated
on plastic foil OSC is the organic semiconductor. Scale bar, 5 um. (b) DOFET components. Photolithographically patterned gold is used for metal electrodes
(named gate, source, drain, control source, control drain), the insulators (insulators 1 and 2) are photoimageable polymers (polyvinylphenol), and the
organic semiconductor is a solution-processed pentacene. The material thicknesses are detailed in the Supplementary Fig. 1. (¢) Photograph of the plastic
(PEN) foil with the measured transistors detached from the glass substrate. The transistors are fabricated with an industrial thin-film technology with three
metal layers. (d,e) Measured transfer characteristics at several control source voltages. The Vs step is 10V, Vs=0V and Vcp=0V. The DOFET channel
width and length are W =100 pm and L =12.5um, respectively. (f) Measured output characteristics at several control drain voltages.

the applied voltages (viz. Vg and Vcp) and the CS and CD
regions behave like ideal source and drain for the transistor
channel. Therefore, as confirmed by the two-dimensional (2D)
numerical simulations shown in Supplementary Fig. 3, the gate
electrode is not required to overlap the source and drain
electrodes.

The potential at the insulatorl-organic interface calculated by
means of 2D numerical simulations is shown in Fig. 2b. In the
DOFET, the potential drop at the contacts is negligible even if the
energy barrier at the metal-semiconductor contacts is 0.5 eV, that
is a typical barrier at the metal-organic contacts. In contrast, in a
conventional organic transistor (viz. without CS and CD), the
charge carriers must overcome the energy barrier flowing from
the channel to the S/D electrodes and vice versa. Owing to the
energy barrier, the channel is disconnected from the S/D
electrodes and more than the half of the drain voltage drops at
the contacts (Fig. 2b). The large contact resistance severely limits
the transistor performances and this is even worse in case of high-
mobility semiconductors and/or short-channel lengths.

Experimental analysis. The effectiveness of the proposed
approach is further assessed by means of the experimental results
shown in Fig. 3. Figure 3a shows the measured contact resistance

Rp as a function of the gate voltage V. The contact resistance
of the DOFET biased at Vcg= —40V (that corresponds
to an electric field |Ey.ycs|=028MVem™!) is equal to
Rpporer) =20 kQ cm, which is lower than the contact resistance
in conventional OFETs with Au-pentacene-doped contacts?? and,
more importantly, Rpiporer) is independent of Vg. In contrast,
the contact resistance of an organic transistor without
CS/CD (conventional coplanar transistor) fabricated with
the same materials and process is Vg dependent. It is up to 24
times larger than that of the DOFET and, even at large gate
voltages (Vo= —25V, that is, |Ey_vg|=07MVcm~1),
RpioreT) > 5 X Rpporer):  Analogous results are obtained
comparing the DOFET with a conventional staggered OFET
(Supplementary Fig. 4).

To give more insight, Fig. 3b shows the Rp- Vg characteristic of
two nominally identical DOFETs for several V. Rp is controlled
by Vs despite the gate voltage. Indeed, at low gate voltage
(Vo= —5V, that is, |Ey.yg|=0.14MV cm 1), Vs modulates
Rp by more than four orders of magnitude, and at large
Vo= —20V (|Ey.vg|=057MVem 1), Rp still depends on
Ves. Interestingly, when Veg< —20V (that is, |Ey.ycs|=0.14
MV cm ~!) the contact resistance is negligible compared with the
channel resistance (Supplementary Fig. 5) and it is independent
of both V_and V. As confirmed by the measurements shown in
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Figure 2 | DOFET operation. Two-dimensional numerical simulations. The applied voltages are Vo= —5.1V, V=0V, Vp= -1V, Vcs= — 60V,

Vep= — 60 V. Geometrical and physical parameters are listed in the Supplementary Fig. 1 and in the Methods section, respectively. (a) Charge
concentration in the organic semiconductor. The white arrows depict the charge injection from the source and drain electrodes into the semiconductor
when the control source and control drain electrodes are biased. The x-to-y scale ratio is 1:200. (b) Quasi-Fermi potential at y =99 nm with (full line) and
without (dashed line) CS/CD. Without CS/CD about half of Vs drops at the source and it is required for the charge injection. (¢) Current density:
x-component Jy (black area) is equal to TAcm 2, and the y-component Jy is shown with colour scale levels. (d) Current density Jy and electric field £y
along the y-direction at x=3.5pum. In the range y=[0-47]1nm, the current is driven by the diffusion, and in the range y=[47-100]1nm, the

current is driven by the drift. (e) Jyand Eyalong the y-direction at x = 20.5 um. In the range y = [0-47]1 nm, the current is driven by the drift, and in the range
y=1[47-1001nm, the current is driven by the diffusion.

the inset of Fig. 3b, this is the experimental evidence that the by means of the 2D numerical simulations, at Vo< — 20V, the
current enhancement originates from the improved charge accumulated CS-region is an ‘infinite’ charge reservoir, the charge
injection at the source. According to the physical insight obtained  diffusion efficiently sustain the charge injection required by the
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Figure 3 | DOFET measurements and parameters. \When it is not specified, the applied voltages are: Vs=0V, Vp= =1V, Vcs=0V, Vcp =0V, and the
transistors geometries are: W =100 um, L =12.5 um. (@) Width-normalized contact resistance Rp as a function of the gate voltage V. Rp is calculated with
the method?®. In the conventional OFET (viz. without CS and CD), Rp decreases with Vg, whereas in the DOFET, Rp is independent of V5. When the control
source is biased at Vcs= +5V, the DOFET works as a conventional coplanar OFET. (b) Rp vs V(s at various Vg measured on two nominally identical
DOFETs. When Vcs< — 10V, Rp is the same for both the DOFETs and it is independent of both Vi and Vcs. Inset: measured output characteristics

of a DOFET at several Vcs. (€) Maximum overall field-effect mobility vs Vcs. The inset shows the field-effect mobility as a function of the gate voltage:
ure = (L/W) (0lp/0Vs)/(Ci Vp). The x symbol is the maximum value of each curve. (d) Threshold voltage (V) as a function of Vcs. Vry is the intercept
to the Vg-axis of the Ip linear fit. Inset: Subthreshold slope as a function of Vcs. (e) Normalized output characteristics of the DOFET measured at various
Vcp. Ip is normalized by its maximum value at Vp = — 30 V. In saturation, the DOFET is an ideal current generator because the current is diffusion driven.
The most important short-channel effect due to the channel-length modulation vanishes. The Vcp controls the charge extraction at the drain electrode,

which has a strong impact on the output conductance (go =0/p/0Vp). (F) Normalized output characteristics of a DOFET and two conventional OFETs
(viz. without CS and CD).

channel, and the CS-region behaves like an ohmic contact. On the Comparing the Rp obtained for two nominally identical
other hand, at Vs> + 5V, the diffusion-driven charge injection ~DOFETs (Fig. 3b), it results that when the virtual-ohmic source
is turned-off, the contact resistance increases, the drain current contact is not formed, the transistors show different Rp, whereas
lowers and it increases super-linearly with Vp, as usually obtained as soon as the virtual-ohmic source contact is formed
in contact limited transistors'>1>1619 We can conclude that itis  (Veg< —20V), Rp becomes the same for both the DOFETs.
possible to control (enhance or reduce) the charge injection at the ~ According to refs 10,12,13, these measurements suggest that the
source contact through nanometre-scale charge diffusion. metal-organic contact is a source of variability. As the DOFET
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suppresses the contact resistance, the variability due to Rp is
reduced as well. This feature is essential for the large-scale
integration of flexible circuits. Moreover, the improved charge
injection results in a larger overall field-effect mobility (Fig. 3c) as
well as in a reduced threshold voltage (Fig. 3d) and steeper
subthreshold slope (inset Fig. 3d). Figure 3c shows that the
maximum mobility of a DOFET with Lipoggr) = 12.5 pm is close
to 0.1cm?V ~!s~!and it corresponds to the mobility measured
in long-channel OFETs (Lioper) = 100 um), where the contact
resistance is negligible. Figure 3d shows that by means of Vg the
DOFET can be turned into a multi-threshold transistor and the
improved DOFET (Vg < — 20 V) operates in depletion-mode. In
unipolar technologies, depletion-mode transistors are essential to
design high-performance circuits?”>*® and the electrical control of
the threshold Volta%e is extremely important to improve the
circuit robustness?’ 2.

When the transistor operates in linear region, the energy
barrier at the drain side of the channel is smaller than that at the
source side. On the other hand, in saturation (|Vg|<|Vp|), a
wider energy barrier is present at the drain, independently of the
metal/semiconductor properties (Fig. 4a). Therefore, we investi-
gated the impact of the control drain in saturation. The output
characteristics (Ip-Vp) of the DOFET measured at various Vcp
are shown in Fig. 1f. As expected, Ip increases with Vp and,
more importantly, at large (negative) Vcp the DOFET shows fully
flat current saturation. The impact of Vcp on the current
saturation is readily visible in Fig. 3e where the IH-Vp
characteristics are normalized with respect to the maximum Ip
measured at Vp= —30V. At Vep< —40V, the detrimental
effect of the channel length modulation on the drain current is
completely suppressed and the DOFET behaves like an ideal
current generator.

This can be explained in the light of the previous analysis. In
saturation, the charge carriers drift to the right-edge of the
channel (pinch-off region), and diffuse to the CD region (Fig. 4b,
arrow 6). Few nanometres far from the channel edge, the vertical
electric-field changes direction because of the control drain

a

voltage and, in turn, the charge carriers are pulled into the CD
region (arrow 7). Now, the excess charges are no more in
equilibrium with the vertical electric-field and can diffuse to the
drain (arrow 9). As the charge-extraction from the accumulated
layer (viz. CD region) is diffusion driven, the drain current is
independent of the drain voltage as far as Vp is greater than Vp,.

Figure 3f shows the comparison between a DOFET with a
channel length Lipoprr)=12.5pm (full line), and two conven-
tional coplanar OFETs with Liopgri; = 12.5 pm (red dashed line)
and Liopgra; =100 pm (black dashed line). Interestingly, the
channel length modulation of the DOFET biased at Vcp = — 60
V is completely suppressed: it is even smaller than that of the
long-channel OFET2. This is also more evident when the DOFET
is compared with a conventional staggered OFET (Supplementary
Fig. 6) where the channel length modulation is very large because
the source and drain electrodes are placed at the opposite side of
the gate. These results confirm that Vp controls channel length
modulation and in turn the output resistance of the DOFET. The
channel length modulation is one of the most important
short-channel effects and it limits the transistor amplification.

Figure 5 shows the maximum gain measured in a DOFET as a
function of Vp (full line with symbols). According to Figs 1f and
3e, the gain depends on Vp because it controls both the contact
resistance at the drain and the channel length modulation. When
Vep = — 60V, the gain is larger than 700. This is the largest gain
ever reported for OFETs. It is one order of ma%nitude larger than
the gain usually obtained in OFETs!1:16-18:30-35,

Discussion

The ultra-high gain measured in the DOFET is achieved thanks
to the diffusion-driven charge injection and extraction. In
particular, when the CS and CD regions are accumulated, they
act as ideal contacts for the channel and the diffusion enables the
efficient and voltage-independent charge injection and extraction.
In the DOFET, the CS and CD regions are at the opposite side of
the channel and resemble a staggered OFET with ideal ohmic
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Figure 4 | 2D numerical simulations of a DOFET operating in saturation. The applied voltages are Vo= —5.1V, Vs=0V, Vp= —-10V, Vcs= — 60V,
Vep= — 60 V. (a) Charge concentration in the organic semiconductor. (b) Current density: x-component Jy (black area) is equal to TAcm ~2, and the
y-component Jy is shown with colour scale levels. For the sake of clarity, the positions of control source (CS), control drain (CD) and gate electrodes are
shown. Geometrical and physical parameters are listed in the Supplementary Fig. 1.
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contacts. It is important to note that in the DOFET this condition
is always achieved, thanks to the accumulated CS and CD regions.
The charge flow from/to the CS/CD regions and the channel is
driven by the charge diffusion, and thus the contact resistance is
independent of the gate (Fig. 3a) and drain (inset Fig. 3b)
voltages, the saturation current is independent of Vp, and an
ultra-high gain is obtained.

As a comparison, the gain measured in the conventional
OFET1 (Liopgeri)=12.5pm, red dashed line) and OFET2
(LioreT2) = 100 um, black dashed line) are shown in Fig. 5. As
expected in both cases, the gain is much lower than that measured
in the DOFET at any Vcp because in the OFET1 the current is
contact limited and the channel modulation is large, whereas in
the OFET2 the contact resistance is negligible but the channel
length is large and hence g, is small. In OFETSs, the contact
resistance can be reduced by means of the contact engineering
and optimization'®2>, and the proper choice of the transistor
architecture’®®”. Indeed, staggered OFETs are more tolerant to

800
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---L=100pum w/out CS, CD

700 ¢ ---L=12.5um w/out CS, CD

600
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Gain

400
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Figure 5 | DOFET gain. Measured gain as a function of Vcp. The applied
voltages are Vo= —5V, V=0V, Vcs= — 20 V. The transistors width is
W =100 pm. The DOFET (full line with symbols) length is L =12.5 pm. The
OFET lengths are L =12.5um (red dashed line) and L =100 um (black
dashed line). The other geometries are the same. The DOFET and OFET are
fabricated with the same materials (Supplementary Fig. 1). The grey area
shows the gain obtained in OFETs16-18,30-35,

the contact resistance with respect to the coplanar OFET's because
in the staggered transistors the contact area (of the order of
microns) is larger than that of coplanar transistors (of the order
of nanometres). On the other hand, in staggered transistors the
source and drain electrodes are at the opposite side of the channel
and, when operated in saturation, the channel length modulation
is larger than that in coplanar OFETs. As an alternative approach,
the split-gate OFETs>>>* are based on a coplanar architecture and
lower the contact resistance thanks to the gate bias-assisted
charge injection®®. However, the channel length modulation is
not suppressed because the secondary gates are coplanar with the
source and drain electrodes, the charge extraction is not diffusion
driven and, as a result, the gain is comparable with that typically
measured in OFETSs (of the order of tens).

In addition to the high-gain, another advantage offered by the
DOFET is the possibility to maximize the charge injection/
extraction area at the source and drain electrodes, whereas
minimizing the overlap between the gate and the electrodes. The
2D numerical simulations in Supplementary Fig. 3 and Fig. 6
show that the gate is not required to overlap the source and drain
electrodes because the charge injection/extraction takes place
from/to the CS/CD accumulated regions. At the same time, the
CS and CD electrodes can be overlapped (without the drawback
of extra capacitance) with the source and drain electrodes in
order to exploit the full area of the electrodes that is typically in
the range 5-10 um (in our DOFET it is 5um). Thanks to the
charge diffusion, taking place at the edge of the accumulated CS
and CD regions, also the overlap between the gate and the CS and
CD electrodes is not required. Moreover, the numerical
simulations in Fig. 6 show that the equivalent contact length
where the charges are injected/extracted is only Lc=0.25um,
which is suitable for the megahertz operation!!.

Finally, it is worth noting that the voltages required to form the
charge-accumulated CS and CD regions are independent of the
DOFET operation. For example, by setting Vecs= Vop= —40V,
the DOFET operates as a conventional OFET with ideal ohmic
contacts and ultra-high gain. Therefore, the two control
electrodes can be connected together and the external circuit
design and lines required for the proposed transistor structure is
the same of that required for dual-gate transistors. The latter have
been successfully used to fabricate an organic microprocessor
with 3,381 dual-gate OFETs*. Moreover, an alternative approach
is to replace the CS and CD electrodes with fixed charges trapped
into the insulator 2 (ref. 40). Another very interesting approach

CONTROL SOURCE CONTROL DRAIN
Insulator 2 y- current density
(Acm™)
0 g 7-0E-02
20
2.3E-02
’g‘ 40
< 60 —2.3E-02
80 . —7.0E-02
100 - "
0 1 2 3 |nsulator 1 4 6 7 X (um)
GATE
—>—<— — >
1 LG 1

Figure 6 | 2D numerical simulations of a DOFET with minimized capacitances. Current density: x-component Jy (black area) is 10 Acm ~2, and the
y-component Jy is shown with colour scale levels. For the sake of clarity, the positions of control source (CS), control drain (CD) and gate electrodes are
shown. Geometrical and physical parameters are listed in the Supplementary Fig. 1. The applied voltages are Vo= —5.1V, Vs=0V, Vp= -1V,

Ves= —60V, Vep= —60V.
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would be the replacement of both the CS and CD electrodes and
the insulator 2 with electric dipoles (Supplementary Fig. 7) by
local molecular self-assembly functionalization*#*> of the top
surface of the organic semiconductor in front of the source and
drain electrodes.

In summary, the DOFET shows that it is possible to
dramatically enhance the charge injection and extraction at the
metal/semiconductor contacts by means of the nanometre-scale
charge diffusion. The enhanced charge injection allowed us to
reduce the threshold voltage by more than 15V, and to increase
the field-effect mobility about ten times, approaching the organic
semiconductor transport limit also in short-channel transistors.
The enhanced charge extraction enables the complete suppression
of the channel-length modulation. We show that a short-channel
DOFET behaves like an ideal current generator: its channel-
length modulation is even smaller than that of an eight times
longer organic transistor fabricated in the same technology. These
features lead to the fabrication of high performance organic
transistors with a unique benefits combination: negligible contact
resistance, small device-to-device variability, and exceptionally
high gain (> 700).

Thanks to the transistor here proposed we theoretically explain
and experimentally demonstrate for the first time that the charge
diffusion can play a crucial role in organic transistors. Moreover,
the ability to independently enhance or reduce the charge
injection, transport and extraction in organic semiconductors
makes the DOFET the ideal test-bed to study the fundamental
physical processes taking place in organic semiconductors and at
the metal-organic interfaces.

The proposed approach is a universal method to obtain
high-quality contacts without the need of materials or process
optimizations. Moreover, according to the approach proposed in
ref. 43, the DOFET combined with ambipolar semiconductors
could be used to electrically enhance the charge injection of one
charge type and to suppress the other. This feature is very
relevant for the low-cost fabrication of high-gain and low-power
ambipolar complementary electronics.

The diffusion-driven organic transistor opens up new oppor-
tunities for the large-scale integration of flexible electronics,
high-sensitivity sensors and ultra-large signal amplification in
sensing systems.

Methods

Two-dimensional numerical simulations. The coupled drift-diffusion, Poisson
and current continuity equations are solved together*3~#3. The simulation
parameters are the following: relative permittivity of semiconductor &= 3, relative
permittivity of insulators (1 and 2) ;= 3.757, highest occupied molecular orbital
(HOMO) energy level Eyonmo = 2.8 €V, lowest unoccupied molecular orbital
(LUMO) energy level E;ymo = 5.2 eV, effective density of HOMO states
Nuowmo = 10?1 em =3, effective density of LUMO states Nyyyo = 102t em ~3,
holes effective mobility s, =0.1cm?V ~1s ™1, electrons effective mobility
e=0.1cm?V ~1s ™1 metal electrodes work function ®,,=4.7 eV (the hole
energy barrier at the source/drain metal-semiconductor is @5 =0.5eV), Schottky
barrier lowering A®p=e [e E/(4 7 & &:)]"(1/2), where e is the elementary charge,
E is the electric field and & is the vacuum permittivity.
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