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Visualizing band offsets and edge states in
bilayer–monolayer transition metal dichalcogenides
lateral heterojunction
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& Chih-Kang Shih1

Semiconductor heterostructures are fundamental building blocks for many important device

applications. The emergence of two-dimensional semiconductors opens up a new realm for

creating heterostructures. As the bandgaps of transition metal dichalcogenides thin films

have sensitive layer dependence, it is natural to create lateral heterojunctions (HJs) using the

same materials with different thicknesses. Here we show the real space image of electronic

structures across the bilayer–monolayer interface in MoSe2 and WSe2, using scanning

tunnelling microscopy and spectroscopy. Most bilayer–monolayer HJs are found to have a

zig-zag-orientated interface, and the band alignment of such atomically sharp HJs is of type-I

with a well-defined interface mode that acts as a narrower-gap quantum wire. The ability to

utilize such commonly existing thickness terraces as lateral HJs is a crucial addition to the

tool set for device applications based on atomically thin transition metal dichalcogenides,

with the advantage of easy and flexible implementation.
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A
heterojunction (HJ) is an interface between two different
semiconductors. The difference in the electronic
structures of the two materials results in potential

discontinuities at the interface for electrons (conduction band
offset) and holes (valence band offset). The introduction of
heterostructures1 has enabled new types of electronic and
photonic devices, transforming semiconductor technology. The
recent emergence of two-dimensional (2D) semiconductors
creates exciting new opportunities to push semiconductor
heterostructures towards a new frontier2–7.

Vertically stacked van der Waals heterostructures have been
quickly recognized as a powerful platform to create atomically
thin heterostructures with great design flexibility2,8–10. Indeed,
van der Waals heterostructures have been realized using different
combinations of 2D materials, including transition metal
dichalcogenides (TMDs), graphene and boron nitride11–15.
Interesting properties, such as the observation of interface
excitons16 and the determination of band alignments have been
demonstrated recently in TMDs vertical heterostructures17. Less
attention has gone to the possibility of creating ‘lateral HJs’,
where the junction is now a line interface between two 2D
materials, reducing the dimensionality of heterostructures even
further. Using direct chemical vapour deposition (CVD) growth,
lateral junctions between different TMDs have been recently
demonstrated18–22. However, theoretical calculations suggest
that the heterostructures formed between the four most
common TMD compounds (M¼Mo, W; X¼ S, Se) all have
type-II band alignment23,24, and the equally (if not more)
important type-I HJs are still missing. How to create a lateral
type-I HJ with an atomically sharp and straight interface, and
characterize its band profile at the atomic scale, remain as
significant challenges to overcome in order to advance this new
frontier based on 2D semiconductors.

Previous investigations have shown that the bandgaps of TMD
films greatly depend on the number of layers25,26. So one may
naturally ask: can we create a well-defined lateral HJ between
regions of different thicknesses, for example, a bilayer–monolayer
interface? If so, is such a HJ type-I or type-II? Moreover, as the
junction interface is also a step edge, how does this step edge
influence the electronic structures of the HJ?

Here we study this new type of lateral heterostructures between
bilayer (BL) and monolayer (ML) TMDs using low-temperature
scanning tunnelling microcopy and spectroscopy (STM/S).
We first show that atomically sharp and smooth interfaces with
the desired type-I band alignment can indeed be formed.
Moreover, we discover the presence of interface states with a
narrow gap that act as interface quantum wires. Because the
junction is formed between the direct gap monolayer TMD and
the indirect gap bilayer TMD, the band edge carriers on the two
sides of the junction are from different momentum space regions.
This feature, coupled with the ability to control the interface
through the edge states, offers the opportunity for novel device
concepts in reduced dimensions.

Results
WSe2 bilayer–monolayer HJs. The BL–ML lateral HJs are
formed naturally when a second layer of TMD is grown on top of
the ML TMD. We achieve direct growth of such a HJ either using
CVD27 or molecular beam epitaxy (MBE)26,28. Shown in Fig. 1a is
an example of a WSe2 BL–ML heterostructure grown on a highly
oriented pyrolytic graphite (HOPG) substrate using CVD. In this
STM image, three distinct regions—graphite, ML–WSe2 and
BL–WSe2—are separated by two atomically sharp line interfaces,
corresponding to the ML and BL step edges (respectively
separating graphite from ML WSe2, and ML from BL WSe2).
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Figure 1 | STM images and schematic models of BL–ML TMD lateral heterojunctions. (a) STM image for a naturally formed BL–MLWSe2 HJ grown on

HOPG by chemical vapour deposition. The bilayer and monolayer regions are labelled as shown. (b) Atomic resolution image taken on bilayer region where

a dash square is labelled in a (not to scale). The sample biases and tunnelling currents used are (a) 3V, 8 pA, (b) � 1.0V, 10 pA. The arrows in a and b

indicate the zig-zag orientation of the bilayer–monolayer interface. (c,d) Schematic models of the BL–ML heterojunction viewing from top and side,

respectively. The green and cyan represent the metal atoms in second and first layer respectively, while the red and yellow corresponding for chalcogen

atoms. Scale bar, 100 nm (a); 1 nm (b).
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An atomically resolved STM image (Fig. 1b) taken on the BL
region allows us to determine the orientation of these two
interfaces to be along the zig-zag directions. Then scanning
tunnelling spectra are acquired to reveal the real space band
profile across the interface. Figure 2a is a close-up STM image
showing the spatial locations where STS given in Fig. 2b,c is
carried out. Shown in Fig. 2b is a colour rendering of the band
mapping result, and selected individual spectra are shown in
Fig. 2c. Note that dI/dV spectra are displayed on a logarithmic
scale. The numbers on the spectra refer to their position in
the complete set, in which spectra are acquired every 2 nm from
the BL into the ML region, with spectrum #14 acquired at the
interface (Fig. 2a).

The most striking feature in Fig. 2b is the apparent band
bending for both conduction band and valence band in the BL
WSe2 near the interface. The magnitude of the band bending
Dbend is about 0.15 eV over about 10 nm towards the interface
(depletion length). One can also see an abrupt change in the
electronic structure right at the BL–ML interface (see also
spectrum #13 and #14 in Fig. 2c). The spectra in the ML region,
in contrast, exhibit little band bending.

In the BL region, the dI/dV spectrum shows a prominent peak
in the valence band (labelled with black arrow in spectrum #1 of
Fig. 2c). This corresponds to the higher energy branch at the
G point split due to the interlayer coupling. This feature has been
discussed in detail recently29. The lower state is not visible in the
limited energy window here. Far away from the interface, the

valence band maximum (VBM) of BL region is located
at � 1.10±0.07 eV while the conduction band minimum
(CBM) is determined to be 0.71±0.07 eV (from spectrum
#1–#6), corresponding to a quasiparticle bandgap of
1.81±0.10 eV. From #6 to #12, the spectral line shape remains
the same but the locations of the VBM and CBM both move
upward, corresponding to the band bending (as indicated by the
arrows in #6 and #12).

Right at the BL–ML interface, new spectral features emerge
(#13 and #14 in Fig. 2c). Two prominent peaks around 0.4 and
0.8 eV (marked by the red arrows) appear in the conduction
band. The new spectral features in the valence band can be
observed more vividly on spectrum #14 (marked by the green
arrows) but merge with the bulk valence states in #13.
Interestingly, as revealed by the STS, the interface states here
behave effectively like a narrow-gap semiconductor with a gap
value of 0.8 eV (with VBM and CBM located roughly at � 0.6 to
0.2 eV, respectively). Our STS map (Fig. 2b) suggests that the
interface states have type-I band alignment with 2D bulk states of
both the BL and ML therefore can play the role of a quantum wire
for both electrons and holes. Localized interface states are actually
a common feature of semiconductor interfaces having broken
bonds, such as surfaces states at crystal-vacuum interfaces. In our
case, broken bonds occur at the termination of the upper layer of
bilayer TMD. Thus we may expect the quantum wire states to be
centred on the atoms terminating the edge. However, the details
of the step structure are not yet fully known.
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Figure 2 | Scanning tunnelling spectroscopy investigation of band profile across the BL–MLWSe2 heterojunction. dI/dV spectra were taken along the

path shown in (a). The spectra numbers are labelled (counting from left to the right in the path line). The total length is roughly 73 nm with a step size of

2 nm. Spectrum #14 was taken right at the interface. (b) Colour-coded rendering of the real space imaging of band profile plotted in terms of log(dI/dV). All

spectra in this paper are displayed with arbitrary units (a.u.), except for Fig. 4c. The energy locations of G and KV (actual VBM) points are labelled by black

arrows. (c) A selective subset of log(dI/dV) spectra. In spectrum #1, the upper state of G splitting, which results from interlayer coupling, is labelled with a

black dashed arrow. The interface states are marked in spectrum #13 and #14 with red arrows for conduction band side and green arrows for valence band

side. A black arrow in monolayer region represents for the energy location of CBM. Scale bar, 20 nm (a).
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Moving into the ML WSe2 region, one quickly observes the
bulk ML WSe2 electronic structure without visible band bending
within the spatial resolution (2 nm) of the STS. As one can see
from spectrum #15 to #30 the electronic structure remains
constant. It is important to recognize that in the ML WSe2 region,
it is difficult to directly observe the actual VBM location
(at K point in Brillouin zone) using conventional constant
Z tunnelling spectroscopy as in Fig. 2b,c, due to the extremely
short tunnelling decay length of K-points states29. The peak in
the valence band corresponds to the energy location of the
G point while the VBM at K point (not visible in the constant
Z spectroscopy) is approximately located at 0.65 eV above.
This point will be discussed further below.

As in any HJ, the energy alignment of the band edges
(including the interface quantum wire) right at the interface is an
inherent property, while the band bending depends on the
electrostatics (for example the substrate). In the bulk ML and BL
regions, the intimate contact with the graphite determines the
location of EF in the gap. Near the edge, band bending occurs in
order to keep the EF in the bandgap of the zig-zag quantum wire.
The screening by the substrate graphite sets the length scale of the
band bending at about 10 nm.

MoSe2 bilayer–monolayer HJs. We have also studied the BL–ML
heterostructure in MBE-grown MoSe2 on HOPG, where we find
the same general behaviour as for WSe2, as illustrated in Fig. 3.
The spatially resolved STS is acquired with a finer step of 0.8 nm
(labelled in Fig. 3a). The colour rendering of band mapping based
on the STS is shown in Fig. 3b. The upward band bending is

observed for both conduction and valence bands. However, the
‘apparent’ band bending from the valence band side is much
stronger, effectively reducing the bandgap starting about 3–4 nm
away from the edge. On detailed inspection, this is due to
the overlap of valence band states of the bulk with those of
the interface quantum wire states in the STS signal. One can see
this more clearly from the individual STS spectra shown in
Fig. 3c. Spectrum #10 still resembles the bulk BL band structure.
On the other hand, in spectrum #11 the interface states above the
bulk valence band edge start emerging and eventually split off
(labelled by the green arrows in spectrum #15). This behaviour is
similar to that in WSe2 discussed above except here the
magnitude of the energy split off from the VBM of the bilayer is
larger. The conduction band interface state is only observed right
at the interface (#15, labelled by the red arrow). This might be due
to a smaller energy split off from the CBM of the bilayer making
it only observable very near the edge. The edge here has a nar-
rower gap of 0.4 eV, which is also smaller than the one in WSe2.
Moreover, with finer spatial resolution, we can observe a small
band bending in ML region with a very short depletion length
(around 1 nm only).

We summarize the general behaviour of lateral HJs formed
from BL and ML WSe2 or MoSe2 with the schematic diagram
(Fig. 4a) and Table 1. Here, the amount of the energy band
bending is labelled as Dbend, the gap of the interface mode as Dintf,
the valence band offset as VBO and the conduction band offset as
CBO. The numerical values for these quantities are shown in
Table 1 for WSe2 and MoSe2, respectively. As mentioned above,
in the ML region, constant height tunnelling spectroscopy lacks
the sensitivity to reveal the location of the VBM at the K point.
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Figure 3 | Scanning tunnelling spectroscopy investigation of band profile across the BL–ML MoSe2 heterojunction. Similar with Fig. 2, (a) is a close-up

STM image showing the path line that spectroscopy was taken along. The total length is about 18 nm with a step size of 0.8 nm. The spectra numbers in b

and c are counted from left to right in the path, while spectrum #15 was taken right at the BL–ML interface. (b) Colour-coded rendering of the real space

imaging of band profile plotted in terms of log(dI/dV). (c) Selective subset of log(dI/dV) spectra. In spectrum #15, the interface states in valence band and

conduction band are marked with green and red arrows, respectively. Scale bar, 5 nm (a).
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On the other hand, as we reported recently29, constant-current
spectroscopy can overcome this difficulty and resolve the states at
the K point in the valence band (labelled as KV). As discussed
extensively in ref. 29, in such constant-current spectroscopy, the
individual thresholds at different critical points appear as peaks in
differential conductivity (qI/qV)I as well as dips in the derivative
of the tip-to-sample position as a function of the voltage
(qZ/qV)I. Shown in Fig. 4b and c is the case for WSe2. The
actual VBM is located at the mid-point of the transition from the
TMD to the graphite states, which is around 0.65 eV above the G
point, as labelled in Fig. 2b. For MoSe2, this value is
0.40±0.04 eV. With this information, we are able to determine
that the CBO and VBO of BL–ML WSe2 HJs are 0.15±0.10 and
0.12±0.10 eV, respectively, as shown in Table 1. Similarly, for
BL–ML MoSe2, they are found to be 0.08±0.10 and
0.43±0.10 eV, respectively, albeit in this case, the determined
CBO is smaller than the experimental uncertainty of 0.1 eV.

Discussion
We first discuss the implications for electron transport across or
along the interface which raises many interesting issues. It is well
known for semiconductor HJs that there can be strong reflection
at the interface, depending on how dissimilar the two material
are. The same is true for reduced-dimensionality interfaces, such
as HJs between ML and BL graphene30,31. Considering the
significant differences of their electronic structures (especially
band edges located at different k points in Brillouin zone), we
may expect similar strong reflection at the interfaces of these

BL–ML TMDs HJs. Transport along the interface can also be
subject to scattering by imperfections. For example, the edge of
the upper layer is in general not perfectly straight, so transport
along the quantum wire will experience some disruption at kinks
and other imperfections in the edge structure. This could lead to
hopping conductivity with poor mobility along the wire.
However, the non-ideal transport need not be an obstacle to
important applications. In many conventional applications, the
primary role of the HJ is to provide confinement, or to control
barriers; and transport along or across the interface is secondary
or even irrelevant. More important is that these interfaces provide
a rich combination of barriers and localized states, offering novel
opportunities for device engineering. Moreover we anticipate that
the localized quantum wire states could be easily doped, since
atoms tend to diffuse and bind at step edges.

In conclusion, our STM/STS studies reveal a new class of lateral
HJ in atomically thin WSe2 and MoSe2, formed from naturally
existing BL–ML thickness terraces with zig-zag orientation.
Because of the thickness dependence of the bandgap and band
edges, the ML and BL bulk bands align to form a type-I HJ, as
clearly seen in our STS maps. The interface states in both systems
form a narrow-gap quantum wire. This interface quantum wire
has a gap value of 0.8 eV in WSe2 and a smaller gap value of
0.4 eV in MoSe2. The band alignment of the quantum wire states
is also type-I with respect to both the BL and ML sides of the
junctions. We expect that the unique properties of this novel class
of HJs will create new possibilities for device applications based
on 2D TMDs.

Methods
Growth of 2D TMDs samples. The preparation of WSe2 crystal flakes by the
vapour-phase reaction has been reported before27. In brief, high purity metal
trioxides WO3 was placed in a ceramic boat in the centre of a furnace, while
graphite substrate was placed in the downstream side of the furnace, adjacent to the
ceramic boat. Selenium powder was heated by a heating tape and carried by Ar or
Ar/H2 gas to the furnace heating centre. The temperature of furnace was gradually
raised from room temperature to the desired temperature, and cooled down
naturally after the reaction had occurred. MoSe2 was grown on freshly cleaved
HOPG substrate using MBE in an ultra-high vacuum (UHV) chamber which has a
base pressure of 5� 10� 11 torr. High-purity Mo (99.95%) and Se (99.999%) were
evaporated from a home-built e-beam evaporator and an effusion cell, respectively,
with a ratio of 1:30. The graphite substrate was kept at 550 �C, and the growth rate
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Figure 4 | Schematic diagram of band alignments and constant Z spectroscopy for valence band of ML WSe2. (a) Schematic diagram showing the

generic band alignment in BL–ML TMDs HJs. The magnitude of the band bending is labelled as Dbend, and the gap of interface states is Dintf. (b,c) Two

modes of constant Z spectroscopy—(qI/qV)I and (qZ/qV)I for valence band of monolayer WSe2. The actual valence band maximum at K point is labelled as

KV, which is about 0.65 eV above G point. See ref. 29 for details.

Table 1 | Band alignments in bilayer-monolayer hetero-
junctions for WSe2 and MoSe2.

BL–ML Dbend (BL) CBO VBO Dintf

WSe2
0.15±0.05 eV

0.15±0.10 eV 0.12±0.10 eV 0.8±0.10 eV
MoSe2 0.08±0.10 eV 0.43±0.10 eV 0.4±0.10 eV

BL, bilayer; CBO, conduction band offset; ML, monolayer; VBO, valence band offset.
The s.d.’s shown here are based on statistics of multiple measurements (more than 50 times).
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was about 0.3 layer per hour. The sample was annealed in a Se flux at 600 �C for
30min after growth. Before STM studies, the CVD samples are cleaned in the UHV
chamber (base pressure is o6� 10� 11 torr) by annealing the sample at 300 �C for
6 h. The MBE samples are transferred in situ between the growth chamber and the
STM chamber under UHV environment.

Scanning tunnelling microscopy and spectroscopy. All STM investigations
reported here were acquired at 77K in UHV (base pressure is o6� 10� 11 torr).
Electrochemically etched tungsten tips were cleaned in situ with electron beam
bombardment. The tunnelling bias is applied to the sample. The conductance
spectra were taken by using a lock-in amplifier with a modulation voltage of 10mV
and at a frequency of 924Hz.
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