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An important fraction of microbial diversity is harbored in 
strain individuality, so identification of conspecific bacterial 
strains is imperative for improved understanding of microbial 
community functions. Limitations in bioinformatics and 
sequencing technologies have to date precluded strain 
identification owing to difficulties in phasing short reads to 
faithfully recover the original strain-level genotypes, which 
have highly similar sequences. We present ConStrains, an 
open-source algorithm that identifies conspecific strains from 
metagenomic sequence data and reconstructs the phylogeny 
of these strains in microbial communities. The algorithm uses 
single-nucleotide polymorphism (SNP) patterns in a set of 
universal genes to infer within-species structures that represent 
strains. Applying ConStrains to simulated and host-derived 
datasets provides insights into microbial community dynamics.

Understanding how individual organisms coexist within a microbial 
community is crucial to understanding community functions. For 
example, the study of microbial community dynamics is important 
in human health, including how to maintain or restore a healthy 
human microbiome. Metagenomics has revolutionized microbiology 
by addressing some of these issues in a culture-independent man-
ner. However, state-of-the-art metagenomics approaches are often 
limited to the species level1–3 or to partially assembled population 
consensus genomes4–6. Evidence that the unit of microbial action can 
fall below the species level comes from multiple sources, including  

culturing7, single-cell genomics8, redundant sequencing of the  
bacterial gene encoding 16S rRNA9, sequencing of internal tran-
scribed spacers10, multilocus sequence typing11 and high-resolution 
analyses of genomic variation12. Therefore methods that enable strain  
resolution from metagenomics datasets are desirable.

Most existing culture-free approaches to identify bacterial strains 
in communities have drawbacks, which has limited wide adoption 
of these approaches. For example, single-cell sequencing requires  
expensive and laborious efforts in cell sorting and suspension, and  
thus this approach is not used to analyze large communities. Similarly, 
Hi-C, a sequencing-based approach13, requires extra steps and 
budget for cross-linking, library construction and sequencing. Strain 
typing methods that leverage strain-level gene copy number varia-
tions14 or strain-level phylogenetic marker SNPs such as canSNPs15, 
PathoScope16 and Sigma17 rely on the availability of complete refer-
ence strain genomes and, with current limitations on these resources,  
face challenges in studies of the broader diversity found using  
metagenomic sequencing approaches. An assembly-based approach 
is dependent on several factors, including genome structure and 
intraspecies divergence. With rare exceptions, assemblers usually 
fail to produce individual strain assemblies, instead creating either 
highly fragmented contigs or contigs that only represent population 
consensus sequences18,19; a recent effort in using variation-aware 
contig graphs for strain identification20 relies on manual inspection, 
and hence its accuracy is subject to users’ experience. In all of these 
approaches, only a relatively small fraction of strain genomes have 
been successfully analyzed, and their distribution is usually biased21. 
On the other hand, methods based on single marker genes such as the 
gene encoding 16S rRNA often lack the resolution to reliably capture 
intraspecific genomic differences22.

To overcome this difficulty and increase the utility of metagenome 
dataset, we developed Conspecific Strains (ConStrains), an algorithm 
that exploits the polymorphism patterns in a set of universal bacterial 
and archaeal genes to infer strain-level structures in species populations. 
Using both in silico and previously published host-derived datasets,  
we found that ConStrains recovers intraspecific strain profiles and 
phylogeny with high accuracy, and captures important features of com-
munity dynamics including dominant strain switches and rare strains. 
The simulated datasets address performance in the context of different 
within-population diversities, different numbers of strains, the inter-
ference from other species within the same community, as well as the 
scalability of the method using a large in silico cohort with 322 samples.  
Predicted within-species structures as well as the strain genotypes 
were highly accurate across these simulated datasets. Applying this  
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method to an infant gut development metagenomic dataset 
revealed new insights of strain dynamics with functional relevance. 
ConStrains is implemented in Python, and the source code is available  
as Supplementary Code and is freely available together with full  
documentation at https://bitbucket.org/luo-chengwei/constrains.

RESULTS
The ConStrains algorithm
Guided by reference species, the ConStrains algorithm compares 
raw metagenomic reads to reference genomes and identifies patterns  
in SNPs as the basis for differentiation and quantification of con-
specific strains. This approach is fundamentally different from other 
reference-dependent methods such as Sigma and PathoScope16,17 
that rely on availability of a comprehensive reference strain col-
lection because, unlike those methods, ConStrains can provide 
reliable predictions for species with only one genome (complete 
or draft). For confident SNP calling, a species requires a mini-
mum of tenfold coverage (Supplementary Fig. 1) within or across 
all samples considered, which is obtained for all species with a 
relative abundance of >1% at typical sequencing depths of 5 Gbp.  
When applied to multiple samples, for example, a longitudinal time 
series or otherwise related samples, strain identities can be traced 
across the different samples. The algorithm achieves this in two  
operations: (i) identifying species for which SNPs are detected and 
quantified, and (ii) transforming individual SNPs into SNP profiles 
that represent individual strains.

The first operation is a two-step process. Because the algorithm 
identifies strains only for those species with sufficient sequencing 
depth (≥10-fold coverage in at least one sample; Supplementary 
Fig. 1), the first step uses MetaPhlAn1 for rapid species composi-
tion profiling. For those species with sufficient sequencing depth, a 
custom database of marker genes is created from the comprehensive 
PhyloPhlAn marker set23, against which the raw reads are mapped 
using Bowtie2 (ref. 24). This targeted approach allows for optimized 
time and computational efficiency. Resulting marker gene align-
ments are processed with SAMtools25 to generate a table of coverage  
by base position from which SNPs are identified. It is important to 
note that in this process the reference sequences are removed, and 
SNPs are identified de novo to minimize reference dependency  
(Fig. 1a–d and Online Methods). We verified that such a SNP 
selection procedure is sufficiently accurate and uniquely sensitive 
to disentangle intraspecific diversity (Supplementary Note 1 and 
Supplementary Fig. 2).

In the second operation, individual SNPs are combined into unique 
SNP profiles from which strains are identified. Previous methods have 
approached the challenge of identifying individual organisms from 
microbial communities using SNPs (for example, oligotyping26 and 
minimum entropy decomposition27), but were limited to SNPs within 
the span of a sequence read length. ConStrains overcomes this read-
length limitation and represents each strain by a barcode-like string 
of concatenated SNPs spanning hundreds of genes, referred to as the 
‘uniGcode’. To derive the strain’s uniGcodes in a dataset, ConStrains 
constructs candidate models of strain combinations using a combi-
nation of SNP-flow and SNP-type clustering algorithms. The relative 
abundance of strains in each candidate model across the cohort is 
estimated sequentially using a Metropolis-Hastings Markov chain 
Monte-Carlo approach (Fig. 1e–g and Online Methods). Finally, to 
choose the optimal model with the principle of balancing model fit-
ness and complexity, corrected Akaike information criterion (AICc) 
is used (Fig. 1h and Online Methods). ConStrains repeats these steps 
for each species with sufficient coverage, then outputs the number  

of strains and their respective uniGcodes and relative abundances 
(Fig. 1i). The uniGcode allows downstream analysis such as cross-
sample comparisons and evolutionary studies.

ConStrains identifies strains in large datasets
To validate the performance of ConStrains for strain profiling, we 
used in silico and host-derived datasets. We generated 36 different 
sets of k-strain mixtures using in silico genome-based Illumina paired-
end read simulation based on ten different Escherichia coli strains 
whose complete genomes are publicly available, representing real-life  
scenarios of strain admixtures (k = 2–7; Fig. 2a,b, Supplementary  
Fig. 3a and Supplementary Table 1). We profiled these 36 sets of 
reads by ConStrains using default settings, and compared the pre-
dicted results with the ‘true’ strain compositions using Jensen-
Shannon divergence (JSD; Fig. 2b and Supplementary Fig. 3b). 
ConStrains successfully predicted the underlying intraspecies com-
positions in all 36 datasets (P < 1 × 10−5; two group t-test against 
random guesses; Fig. 2b), demonstrating a substantial advantage 
(Supplementary Fig. 4) over reference-based approaches, with an 
improvement of 0.191 JSD on average (Supplementary Note 1 and 
Supplementary Fig. 5). In 34 of the 36 sets of reads (94.44%), the num-
bers of strains inferred exactly matched the ground truth (Fig. 2a),  
with the remaining two sets of reads having an additional chimeric 
strain predicted at an extremely low level (<0.1%). We therefore 
set the recommended detection limit at 0.1% to reduce such errors 
computationally. As this is a relative abundance threshold, one can 
still target low-abundance organisms by increasing sequence depth. 
In similar simulations with up to 30 E. coli strains, ConStrains pre-
dicted the strain composition with high confidence when the strain 
number was less than ten (Fig. 2c), which represents the intraspecific 
upper bound for more than 95% of metagenomic species (Fig. 2d and 
Supplementary Note 1). To assess the impact of intraspecies recom-
bination on performance, we generated both real sequencing reads 
from highly recombined Burkholderia pseudomallei strains28 and  
in silico–simulated recombinant strain–derived reads, and identified 
no significant adverse impact (Supplementary Note 1). We also tested 
the performance in a more realistic metagenomic scenario by embed-
ding E. coli strains in communities with various levels of complex-
ity and found that our approach remained robust (Online Methods, 
Supplementary Note 2 and Supplementary Table 2). We also found 
no significant correlation between admixture compositions’ alpha 
diversity and prediction accuracy. These results collectively suggested 
good algorithm performance (Supplementary Note 1).

We then tested ConStrains using a host-derived metagenomic 
dataset that had previously been analyzed using a manually curated 
strain-identification approach. Using manual strain curation, the 
authors had for the first time described the changes in an infant gut 
microbiome during the first 24 d of life4. All three manually curated 
Staphylococcus epidermidis strains reported in this study were suc-
cessfully predicted by ConStrains in a fully automated manner, with 
the predicted relative abundances of each strain over time having 
highly similar values to the original compositions quantified from the  
scaffold coverage (JSD average = 0.024, s.d. = 0.021; Supplementary 
Fig. 6). Because the performance of ConStrains’ fully automated 
approach matched well with the manually curated, semiautomated 
approach described previously4, but required far less machine  
and manual resources (ConStrains completed the infant gut dataset 
in 8.5 CPU hours with RAM peak footprint of <2 GB on a Linux 
server with Xeon 2.6 GHz processors, in contrast to days to weeks 
of manual curation after assembly), we next applied ConStrains 
to a very large dataset for which a manual effort would not be  
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feasible (for detailed resource usage, see Supplementary Note 5 and 
Supplementary Table 3).

In the absence of the existence of such a large dataset (especially 
one where true results were known), we used a simulated shotgun  
dataset with intraspecific structure mimicking the natural relative abun-
dance of taxa informed by a recent gut microbiome collection effort 
for which samples were collected daily over the course of one year29 
(Fig. 3a, Online Methods and Supplementary Note 3). ConStrains 
analyzed 91 species with sufficient depth in the 322 in silico samples.  
In total, ConStrains analyzed 3.2 terabases of paired-end reads  

containing 1,361 strains from 320 species, with minimal runtime and 
infrastructure requirements (Supplementary Note 3). ConStrains 
achieved high accuracy for individual samples, and also captured 
crucial information such as dominant strain type changes, for exam-
ple in Bacteroides fragilis (Fig. 3a–c, Supplementary Table 4 and 
Supplementary Note 3). This large cohort also enabled us to test 
factors that might affect the performance of ConStrains, including 
population complexity, coverage and relatedness. We found that 10× 
coverage was necessary for accurate profiling and that strain relat-
edness could also affect performance (Supplementary Fig. 7 and 
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Figure 1  Overview of the ConStrains algorithm: from raw metagenomic data to strain profiles and uniGcodes. (a) ConStrains requires raw metagenomic 
reads from a single or series of metagenomic samples as input. (b) To select species that satisfy a predefined sequencing depth cutoff, the algorithm 
starts by determining the species composition with MetaPhlAn1. (c) Next, Bowtie2 (ref. 24) is used to recruit all reads to a reference database of species-
specific marker genes23. (d) SNPs are called on these recruited reads after quality filtering, removal of reference gene sequence and reference-free read 
realignment. (e) Resulting SNPs are used by an SNP-flow algorithm to infer all possible SNP types for each of the samples. (f) Such SNP types across 
samples are clustered using a tree structure based on their distances to represent candidate strain models; the internal distance cutoff, ∆d, is varied to 
exhaust all possible SNP-type clusterings. (g) The Metropolis-Hastings Monte-Carlo method is then carried out to infer relative abundances per sample 
and per species for every candidate strain model. (h) These models are then evaluated by corrected AICc, and the model with minimum AICc is selected 
as the optimal model. (i) Finally, the associated strains’ relative abundances across samples and their uniGcodes are generated for every species.
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Supplementary Note 3). With this thorough benchmarking, we next 
applied ConStrains to two previously published clinical datasets to 
illustrate the biological insights strain-level analyses can provide.

ConStrains reconstructs strain phylogeny
In a published report on the genetic variation of Burkholderia dolosa 
in cystic fibrosis patients, a selective culturing step had been combined 
with a deep population sequencing approach30. We reanalyzed that 
dataset using our ConStrains algorithm and predicted a total of six B. 
dolosa strains in the population  (strains abbreviated as pop-I to pop-VI;  
Fig. 4a) with an abundance well above 0.1%. We compared the uniG-
codes from the six strains inferred by ConStrains with the isolate 
genome sequence by building a phylogenetic tree, and found that all 
of the colony strains and two population strains (pop-I and pop-II) 
were closely related (Fig. 4a). Moreover, the combined relative abun-
dance of pop-I and pop-II represented the majority of the population 
(51.3% and 27.9% for pop-I and pop-II, respectively). This finding 
corroborated observations based on the colony sequencing approach.  
In addition, the ConStrains algorithm identified four additional, less 
abundant strains (pop-III to pop-VI). None of these strains could 

be inferred by the colony sequencing approach alone, likely because 
of their low abundance (11.2%, 8.1%, 1.0% and 0.5%, respectively). 
To validate these additional predictions, we further examined the 
polymorphism patterns in these four strains, and compared them 
against pop-I and pop-II. We found patterns that are unlikely to have 
resulted from chimeric mixtures of SNPs from pop-I and pop-II  
(P < 0.01, permutation test; Fig. 4b). This analysis demonstrated that 
application of ConStrains to cross-sectional datasets, used in addition 
to a culture-based approach, allows for a comprehensive and efficient 
discovery of rare strains.

Uncovering strain dynamics in infant gut development
We next analyzed an infant gut development dataset containing  
54 samples from 9 subjects (indexed subjects 1–9; Fig. 5) collected 
over the first three years of life (Online Methods and Supplementary 
Fig. 8) to further explore the ability of ConStrains to reveal strain 
dynamics. We ran a ConStrains analysis on 75 species that had suf-
ficient sequencing depth for analysis (10×; Fig. 5). Because previously 
reported strain-detection algorithms had been limited to studying the 
population consensus sequences12, and ConStrains has the capability 
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to untangle intraspecies diversity, we first examined the number of 
strains observed in each species. Nearly all species (94.66%) had more 
than two strains, with an average of 4.88 strains per subject (±1.54 s.d.; 
Supplementary Fig. 9). By tracking the uniGcode of each strain in 
separate individuals, we identified several unique strain-level longitu-
dinal patterns. For instance, the population of Fecalibacterium praus-
nitzii usually comprised several strains that maintained a co-dominant  
profile, in which the strains maintained the same order of abundance; 
Ruminococcus gnavus had highly variable behaviors over time, with 
different strains dominating the intraspecies composition at different 
time points; in contrast, Bacteroides ovatus contained one dominant 
strain over time, keeping other strains relatively rare. Bifidobacterium 
bifidum strains demonstrated comparable dynamic patterns similar to 
F. prausnitzii; moreover, the strains reestablished the same intraspe-
cific diversity even after the abundance of the species dropped  

below the detection limit (Fig. 5). We anticipate that the capability 
of generating better insights in intraspecies dynamics of such health-
related species31–33 will shed light on the role of these organisms in 
human physiology.

With this goal in mind, we pursued our findings in Bifidobacterium 
longum, an organism linked to human gut health and applied to  
prevention and treatment of several diseases33. We first observed 
that the phylogeny of B. longum strains strongly correlated with 
their host origins (Fig. 5), which indicated strong individuality of B. 
longum strains. Moreover, in subjects 4 and 6 (Fig. 6a), we observed 
switches in dominant strain types that were highly correlated with 
the overall relative abundance of the B. longum species. As previous 
work has shown that a single operon can affect the competitiveness 
of different Bacteroides fragilis strains34, we evaluated functional  
differences between different dominant strains. In both subjects, the 
different strains dominating during consecutive phases (period 2 in 
subject 4 and period 1 for subject 6; Fig. 6a) carried additional func-
tions that might be crucial to B. longum’s successful colonization of 
the host gut. In particular, the presence of the human milk oligosac-
charide (HMO) utilization cluster has been shown to result from 
an adaptation to the human infant gut35 (Fig. 6b). Some additional  
functions might underlie formation of a B. longum bloom, including 
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the presence of the fructose and L-fucose utilization gene clusters 
(Fig. 6b). Together, these findings might explain why strains with 
these functions were associated with higher relative abundance of  

B. longum in the infant gut microbiome. We also observed functions 
specific to strains that were dominant in periods when B. longum 
was less abundant (periods 1 and 3 in subject 4 and period 2 in  

subject 6; Fig. 6a), most notably that the 
capsular polysaccharide biosynthesis genes 
were absent from dominant strains when  
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B. longum was more abundant (Fig. 6b). Taken together, strain-level 
insights provided by ConStrains, combined with functional analyses, 
could offer candidate targets and hypotheses for future studies.

DISCUSSION
We show that the ConStrains algorithm accurately predicts strain-
level profiles in large cohorts of metagenomic samples, and that 
the inferred uniGcodes reconstruct strain phylogeny, within or 
across cohorts, allowing combined cohort studies. ConStrains is 
scalable and has minimal resource requirements. In contrast, other 
approaches14,16,17 are largely dependent on prior knowledge of  
reference strain genomes, with subspecies resolution being directly 
dependent on the number of available reference strains per  
species. This greatly limits the application of such methods on real 
metagenomic data, because for most of the human microbiome spe-
cies only one reference genome is available14. Current databases are 
quickly gaining in intraspecies genome representation, but are still far 
from saturating natural diversity. With just one genome per species, 
ConStrains can resolve natural diversity occurring within that spe-
cies, and is therefore agnostic to unknown strains. Future improve-
ments for strain-level analysis include identification of strains in the 
absence of any reference genomes. It is conceivable that combining 
ConStrains with de novo genome assembly from metagenomic data 
could be an appropriate candidate to overcome this hurdle.

ConStrains is particularly effective for obtaining insights that were 
previously overlooked using species-level findings (Supplementary 
Note 4 and Supplementary Figs. 10–12), and will thus enable  
new types of studies. As we showed with the B. longum example, 
combining strain-level profiles with reference genome–based gene 
coverage analysis can reveal candidate genes for understanding strain- 
specific beneficial effects and the functions that might contribute 
to successful colonization in the human gut. ConStrains could also 
identify strains or genes associated with disease and link variable 
genomic regions to individual strains, a major challenge in shotgun 
metagenomics. Strain-level profiles, together with appropriate meta-
data, could link reference-based or de novo–assembled genes with 
individual strains and help interpret unknown strain-specific func-
tions. Our study of the infant gut development cohort captured HMO 
utilization cluster enrichment shifts in different development peri-
ods, which is particularly important because products of the HMO 
utilization cluster are essential for B. longum to exert its probiotic 
effects36. Finally, strain phylogeny could be used across cohorts and 
add metagenomic means to test fundamental ecological hypotheses, 
including neutral theory and other adaptive and nonadaptive mecha-
nisms for maintaining sympatric diversity among strains. Although 
we applied ConStrains to human microbiome datasets, it can also 
be applied to environmental samples to test fundamental hypoth-
eses about the role of microbes in the environment that can only be 
addressed at the strain level.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
ConStrains algorithm. Extracting target species and informative SNPs. 
With raw reads from samples S1, S2, …, Sn, ConStrains starts with profiling  
input metagenomes using MetaPhlAn1 (v1.7) with default settings, with 
the exception that alignment options are set to ‘very-sensitive’; species with 
average coverage higher than a coverage cutoff (default: 10×) in at least  
one sample are selected for further strain analysis. For each of the selected 
species, the corresponding set of the universally conserved genes reported 
in ref. 1 are used as a database, and Bowtie2 (ref. 24) mapping with default 
setting is carried out to map reads against those reference genes. Only  
reads with proper pairing and orientation, no indels, >30 mapping qual-
ity, >90 length mapped (overhanging part at gene 5′ and 3′ ends is clipped 
off before calculation) and at least 95% nucleotide identity with the  
reference gene are used. These reads are then piled up onto their respective  
reference sequences using SAMtools25, and the reference gene coverage is 
subsequently calculated on a per-base basis. To filter out genes with spuri-
ous mappings due to hypervariable regions or conserved universal motifs,  
sites with less than default minimum coverage, as well as those outside  
of the 1.5 interquartile coverage range across the gene length, are masked. 
Any gene with more than 30% of its length masked is discarded from fur-
ther analysis. SNPs are then counted across samples as those unmasked  
positions where the minor allele had at least two counts or more than 3% in 
relative abundance.

Strain typing by SNP-flow algorithm. With SNPs extracted, ConStrains first 
infers the strain composition and their SNP types using the ‘SNP-flow’ algo-
rithm in per-species, per-sample fashion. In this algorithm, all SNP sites are 
first hierarchically clustered by the Euclidean distance between the frequencies 
of different alleles defined as 

d a b a bf i i
i

( , ) ( )2 2

1

4
= −

=
∑

 

where a and b are the frequency vector of the four bases sorted in descending 
order of the respective SNPs. Clusters that contain less than 5% of the overall 
SNPs or fewer than ten SNPs are discarded. The centroid of each cluster is 
selected as representative. These SNP cluster centroids (SCCs) are then ranked 
in descending order based on their weight quantified as the number of SNPs 
they represent. Finally, a directed graph is constructed using these SCCs, in 
which nodes are alleles in these SCCs and each is assigned a ‘capacity’ defined 
by the allele frequency, and these alleles from neighboring SCCs are connected 
by edges (Fig. 1e).

In the directed graph constructed in the previous step, nodes are denoted 
from the same SCC as a layer. With m layers in the graph, SNP-flow will 
explore all possible combinations of paths from the first layer to the last. This 
way, every such path represents a strain genotype, and its relative abundance, 
c, is defined as the lowest node capacity among all nodes on the path. Once 
a path is visited, all nodes on this path would subtract their capacity by the 
path’s relative abundance c (Fig. 1e). Such a pathfinding and visiting step is 
repeated until all nodes’ capacities are zero, and the visited paths constitute 
one combination. ConStrains exhausts all possible SNP-type (strains) com-
binations β = {β1, β2, …, βk} in each sample with the ith sample’s SNP-type  
βi = bi

1bi
2…bi

h where bi
j is one of the four bases, A, C, G and T, and the  

associated strain profile αi = (αi
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For each sample, ConStrains picks the optimal combination that minimizes 
the fitting error, defined as the discrepancy between expected SNP frequencies 
and observed frequencies, ε, defined as: 

e = −∑1 2
h

E Oij ij
i j

( )
,  

where Eij is expected frequency of the ith base at the jth SNP locale; and simi-
larly, Oij is the observed frequency of the ith base at the jth SNP locale in the 
pileup of aligned reads from the corresponding sample. For instance, C is the 

second base (i = 2), and if we observed two Cs and eight As at the fifth SNP 
locale (j = 5) in the pileup of aligned reads against reference, the frequency 
of C is 0.2 at that position and thus is referred to as O25 = 0.2. Eij is inferred 
using αi and βi such that 

E bij k j
i

k

t
= ∑a

Inferring strain compositions. To unify these optimal SNP types into 
cohort-wide strains, ConStrains next constructs a neighbor-joining tree of  
the SNP types from different samples based on sequence percentage identity, 
and utilizes an internal parameter, ∆d, defined as the distance between the 
tree-cutting point and the leaves, to cut the tree. Rather than using a preset 
value, the algorithm cuts this tree using all possible ∆d. Each internal node 
created by such a cut could be viewed as the representative of all the children 
nodes (SNP types) on the tree. In doing so, it identifies all possible k clusters 
defined by the structure of the tree of SNP types (Fig. 1f), which we refer to 
as candidate strains.

With the proposed k strains from the previous step, in each sample, we need 
to find a composition, α*= (α*

1, α*
2, …, α*

k) with 

ai
i

k
* ,=

=
∑ 1

1  
to minimize the discrepancy between expected SNP frequencies and observed 
frequencies, ε, as defined previously. This is carried out by a Metropolis-
Hasting Monte-Carlo method. ConStrains first generates a number of seeds 
(default: 1,000) at uniform random on k − 1 simplex. The top 50 seeds are 
then selected and each such seed’s vicinity on the k − 1 simplex is iteratively 
searched. In iteration t, a new point, αt

ik, is picked within the 0.01 radius of 
the previous point, αt − 1

ik; and it is accepted as the new point with probability 
min(1, q(αt

ik, αt − 1
ik)), where q(αt

ik, αt − 1
ik) = ε(αt

ik)/ε(αt − 1
ik). It repeats 

the iteration until |1 − q(αt
ik, αt − 1

ik)|is smaller than 0.001 or the maximum 
number of iterations (10,000) is reached. The composition yielding the lowest 
ε is selected as optimal α*

ik. ConStrains repeats this step for all samples and 
all k, yielding solutions for each k, α*

k = (α*
1, α*

2, …, α*
n), with correspond-

ing error (Fig. 1g): 
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Selecting the optimal strain model. Corrected AICc is employed to select 
optimal k. The AICc of each k is calculated as: 

AICc ln= − +
+

− −
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k k
n k
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where L = 1 − εk denotes the model likelihood. ConStrains selects the k with 
the lowest AICc and outputs the associated SNP types and compositions as 
final results (Fig. 1h). As noted previously, we suggest filtering strains with 
less than 0.1% in relative abundance as they present a high probability of 
being chimeric.

In silico datasets. To simulate in silico single species datasets, 62 complete  
E. coli genome sequences were downloaded from an NCBI database.  
Ten genomes were selected and their relatedness was shown by a maximum 
likelihood tree (Supplementary Fig. 3a) constructed from concatenated nucle-
otide sequences of core genes among the 10 strains using a method similar 
to ref. 19. 1,000 random compositions were sampled on a gamma distribu-
tion with k = 1 and θ = 0.5 for each number of strains (N = 2–7). In each set 
of these 1,000 compositions, Shannon entropy was calculated and based on 
which these compositions were ranked. The compositions on the 15th, 30th,…, 
90th percentiles were picked to form a gradient of intraspecific diversity for 
each N. ART simulator37 was employed to simulate 100× coverage of 100-bp 
paired-end Illumina reads using these compositions with default settings for 
Illumina and library settings as “-m 350 -s 50” (Supplementary Fig. 3a). These 
samples were further grouped together to simulate single strain series samples 
(Supplementary Table 1).
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These simulated E. coli reads were then spiked into in silico–constructed 
metagenomes to measure the impact from other species. Three human 
microbiome-like metagenomes with low, medium, and high complexity level 
(referred as LC, MC and HC, respectively) were simulated based on an aggre-
gated MetaPhlAn1 profile over all 690 Human Microbiome Project (HMP) 
samples38. E. coli and Shigella were excluded from the profile, and the rest of 
the species were ranked based on their average abundance in the HMP cohort. 
The top 20, 50, and 100 most abundant species were selected for LC, MC 
and HC, respectively. The species composition in each in silico metagenome 
was calculated as their relative abundance in the HMP cohort, normalized 
by their total sum. Genomes of these species were downloaded from NCBI, 
and a representative strain was selected at random if multiple strains of the 
same species were present. A total of 100 million 100-bp paired-end Illumina 
reads were simulated for each set by ART simulator37 with the same settings  
as mentioned previously. Additional datasets for testing the sensitivity and 
the performance on different numbers of strains and recombined strains were 
generated in a similar fashion using ART (Supplementary Note 1).

The year-long shotgun metagenome cohort with 322 samples was  
simulated based on donor A’s 16S rRNA amplicon profiles reported in  
ref. 29. The operational taxonomy unit (OTU) table was used as a guide for 
community composition in human microbiomes. To allow simulation at the 
strain level, however, taxonomy in the OTU table was shifted down by one 
level. For instance, species composition in the original OTU table was shifted 
to be the strain composition. NCBI draft and complete genomes were used to 
match as closely as possible the phylogeny of the original OTUs. Reads were 
then simulated by ART simulator as previously described. The coverage was 
set to be 1× per 25 read counts in the 16S OTU table.

Biological datasets. The two infant gut development longitudinal metage
nomic datasets used in this study were from a previous study4 and from our 
recent effort in tracking nine subjects in a three-year period since birth. For 
the former set, all metagenomic samples were downloaded from NCBI SRA 
under accession number SRA052203, and the corresponding assembled  
S. epidermidis strains and phage genomes were downloaded from ggKBase as 
described4. For the latter set, 54 stool samples were collected from nine infant 
subjects between September 2008 and August 2010 in Finland. Samples were 
first collected by the subjects’ parents and stored in the household freezer 
before being transferred on dry ice to a laboratory −80 °C freezer. Samples were 
then shipped to the Broad Institute for DNA extraction, in which QIAamp 
DNA Stool Mini Kit (Qiagen, Inc.) was used as described previously39.  

Library construction was carried out following Human Microbiome Project’s  
standard protocol (http://hmpdacc.org/resources/tools_protocols.php), and 
101-bp paired-end reads were produced on an Illumina HiSeq 2000 platform. 
The raw sequences of these samples are available at SRA under BioProject 
accession number PRJNA269305, and the corresponding sample information 
is available in Supplementary Table 5.

Prediction accuracy measurement. To measure how close the predicted 
composition, P, is from the true composition, Q, we applied Jenson-Shannon 
divergence with minor modifications. As it is possible that P and Q are of dif-
ferent dimensions, we first padded the one with lower dimension with zeros 
to match the one with the higher dimension, and then defined a composition 
M based on sorted P and Q, P′ and Q′, as: 

M P Q= ′ + ′1
2 ( ),

Therefore the Jenson-Shannon divergence is: 

JSD( || ) ( || ) ( || ),P Q D P M D Q M= ′ + ′1
2

1
2  

where D(X||Y) is the Kullback-Leibler divergence defined as: 

D X Y
x
y

xi

i
i

i

n
( || ) =





∑ ln

We calculated the SNP typing accuracy as the distance between the inferred 
SNP tree of strains, Tp, and the true strain tree constructed from concatenated 
core genes, Tq. First, a distance similar to the symmetric difference introduced 
by Robinson and Foulds40 was applied to calculate the distance, d, between these 
two trees. We then normalized d to the expected basal distance from a random 
tree with the same leaves. The expected basal distance, d, is the mean distance 
between Tq and 1,000 randomly generated trees with the same leaves.

37.	Huang, W., Li, L., Myers, J.R. & Marth, G.T. ART: a next-generation sequencing 
read simulator. Bioinformatics 28, 593–594 (2012).

38.	Human Microbiome Project Consortium. Structure, function and diversity of the 
healthy human microbiome. Nature 486, 207–214 (2012).

39.	Morgan, X.C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel 
disease and treatment. Genome Biol. 13, R79 (2012).

40.	Robinson, D.F. & Foulds, L.R. Comparison of phylogenetic trees. Math. Biosci. 53, 
131–147 (1981).
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