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New design for highly durable infrared-reflective
coatings

Chaoquan Hu1, Jian Liu1, Jianbo Wang2, Zhiqing Gu1, Chao Li1, Qian Li1, Yuankai Li1, Sam Zhang3,
Chaobin Bi1, Xiaofeng Fan1 and Weitao Zheng1,4

The fundamental challenge in designing durable infrared-reflective coatings is achieving the ideal combination of both high

reflectivity and durability. Satisfying these competing demands is traditionally achieved by deposition of durable layers on highly

reflective metals. We overturn the traditional logic of ‘first reflectivity and then durability’ and propose an alternative of ‘first dur-

ability and then reflectivity’: First, a transition-metal compound is selected as a durable base; then its reflectivity is improved by

incorporating silver/gold to form an alloy or by overcoating a multilayer stack. Two validation experiments prove that the new

strategy works extremely well: the coatings thus obtained have infrared reflectivities close to that of aluminum, and their hard-

ness and acid and salt corrosion resistances are 27–50, 400–1 500 and 7 500–25 000 times that of aluminum. The traditional

mirror coating (e.g., Al/SiO2 films) is more suitable for moderate environments, while our mirror coating that was obtained by the

new strategy (e.g., an Ag-doped hafnium nitride film) is more suitable for harsh environments, such as ones with dust, wind-

blown sand, moisture, acid rain or salt fog. This work opens up new opportunities for highly durable infrared-reflective coatings

and rejuvenates the study of transition metal compounds in a completely new area of optics.
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INTRODUCTION

Recently, there has been an increasing need for durable infrared-
reflective coatings on large infrared telescopes1,2, night-vision systems3,
pointing and tracking systems3 and other optical systems4–7. The ideal
durable infrared-reflective coatings require not only high reflectivity in
a particular infrared band but also durability to resist scratches and
corrosion damage from long-term environmental exposure in envir-
onments with dust, windblown sand, moisture, acid rain and salt
fog8,9. Unfortunately, ideal durable infrared-reflective coatings are
hard to obtain, as reflectivity and durability are a classical dilemma to
some extent, difficult to obtain simultaneously. In Al, for example, the
abundance of free electrons renders an excellent infrared reflectivity,
but the electrons and the metallic bonds result in high corrosion and a
low hardness, leading to a poor durability8,10. In practice, Al reflective
coatings are deposited in primary mirrors of a size up to 3.8 m in
diameter in large infrared telescopes1, and those coatings have to be
replaced every 2–3 years because of light scattering and reflectivity
degradation resulting from scratches and corrosion. Replacing the
reflectors costs extremely large amounts of time and money9. The
sheer size of these enormous optical systems alone causes operational
difficulties in the cleaning of the old coatings and the re-deposition of
new coatings, thus making the process time-consuming and

expensive9–11. Currently, achieving highly durable infrared-reflective
coatings is an open and urgent challenge.
Traditionally, after the high infrared-reflective metal films such as

Al, Ag and Au are deposited (step 1) (Figure 1a), transparent, hard
metal oxide layers, such as SiO2 and Al2O3

26,27, are deposited on top
(step 2) for protection, as these reflective metal films cannot withstand
corrosion, scratches and other environmental damage. This route
follows the typical logic of ‘achieving reflectivity first and then coating
to protect’. As such, oxide films with a very high hardness28 are
deposited on very soft metal films12. To avoid reflectivity loss and poor
adhesion, the hard protection layer has to be very thin, usually a few
dozen nanometers in thickness; thus the protection layer is often
ineffective at resisting scratch damage9,10,29. Additionally, oxide films of
such a thickness usually contain pinholes that undermine the protection
against corrosion10. Therefore, the metal/oxide combination obtained
from the traditional route is far from the ideal durability8–11,29. The
traditional route also results in processing complexity because it usually
involves the preparations of a variety of films to meet the multiple needs
of high reflectivity, high durability and good adhesion8,10.
In this paper, we overturn the traditional ‘first reflectivity and then

durability’ logic and propose a new strategy of ‘first durability and
then reflectivity’ (Figure 1a). Both statements of ‘first durability and
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then reflectivity’ and ‘first reflectivity and then durability’ refer to the
design logic rather than the actual sequence during the preparation
process. We recommend transition metal compounds, TMRs (TM=
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; R=B, C, N), as the durable base
material and then improve its reflectivity by incorporating silver/gold
to form an alloy or by overcoating a multilayer stack to achieve the
integration of durability and reflectivity. We use hafnium nitride
(HfNx) to verify these two methods, and the experimental and
theoretical results are exciting, which proves that our new strategy
works wonderfully and simplistically.

MATERIALS AND METHODS

Film growth
All the films were deposited simultaneously onto optical glass and
single-crystal Si (001) substrates using magnetron sputtering. The
work pressure of the discharge gas was maintained at 1.0 Pa for all the
deposition process. Before the deposition, the glass and Si (001)
substrates were successively cleaned in acetone, alcohol and deionized
water using the ultrasonic cube, and then they were introduced into
the vacuum chamber (base pressure of 4 × 10− 4 Pa) of the sputtering
system. For the preparation of HfNx films, a pure Hf target was chosen
as the cathode and the mixture of N2 and Ar was used as the discharge

gas. During the deposition, the flow rate ratios of N2/(Ar+N2) were
increased from 3 to 100%, which was controlled by the mass flow
controllers. The stoichiometry (x) of the HfNx films was changed from
1.039 to 1.396. The other preparation parameters were maintained
constant as follows. RF power applied to the Hf target: 150 W;
substrate bias: − 80 V; substrate temperature: 200 °C. By varying the
ratios of N2/(Ar+N2), we prepared HfN-only multilayer films (see
Supplementary Section 7 for the parameter selections and preparation
details). Additionally, we prepared Ag-doped HfNx films by co-
sputtering the Hf and Ag target in the gas mixture of N2 and Ar.
During the deposition, the content of Ag was controlled by changing
the RF power applied to the Ag target from 0 to 100W, while the DC
power applied to the Hf target was kept constant at 150 W. Other
preparation parameters were kept constant as follows. substrate bias:
− 160 V; substrate temperature: 200 °C; Ar flow rate: 80 sccm; N2 flow
rate: 2.8 sccm; sample rotation rate: 5 r min− 1. For a better compar-
ison, an undoped HfNx film was also prepared under the same
deposition conditions, except that the RF power of the Ag target was
turned off. We prepared Al/SiO2 films by sputtering Al and then SiO2

target in the discharge gas of Ar. The preparation parameters were
kept constant as follows. Ar flow rate: 80 sccm; DC power applied to
the Al target: 60W; RF power to the SiO2 target: 100 W.
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Figure 1 Design rules for durable infrared-reflective coatings. (a) The current practice and a new strategy for the combination of high reflectivity and high
durability. The current practice is ‘first reflectivity and then durability’, that is, after the high infrared-reflective metal films are deposited first, transparent
hard metal oxide layers are deposited on top for durability enhancement. The new strategy emphasizes ‘first durability and then reflectivity’, that is, finding a
material first that satisfies the durability requirement and then modifying it to obtain a satisfactory reflectivity. The routes are to select a transition metal
compound (TMR) as a durable base and then improve its reflectivity by overcoating a multilayer stack or by incorporating silver/gold to form an alloy or a
nanocomposite, where TMR represents borides, carbides and nitrides of the groups IVB, VB and VIB transition metals. (b) Hardness12,13 and infrared
reflectivity14–25 at a wavelength of 2000 nm of TMR as well as Al, Au and Ag, where hafnium nitride (a red pentagram) is chosen as the durable base for the
validation experiments.

Highly durable infrared-reflective coatings
C Hu et al

2

Light: Science & Applications doi:10.1038/lsa.2017.175

http://dx.doi.org/10.1038/lsa.2017.175


Film characterization
A high-resolution transmission electron microscopy (JEM-2100F,
JEOL, Tokyo, Japan) and grazing-incidence X-ray diffraction
measurements (D8tools, Cu Kα, Bruker, Karlsruhe, Germany)
were used to characterize the structures of films. An X-ray
photoelectron spectroscopy (XPS, VG ESCA LAB MKII, Thermo
Fisher Scientific, Waltham, MA, USA) with a monochromatized Al
Kα (1486.6 eV) X-ray source were carried out to determine the
stoichiometry x, core-level spectra and valence band spectra of the
HfNx films. Before the measurement of XPS, all the samples were
subjected to a 180 s Ar+ cleaning procedure to remove the surface
carbon and oxygen. A Dektak surface profiler and four-point probe
measurements were used to determine the thickness d and DC
resistivity ρ of the films, respectively. A UV-visible spectrometer
(Lambda 950, Perkin Elmer, US) was employed to obtain UV-
visible reflectivity and transmission spectra, and an FTIR spectro-
meter (Perkin Elmer Spectrum One B type, Perkin Elmer, US) was
employed to measure infrared reflectivity spectra. By analyzing the
transmission spectra, we obtained the refractive indices and
absorption coefficients, using a procedure reported by
Swanepoel30. According to the Tauc equation, we plotted (αhν)2

against the photon energy hν and calculated the optical gaps. An
nanoindenter (MTS XP, MTS, US) was used to evaluate the
hardness, where a continuous-stiffness-measurement mode was
used. Hall-effect measurements (HL5550) were performed to
obtain the concentrations of the free electrons of the films. An
energy dispersive spectrometer equipped in a field-emission scan-
ning electron microscope (SU8010, Hitachi, Tokyo, Japan) was
used to determine the chemical composition of the Ag-doped HfNx

films. The corrosion behaviors of the samples were measured using
the Tafel curves in acid and base media corresponding to
0.5 mol l − 1 H2SO4 and 3.5 wt.% NaCl solutions, respectively. An
electrochemical workstation (CHI660E) was used to perform the
corrosion measurements, which was connected to a three-electrode
electrochemical reactor. The working electrode, reference electrode
and auxiliary electrode were the coated samples, calomel and a Pt
sheet, respectively. Before the measurements, the samples were
tested in an open circuit potential mode for 6 min with a scanning
rate of 1 mV s − 1. Furthermore, the corrosion behavior of the films
in a seawater environment was evaluated using salt-bath experi-
ments. The samples were immersed in a 5.0 wt.% NaCl solution
and incubated at 35± 1 °C for 1, 5, 10, 15, 30, 60, 120 and 180 min
and 10 days (14 400 min). A reflection fluorescence microscopy
(DM 2500M, Leica, Wetzlar, Germany) was employed to observe
surface corrosion morphology.

First-principles calculations
The present calculations were performed by the method of projector
augmented-wave pseudopotentials with density functional theory
coded in the Vienna ab inito simulation package31,32. For the
electrons’ exchange correlation energy, the Perdew–Burke–Ernzerhof
function was used33. The kinetic energy cutoff is chosen as 550 eV for
the plane wave expansion. The Brillouin zones were sampled with
Monkhorst–Pack method. In order to make sure the convergence of
total energy at 1 meV per atom level, the Γ-centered high-density
k-point grid sets were chosen. In the calculation, we have considered
the effect of spin polarization. Detailed modeling process can be seen
in Supplementary Sections 3,4 and 10.

RESULTS AND DISCUSSION

Optical design for achieving highly durable infrared-reflective
coatings
To achieve highly durable infrared-reflective coatings, we propose a
new strategy of ‘first durability and then reflectivity’ (Figure 1a), in
other words, first finding a material that satisfies the durability
requirement and then modifying it to obtain the required infrared
reflectivity. These two steps are illustrated in detail as follows.

Step I. Selection of a durable base. A high concentration of free
electrons in a material induces a large plasma energy (Equation (1)),
which in turn affects the dielectric function (Equation (2)). The
relationship between the reflectivity and dielectric function can be
described by Equations (2–5) Refs. 34–37,
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where the functions ε(E), n(E), k(E) and R(E) represent the complex
dielectric function, refractive index, extinction coefficient and reflec-
tance versus photon energy E, respectively; the variables n, m*, ε0, ε∞,
Ep and ΓD represent the concentration of free electrons, effective
electron mass, vacuum permittivity, background constant, plasma
energy and relaxation energy, respectively; and ε1(E) and ε2(E) are the
real part and the imaginary part of ε(E), respectively. According to
these Equations, ε21 Eð Þ and ε22 Eð Þ increase with Ep (Equation (2)),
which induces an increase in n(E) and k(E) (Equations (3 and 4)) and
a subsequent increase in R(E) (Equation (5)). The proportional
relationship above between Ep and R(E) has been well demonstrated
by previous simulations and experiments38. Hence, a sufficiently high
concentration of free electrons is necessary for a high infrared
reflectivity; metals such as Al, Ag and Au are good examples37,39. A
durable material is usually associated with high hardness, which is, in
essence, proportional to the degree of covalent bonding and the bond
strength40. Therefore, to achieve a high durability and a high
reflectivity, the ideal candidate should contain strong covalent bonds
and a high concentration of free electrons. The borides, carbides and
nitrides of groups IVB (d2s2), VB(d3s2) and VIB (d4s2) transition
metals, hereinafter referred to as TMRs, where TM=Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo and W and R=B, C and N, have not only strong TM–R
quasi-covalent bonds from the hybridization between the R_p and
TM_d orbitals but also high concentrations of unbound d-orbital free
electrons. The strong quasi-covalent bonds endow TMRs with a
superior durability, including high bulk moduli41, high hardness42–46,
high melting point47–49 and corrosion and abrasion resistance50–53,
and makes them well known as cutting-tool coating materials54–56.
The presence of unbound d-orbital free electrons causes TMRs to have
similar electrical properties and infrared reflectivity characteristics to
pure metals57, causing them to be widely used in the fields of
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superconducting materials58,59 and optoelectronics60,61. From these
studies, it is known that TMRs have high durability and metal-like
reflective characteristics (Figure 1b); thus TMRs are a category of ideal
candidates to achieve the ultimate aim of both a high reflectivity and a
high durability.

Step II. Reflectivity enhancement. From Figure 1b, the hardness of a
TMR (14–30 GPa) is much higher than that of the reflective metals Al,
Ag and Au (~0.5 GPa), but their reflectivity (40–80%) is far below that
of these metals (90–98%). This explains why TMRs were basically
excluded from the ‘radar screen’ in the search for infrared-reflective
coatings. How to significantly increase the reflectivity of a TMR will be
the key to solving the issue of needing a high durability and a high
reflectivity. Taking advantage of the structural characteristics of TMRs,
we propose two methods to improve the reflectivity of TMR films.
One method is to deposit multilayer films on a durable TMR base to
boost the reflectivity (Figure 1). These multilayer films are obtained by
alternately depositing a transparent layer A and a transparent layer B
on a durable TMR film, namely, TMR/A/B/ ... /A/B/ (determination of
the number of layers is discussed later). According to the optical
interference principle62,63, the multilayers can achieve a very high
reflectivity close to 100% in the vicinity of a target wavelength when
the refractive index of layer A is far less than that of layer B, and the
optical thickness nd (where n is the refractive index and d is the film
thickness) of layer A and layer B both equal a quarter of the target
wavelength. The other method is to introduce a metal with a high

concentration of free electrons (e.g., Ag, Au) into a TMR film to form
a metal–TMR alloy or a metal–TMR nanocomposite (Figure 1a). With
a high concentration of free electrons, the alloys and nanocomposites
are expected to have high reflectivities over the whole infrared range.
Based on this principle, we incorporate gold or silver into a TMR film
and explore the relationship among the composition, structure,
reflectivity and durability.

Verification experiments for achieving highly durable infrared-
reflective coatings
From Figure 1b, the near-stoichiometric HfN films (HfNx, x=N:Hf)
in a rock salt structure have not only a high infrared reflectance of
75% but also a high hardness of 22.6 GPa, very close to idealistic
highly durable infrared-reflective coatings. Near-stoichiometric HfNx

is thus our first choice as the base material to carry out the below
mentioned two aspects of studies to boost infrared reflectivity: (I)
depositing multilayers on top of the HfNx film to boost the infrared
reflectivity at a single wavelength; (II) doping silver into the HfNx film
to boost the infrared reflectivity over a wide range of wavelengths.

Achieving highly durable infrared-reflective coatings for a specific
wavelength through multilayering. To verify the reflectivity boost at
a specific target wavelength, we develop a novel homogeneous
multilayer film with three significant optical characteristics consisting
entirely of HfNx. The creation of this multilayer originates from the
unique behavior of electron localization in HfNx and the resulting
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tunable reflectivity/transmission properties. According to the measure-
ments of the electron concentration (Figure 2a), the resistivity
(Figure 2b) and the optical gap (Figure 2c), we find that, as the N/
Hf ratio increases from 1:1 (a measured x value of 1.039) to 4:3 (a
measured x value of 1.334), the free electrons of HfNx films are
completely localized and the films transform from a metal to a
semiconductor with an optical gap of approximately 2.5 eV (see
Supplementary Section 1 for more detailed discussion). Our electron
concentration (Figure 2a) and resistivity measurements (Figure 2b)
show that the electron localization goes through two stages of
transition from slow to fast. In the first stage, the electron concentra-
tion decreases slowly from 1.46× 1022 to 6.01× 1020 cm− 3 (or a
decrease of o2 orders of magnitude) as x increases from 1.039 to
1.165 (over a range of 0.126 in x), and the electrical resistivity
gradually increases from 110 to 636 μΩ cm (or o6 times). In the
second stage, as x further increases from 1.195 to 1.334 (over a range
of 0.139 in x), the electron concentration decreases sharply from
5.59× 1020 to 1.67× 1010 cm− 3, a decrease of 10 orders of magnitude.
The electrical resistivity sharply increases 30 times from 1.51× 103 to
4.50× 104 μΩcm. These results demonstrate that the electron localiza-
tion in HfNx films experiences two stages as x increases: x= 1.039–
1.165, electrons are ‘gradually’ localized; x= 1.195–1.334, a small
increase in x causes a large number of electrons to be localized,
resulting in the films losing their metallic characteristic and ‘rapidly’
transform into semiconductors. The microscopic origin of the two
stages is completely different. In the first stage, the formation of Hf
vacancies enables partial localization of free electrons around the
Fermi level and promotes new localized states from N_p, which is
confirmed by a good agreement among the calculated density of states
(DOS) near the Fermi level (Supplementary Fig. S3a), the distribution
of electron density differences (Supplementary Fig. S3b) and the
measured XPS core-level spectra (Supplementary Fig. S3c). In the
second stage, a phase transition from rock salt HfN to cubic Hf3N4

occurs and causes the complete localization of free electrons and the
creation of new hybridized states from Hf_d and N_p. This is proven
by the calculated DOS (Supplementary Figure S3d), the distribution of
the electron density difference (Supplementary Fig. S3e) combined
with the measured XPS valence band (Supplementary Fig. S3f) and the
core-level spectra (Supplementary Fig. S3c). The Hf vacancy and phase
transition in the film are identified via high-resolution transmission
electron microscopy, selected area electron diffraction, Raman, X-ray
diffraction and XPS (see Supplementary Section 2). All the results
support each other, proving that the structures are different in the two
stages. In the region of x= 1.039–1.165, the increase in x is
compensated by the increasing formation of Hf vacancies, while the
rock salt structure remains. In the region of x= 1.195–1.334, the
further increase in x cannot be balanced by the Hf vacancies, and
formation of the c-Hf3N4 phase occurs. When N/Hf= 4:3 or x reaches
1.334, this phase transition is complete. Detailed discussions of the
mechanisms of electron localization are given in Supplementary
Sections 2-4.
Understanding the electron localization process, we explore the

effect of electron localization on the optical properties of the films. We
determine from the transmission spectra (Figure 2d) that before the
electron localization, the HfNx film (x= 1.039) is completely opaque, a
typical metal-like characteristic, so that the transmittance of this
sample is zero and there are no interference fringes. After the electron
localization (x= 1.334 and 1.396), the films transform into transparent
semiconductors, and thus interference fringes occur in the range of
500–2 500 nm (Figure 2d). According to the Equation 2nd=mλ (ref.30),
a larger optical thickness nd (where n is the refractive index and d is

the film thickness) produces more interference fringes. Therefore, the
interference fringes of the film with x= 1.334 (nd= 2.78× 625 nm) are
more pronounced than those of a film with x= 1.396
(nd= 2.08× 217 nm) due to the film’s larger refractive index and film
thickness. Furthermore, the refractive index is found to decrease from
2.78 to 2.08, while the extinction coefficient remains approximately 0
(o0.001) as x increases further from 1.334 to 1.396 (Figure 2e), which
is attributed to the decrease in the average molecular polarizability of
the film because the polarizability of N atoms (αN= 1.1 × 10− 24 cm3)
(ref.64) is much smaller than that of Hf atoms (αHf= 15.3× 10− 24 cm3)
(ref.65). These results suggest that the optical characteristics of the HfNx

films are easily controllable by changing the stoichiometry x
(Figure 2f): if x is approximately 1, the film is an opaque metal
(OM); if x= 1.334–1.342, the film is a high-refractive-index transpar-
ent semiconductor (HT, n= 2.78–2.69); if x= 1.383–1.396 the film is a
low-refractive-index transparent semiconductor (LT, n= 2.17–2.08).
Using this tunability of the reflectivity/transmission properties, we

develop multilayers consisting of hafnium-nitride-only films: OM/(LT/
HT)z, where z is the total number of repeating layers (Figure 3a and
3b). For the sake of simplicity, we refer to this structure as a
‘multilayered film’. The reflectivity of a multilayered film depends
on the total number of repeating layers. According to the principle of
optical interference, the more repeating layers there are (i.e., the higher
the value of z), the better the reflectivity enhancement is. However,
increasing the number of repeating layers increases the deposition time
and the processing difficulty. Everything considered, we set the total
number of repeating layers as high as 6. Thus a periodic LT/HT stack
with z= 6 is designed (see Supplementary Section 5). For the multi-
layers with λ0= 1 900 nm, the refractive indices of the LT and HT
layers are n1= 2.08 at x= 1.396 and n2= 2.69 at x= 1.342, respectively.
According to n1d1= n2d2= λ0/4, when λ0= 1900 nm, the thickness of
the two layers are d1= 228 nm and d2= 177 nm. Similarly, for
λ0= 4100 nm, n1= 2.17 at x= 1.383 and n2= 2.78 at x= 1.334, d1
and d2 are 472 and 369 nm, respectively (see Supplementary Section 6
for more details). To verify the above designs, we prepare the
multilayered film of OM/(LT/HT)6 and find that the reflectivity of
the OM layer improves tremendously (Figure 3c and 3d). We obtain
experimentally the refractive index of each layer by controlling the
composition of the films according to the relationship between the
refractive index and the composition (Figure 2e). We obtain the
desired thickness of each film by adjusting the deposition time. The
detailed deposition parameters for the two multilayered films are given
in Supplementary Tables S1 and S2 in Supplementary Information
(See Supplementary Section 7). By controlling the optical thickness nd
of the LT and HT layers, we achieve an infrared reflectivity higher than
that of Al at a targeted wavelength λ0. For example, when both n1d1
and n2d2 are equal to 1900/4 nm, the reflectivity of the multilayers is
99.0% at 1900 nm, exceeding that of the pure Al film (96.5% at
1900 nm) (Figure 3c). When both n1d1 and n2d2 are equal to
4100/4 nm, the reflectivity is 97.0% at 4100 nm, again higher than
that of the pure Al film (96.8% at 4100 nm) (Figure 3d).
As an indication of durability, we characterize the hardness and the

corrosion behavior of the multilayered film (see Supplementary
Section 8). Because Al is the most commonly used infrared-
reflective coating material8,9, we conduct the same tests on an Al film
as a comparison. The hardness of the multilayered film is 13.8 GPa, 27
times beyond that of the Al film (0.5 GPa) (Figure 3e). In a
0.5 mol l− 1 H2SO4 solution, the corrosion current density of the
multilayered film is 2.94× 10− 6 A cm− 2, three orders of magnitude
less than that of the Al film (4.69 × 10− 3 A cm− 2) (Supplementary
Figure S4). In other words, the acid corrosion resistance of the
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multilayered film is 41500 times better than that of Al. In a salt
solution (3.5 wt.% NaCl), the corrosion current density of the
multilayered film is 6.76× 10− 6 A cm− 2, in contrast to that of the
Al film of 5.26× 10− 2 A cm− 2 (Figure 3e and Supplementary
Figure S5). This fact means the multilayered film is 7500 times more
corrosion resistant than Al in this salt solution. Additionally, during
salt-bath experiments (see Supplementary Section 9), the Al film
shows significant corrosion after immersion in a NaCl solution at 35 °
C for 5 min. When the duration time gradually increases to 180 min,
the corrosion pits continue to increase (Supplementary Fig. S6).
However, the multilayered film does not show any corrosion traces in
the whole 10 days (14 400 min) of the salt-bath experiment
(Supplementary Fig. S6), indicating that the corrosion resistance of
the multilayered film in a seawater environment is easily 3000 times
that of Al. These results demonstrate that the HfNx-based multilayer
film possesses a much higher scratch and corrosion resistances than
pure Al. In conclusion, by exploiting the tunable properties between
reflectivity and transmission induced by electron localization, we
successfully achieve HfNx-only multilayer films with both high
infrared reflectivity and high durability. Compared with the conven-
tional multilayer stacking of a variety of materials, our approach
involves only one material (HfNx) with switching of the optical states
achieved by changing the stoichiometry x (i.e., via the partial pressure
of nitrogen only), thus greatly simplifying the manufacturing process.
Additionally, as seen in Figures 3d and 4a, the reflectance (97%) of the
multilayered HfN film at 4100 nm is higher than that of the Ag-doped

HfN film (94%) at the same wavelength. This means that a multi-
layered HfN film has better reflective properties than an Ag-doped
HfN film at a target wavelength or in a narrow band, which is very
useful for many important optical applications (e.g., pointing and
tracking optical systems3).

Achieving highly durable infrared-reflective coatings over a range of
wavelengths through silver doping. To verify the reflectivity boost
over a range of wavelengths, we dope Ag into near-stoichiometric
HfNx film using co-sputtering. For simplicity, we refer to the Ag-
doped HfN film as ‘the doped film’. We investigate the effect of the Ag
content (CAg) on the structure and reflectivity. Our reflectivity
measurements show that the average reflectance of the Ag-doped
films in the range of 3–12 μm increases from 77 to 95% as the Ag
content increases from 0 to 3.1%. However, when the Ag content
further increases to 3.9%, the reflectance reduces to 80% due to an
increase in the surface roughness. Additionally, it is found that the
hardness of the films increases from 22.6 GPa to 25.4 GPa to 32.4 GPa
as the Ag content increases from 0% to 3.1% to 3.9%. However, the
hardness decreases significantly when more Ag is incorporated.
Considering that the film with the Ag content of 3.1% has the highest
infrared reflectivity and a relatively high hardness, we believe that the
Ag doping of 3.1% is the best. Figure 4a shows the infrared reflectivity
spectra of pure HfN (CHf= 50.6%, CN= 49.4%) and the doped film
(CAg= 3.1%, CHf= 50.2%, CN= 46.7%) together with that of an Al
film as reference. The reflectivity of a pure HfN film is only 77%,
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while that of the doped film increases abruptly to 95%, close to that of
an Al film (97%) over a spectrum of 3 to 12 μm.
To explore the cause of the reflectivity enhancement, we character-

ize the structure of the samples. Figure 4c shows the grazing incident
X-ray diffraction pattern for the pure and doped films, wherein both
samples contain diffraction patterns attributed to the rock salt phase,
showing that the pure and doped films have the same rock salt
structure. Figure 4d shows lattice images from high-resolution
transmission electron microscopy of the doped film, in which well-
crystallized nanograins are uniformly distributed on the film surface.
The measured interplanar spacings agree well with the (111) and (200)
plane spacings of the rock salt phase. These findings are consistent
with the selected area electron diffraction (Figure 4e), indicating the
formation of a HfN(Ag) solid solution upon the doping of the Ag. A
model of the HfN(Ag) solid solution with the replacement of Hf
atoms by Ag atoms is constructed (see Supplementary Section 10), and
first-principles calculations are performed to investigate the effect of
the Ag introduction on the electronic structure. The results from the
band structure of the HfN and Ag-doped HfN films (Figure 5a) show
that the doped Ag does not introduce defect states near the Fermi
level. From the DOS (Figure 5c), the concentration of the conductive
electrons (from the contribution of the DOS near the Fermi level)

does not have an obvious change. This is consistent with the measured
resistivity of the pure (5.4Ω) and doped films (5.3Ω). Additional
electron states among − 3.5 eV and − 2 eV are introduced by the
doping (Figure 5c). These extra electrons induce the charge polariza-
tion near N atoms (Figure 5b). From the band structure (Figure 5a),
these extra states have a good dispersion due to the hybridization with
the nearby N atoms. They have an important contribution from the
free electrons to the energy of the plasma. The visible-near-infrared
reflectivity spectra (Figure 5d) shows that the plasma energy of a HfN
film increases significantly from 2.6 to 3.0 eV after the introduction of
Ag, which agrees well with the calculation above. Previous studies66

have shown that the reflectivity of HfN films in the visible-infrared
band depends on both the intraband transition that is related to the
free electrons (described by a Drude part) and the interband transition
that is related to the bound electrons (described by a Lorentz part).
The reflectivity in the infrared region depends mainly on the intraband
transition and is closely related to the plasma energy. The Ag-doping-
induced increase in the infrared reflectivity is attributed to an increase
in the plasma energy and the blueshift of the reflective cutoff
wavelength (Figure 5), which expands the high-reflectivity region
toward lower wavelengths.
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In addition to the significant improvement of reflectivity, we find
that the introduction of Ag increases the durability of the HfN film. In
a 0.5 mol l− 1 H2SO4 electrolyte solution, the corrosion current density
of a pure HfN film is 1.81× 10− 5 A cm− 2, whereas that of the doped
film decreases to 1.14× 10− 5 A cm− 2, only 2.4‰ of that of the pure Al
film (4.69 × 10− 3 A cm− 2) (Supplementary Fig. S8 in Supplementary
Section 11). In a 3.5 wt.% NaCl electrolyte solution, the corrosion
current density of the pure HfN film is 5.83× 10− 6 A cm− 2, while that
of the doped film decreases to 1.90× 10− 6 A cm− 2 or only 0.04‰ of
that of the pure Al film (5.26 × 10− 2 A cm− 2) (Supplementary Fig. S9
in Supplementary Section 11). Additionally, the introduction of Ag
causes an increase in the hardness of the HfN film from 22.6 to
25.4 GPa, or 450 times the hardness of an Al film (0.5 GPa) due to
the solid–solution strengthening effect (Figure 4b). Additionally,
during salt-bath experiments (see Supplementary Section 12), the
doped film does not reveal any corrosion characteristics within 10 days
(14 400 min), whereas the Al film shows significant corrosion pits in
only 5 min (Supplementary Fig. S10), demonstrating that the doped
film is much more corrosion resistant than Al in seawater. These
results suggest that the Ag-doped HfN film not only has a high
infrared reflectivity similar to Al but also has a much higher durability

than Al. Therefore, it can be used as a highly effective durable infrared-
reflective coating.
The traditional method of improving the durability of an Al film is

to deposit protective layers of oxides on its top. For example, SiO2

(230 nm) Ref. 67, TiO2-doped SiO2 (180–200 nm) Ref. 9 and SiO2/
HfO2/SiO2 Ref. 68 films were used as the protective layers of Al films
in previous studies. To compare our mirror coating with traditional
ones, we deposit SiO2 films (approximately 200 nm) on Al films using
magnetron sputtering. The infrared reflectivity and hardness of these
samples (Figure 6, Table 1) are consistent with the previous experi-
mental results9,67, demonstrating the reliability of our experiments.
We compare the reflectivity, stability and cost of traditional mirror
coating (Al/SiO2 film) with our mirror coating (Ag-doped HfN film).
The results are as follows. (1) The average reflectivities of an Ag-doped
HfN film and Al/SiO2 films are 95 and 96% at 3–12 μm, respectively
(Figure 6,Table 1). This fact indicates that their infrared reflectivities
are very similar. (2) According to Table 1, the acid corrosion
resistance, salt corrosion resistance, wear resistance and hardness of
an Ag-doped HfN film are 25 times, 53 times, 10 times and 10 times
those of an Al/SiO2 film, respectively. Additionally, the reflectivity of
an Al/SiO2 film decreases by 55% after the 10-day salt water bath test,
while the reflectivity of an Ag-doped HfN film decreases by only 3%.
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These results show that Ag-doped HfN films have much higher
durabilities and stabilities of the reflectivity than Al/SiO2 films. (3)
In our sputtering experiments, an Al target (diameter 60× 3 mm)
costs approximately 25 dollars, a SiO2 target (diameter 60× 3 mm)
costs approximately 50 dollars, a Hf target (diameter 60× 3 mm) costs
approximately 290 dollars and an Ag target (diameter 60× 3 mm)
costs approximately 150 dollars. Therefore, taking the cost of the raw
materials into account, the Ag-doped HfN film is more expensive than
the Al/SiO2 film. However, the Ag-doped HfN film only needs to
deposit a one-layer film, which is easier than the two-step preparation
of the two-layer Al/SiO2 film. Moreover, the Ag-doped HfN films have
much higher durabilities and stabilities. Thus we believe that the cost
of the two mirror coatings is very similar. These results suggest that
the Al/SiO2 films have slightly better reflectivities and a lower cost than
the Ag-doped HfN films, but their durabilities and stabilities of the
reflectivity are far lower than those of Ag-doped HfN films. Thus the
traditional mirror coating is more suitable for moderate environments,
while our mirror coating obtained by the new strategy is more suitable
for harsh environments, such as those with dust, windblown sand,
moisture, acid rain and salt fog.

CONCLUSIONS

We propose an alternative design approach of ‘first durability and then
reflectivity’ to achieve the goal of both high durability and reflectivity.
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Table 1 Stability of reflectivity, hardness, wear rate and corrosion

current for Ag-doped HfN and Al/SiO2 films

Ag-doped

HfN Al/SiO2 Comparison

Reflectance (3–12 μm)

As-deposited 95% 96% 1% lower than

Al/SiO2

After immersion in a NaCl solution at

35 °C for 10 days

92% 41% 51% higher than

Al/SiO2

Hardness (GPa) 25.4 2.5 10:1 (10 times)

Wear rate (10−5 mm3 N−1m−1) 1.03 11.76 1:10 (10 times)

Corrosion current (A cm−2)

0.5 mol l−1 H2SO4 1.14E-05 2.90E-04 1:25 (25 times)

3.5 wt.% NaCl 1.90E-06 1.02E-04 1:53 (53 times)
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We recommend transition metal compounds, TMR (TM=Ti, Zr, Hf,
V, Nb, Ta, Cr, Mo, W; R=B, C, N), as the durable base material and
then improve its reflectivity to achieve the integration of high
durability and reflectivity. The two validation experiments on HfN
prove that our new strategy and approaches work as expected. The
coatings thus obtained not only have an infrared reflectivity perfor-
mance close to that of aluminum but also have a far better durability.
The traditional mirror coating (e.g., Al/SiO2 films) is more suitable for
moderate environments, while our mirror coating that is obtained by
the new strategy (e.g., Ag-doped HfN film) is more suitable for harsh
environments, such as those with dust, windblown sand, moisture,
acid rain and salt fog. This research opens up whole new areas in
developing durable infrared-reflective coatings. HfN is only 1 of the 27
TMR transition metal compounds; thus this study can be considered
one point in the whole spectrum of possibilities, that is, zero
dimension. By substituting any other transition metal for Hf and/or
replacing N with B and C, a two-dimensional study can be mapped
out. Furthermore, the inherent properties of each TMR can be
improved by modulating its structure (multilayering, alloying, nano-
compositing, etc.); thus new three-dimensional studies may emerge in
this area. As such, new materials, new functions and new mechanisms
are expected to be developed. This study has ushered the transition
metal compounds from hard protective coatings (e.g., cutting-tool
coatings) into a completely new area of optical coatings. This
rejuvenates the study of the transition metal compounds.
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