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Light scattering and surface plasmons on small spherical
particles

Xiaofeng Fan1, Weitao Zheng1 and David J Singh1,2

Light scattering by small particles has a long and interesting history in physics. Nonetheless, it continues to surprise with new insights

and applications. This includes new discoveries, such as novel plasmonic effects, as well as exciting theoretical and experimental

developments such as optical trapping, anomalous light scattering, optical tweezers, nanospasers, and novel aspects and realizations

of Fano resonances. These have led to important new applications, including several ones in the biomedical area and in sensing

techniques at the single-molecule level. There are additionally many potential future applications in optical devices and solar energy

technologies. Here we review the fundamental aspects of light scattering by small spherical particles, emphasizing the

phenomenological treatments and new developments in this field.
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INTRODUCTION

The production, control, manipulation and use of light are at the core

of many technologies. Light scattering plays key roles in all of these. Of

course, the scattering of light by small particles has a long history, where

it was studied in contexts such as cumulus clouds, the color of the sky

and rainbows, and used in various glass artifacts and windows from the

middle ages.1 The remarkable fact is that such a classical topic is the

basis of many fundamentally new and unexpected scientific and tech-

nological advances. The key is the current focus on the nanoscale and

especially near-field effects at the nanoscale, while much of the older

classical study was oriented towards the accessible far-field behavior.

More specifically, there have been fascinating developments in

regard to the light scattering by nanosized particles, including metal

particles and surfaces, where localized surface plasmons can be excited

leading to optical resonance phenomena.2–5 Small particles with sur-

face plasmons can be used to detect the fluorescence of single mole-

cules,6,7 enhance Raman scattering,8 resonantly transfer energy of

excitons9 and create nanosized quantum amplifiers of optical energy.

Potential practical uses include10 small-scale sensing techniques,11,12

numerous biomedical applications,13 manipulation of light for solar

energy technologies14 and others.

Here we provide a short review emphasizing the nano-optics of

small particles, near-field effects and the fundamental theoretical basis

for their description. We begin with a review of the classical light

scattering theory for spherical particles based on the quasistatic

(Rayleigh) approximation and the general Mie theory. Scattering by

dielectric particles is discussed along with the new topic of optical

trapping. We discuss plasmon resonances and light scattering on small

metallic particles, which is a subject that has been renewed by a series

of new findings, including anomalous scattering with an inverted

hierarchy of resonances and Fano resonances. The breakdown of the

general Drude model for dielectric function at very small particle sizes

and the resulting effects are discussed. Finally, we review the stimu-

lated radiation from the surface plasmons of small particles along with

concepts for new kinds of lasers based on nanolasing related to surface

plasmons coupled to an active medium (so-called spasers).

We start with a summary of the basic concepts that remain useful in

understanding light scattering, focusing on the case of spherical parti-

cles. Light scattering by small particles is one of fundamental problems

of electrodynamics. As mentioned, it is a classical subject for which

theory was developed long ago. This theory includes both the near and

far field description. However, until recently the near field was inac-

cessible to experiments, and the interest was focused on far field

effects. Now with advances in nanotechnology and nano-optics, the

richness of the near field theory is being exploited. This includes the

production by scattering of very high light intensities with spatial

variations shorter than the wavelength—a phenomenon that enables

rich new physics, both linear and nonlinear, at the nanoscale.

The physical understanding of light scattering by small particles

began with the electric dipole concept, introduced by Lord Rayleigh

in 1871.15 One starts with the assumption that the electromagnetic

phase is constant over the region of interest, which is natural since

the size of small particle considered is less than the wavelength of light.

Then the homogeneous field of the incident light induces a polarization,

which in turn results in light scattering. Higher order scattering modes,

such as quadrupole and octupole, are not considered at this level. The

polarization (i.e. the induced dipole) of materials in response to elec-

tromagnetic fields is determined by the dielectric function.

The dielectric function of a material (at energies above the phonon

energies) is determined by its electronic structure. It is practical to
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calculate dielectric functions from first-principles band theory and

often good agreement with experiment is found.16,17 However, for

analyzing optical properties, it is often useful to approximate the

optical properties of solids using the classical harmonic oscillator

formalism introduced by Lorentz. In the Lorentz model, the dielectric

function of non-conducting materials can be expressed as1

e~1z
f

v2
0{v2{icv

where f and v0 are a phenomenological oscillator strength and fre-

quency representing the bound electrons and c is a damping constant.

This naturally leads to the Sellmeier formula for the refractive index,

1/(n221)52A/l21B, where n is the refractive index, l is the wave-

length and A and B are material-dependent quantities. This formula

and generalizations (e.g., to two or more oscillators) are very effective

in fitting the optical constants of real materials.18

Many physical phenomena can be very simply understood even in

the simplest one oscillator theory. For example, the dispersion of light

by prisms or water drops is explained by the frequency dependence of

the refractive index. This follows the normal dispersive behavior

(refractive index increases with energy) for materials like glass and

water. This originates in the fact that the energy (v0) of the effective

oscillator for transparent materials such as these is generally much

larger than the frequency of visible light.19 For metals, the contribu-

tions of free electrons need to be added. This yields a model known as

the Lorentz–Drude model. This model has1

e~1{
v2

p

v2zicev
z
X

j

fj

v2
j {v2{icjv

where the sum on j is over different oscillators. The free electron part is

due to the electron plasma of the metal, which is described by the

parameters vp and ce which represent the resonant frequency and

damping constant of bulk plasma.

It has long been recognized that all linear optical phenomena can in

principle be modeled by solving the Maxwell’s equations with known

dielectric functions of the media. This understanding, while correct,

by itself yielded relatively little direct physical insight into light scat-

tering, at least prior to the development of modern computers and

electromagnetic codes. This is because the vector electromagnetic

equations resisted analytic solution, especially for complicated, but

interesting, boundary conditions.

The earlier work on light scattering by small particles is mainly from

Lorenz, Thomson and Clebsh.20 Actually, the exact solution has been

obtained by Clebsh in 1861 in his paper ‘Concerning reflection on a

spherical surface’ published in 1863, a year before Maxwell’s work

about electromagnetic theory of light. The breakthrough in under-

standing light scattering by spherical structures came from the work

of Mie in 1908.21 He obtained a general rigorous solution, on basis of

the electromagnetic theory, for the optical scattering by a homogen-

eous sphere with arbitrary size in a homogeneous medium, whatever

the composition of the sphere and medium. The Mie theory solution is

also applied directly to the scattering by any number of spheres if the

distance between particles is large enough so that there are no coherent

phase relations among the scattered light from different particles.19

The general Mie theory of optical scattering is very useful in prac-

tice. Initially, interesting problems, such as the origin of rainbows and

the solar corona, could be directly answered on basis of the Mie solu-

tion.19 So-called corrected Mie theory gives the light scattering by

structures with other regular shapes, such as ellipsoids with any size

and cylinders with arbitrary radius.19 The basic optical properties of

small particles made of different materials have been analyzed in detail

via modifications of Mie theory, such as the Gans modification (for

spheroidal particles, e.g., plasmonic gold and silver nanoparticles with

elongated shapes) and the Maxwell–Garnett equations (providing an

effective medium approach).22 Of course, there are also interesting

questions related to light scattering by particles that cannot be directly

described with Mie theory. An example is the electromagnetic hot spot

between two nearby particles, which depends on coherency.

As mentioned, it is remarkable that even though more than 100

years have passed since the introduction of Mie’s general theory of

light scattering by a sphere, new and exciting physics associated with

light scattering by small particles continues to be found.23–26 Examples

include the finding of giant optical resonances with an inverted hier-

archy (e.g., the quadrupole resonance is more intense than the dipole)

in scattering by small particles with negative dielectric susceptibility

and weak dissipation,23 and anomalous scattering with the compli-

cated near-field structures, such as the vortices, unusual frequency

dependence, etc.27,28 In addition, the Fano resonances, which are well

known in quantum physics, were discovered in optics of small metallic

particles.29–31 Turning to nanotechnology and nano-optics, there is an

increasing focus on control of optical energy in subwavelength struc-

tures—a field that is leading to many new ideas and remarkable experi-

ment results.3,32–35 These include nanolenses36 and nano-antennas.37

The localized surface plasmons in spherical core–shell structures can

result in so-called spasers, with resonantly coupled transitions with

excitons from dye molecules in the shell layer.38 The coupling between

localized surface plasmons from closely separated small particles

results in electromagnetic hot spots.39–41 Huge light scattering is found

on anisotropic spherical particles with an active mechanism.42 These

remarkable results based on light scattering by small particles suggest

many potential applications, including solar energy technologies14,43

and nanoscale lasers.44

LIGHT SCATTERING BY SPHERICAL PARTICLES IN THE

QUASISTATIC APPROXIMATION AND BEYOND

In the quasistatic approximation, light scattering by sphere particles is

addressed by solving the Laplace equation for the scalar electric potential

+2W~0 and E~{+W ð1Þ

with continuous boundary conditions

W1ja~W2ja and ep
LW1

Lr

����
a

~em
LW2

Lr

����
a

ð2Þ

where E~E0 z
I

, a, ep and em are the electric field along z direction, radius

of particle, dielectric function of the particle and that of the medium,

respectively. By comparing the scattering potential from the Laplace

equation with that of a dipole, the effective dipole moment can be

expressed as

P~4pema3 ep{em

epz2em
E0

The cross-sections for scattering (Csc) and adsorption (Cabs) are

obtained from the scattering field radiated by this dipole, which is

induced by the incident plane wave (i.e., the dipole moment P). The

resulting expressions are1

Csc~sgeomQsc, Qsc~
8

3
q4 ed{1

edz2

����
����

2

and
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Cabs~sgeomQabs, Qabs~4qIm
ed{1

edz2

� �
ð3Þ

where sgeom5pa2 is the geometrical cross-section. We introduce the

dimensionless cross-sections of scattering (Qsc) and adsorption

(Qabs), the dimensionless size q5ka and the relative dielectric function

ed5ep/em for convenience in the discussion that follows. In the for-

mula, k is the wave vector in medium.

The above formula implies that as the particle size is decreased, the

efficiency of adsorption will dominate over the scattering efficiency.

Therefore, particles with very small size will be difficult to detect by

light scattering. In addition, one may note that there is a resonant

enhancement for scattering and adsorption when the condition

Re(ed)522 (the Fröhlich condition) is satisfied. This resonance is

due to resonant excitation of the dipole surface plasmon. With the

Drude model of dielectric function, the frequency of the dipole surface

plasmon can be expressed as vsp&vp

� ffiffiffi
3
p

, if the frequency of electron

collisions c is small. The spectrum for the scattering cross-section then

has a Lorentz line shape,27

Q(Ra)
sc ~

8

3

v4
sp

v2{v2
sp

� �2

zv2c2

q4 ð4Þ

The above theory, however, does not capture the size effects on the

spectra, including the changes of position and width of plasmon peak.

Retardation effects in larger particles result in breakdown of the quasi-

static approximation.

Within the Mie solution, the dimensionless cross-sections for scat-

tering, extinction and absorption can be expressed as

QMie
sc ~

2

q2

X?
l~1

2lz1ð Þ alj j2z blj j2
	 


,

QMie
ext ~

2

q2

X?
l~1

2lz1ð ÞRe alzblð Þ and QMie
abs ~QMie

ext {QMie
sc ð5Þ

The scattering amplitudes al and bl are defined as follows,

al~
Fe

a (l)

Fe
a (l)ziGe

a(l)
and bl~

Fm
b (l)

Fm
b (l)ziGm

b (l)
ð6Þ

where Fe
a (l), Ge

a(l), Fm
b (l) and Gm

b (l) are related to the Bessel and

Neumann functions. These general expressions are rather cumber-

some to present here and can be found in literature.1 Expanding the

Bessel and Neumann functions in power series for small q, the func-

tions Fe
a (l), Ge

a(l), Fm
b (l) and Gm

b (l) can be expressed as,27

Fe
a lð Þ&q2lz1 lz1ð Þ

2lz1ð Þ!!½ �2
~nnl ~nn2{1
� �

Ge
a lð Þ&~nnl l

2lz1
~nn2z

lz1

l
{

q2

2
~nn2{1
� � ~nn2

2lz3
z

lz1

l 2l{1ð Þ

� �
 �

Fm
b lð Þ&{

~nnq2

2lz1
Fe

a lð Þ

Gm
b lð Þ&{~nnlz1 1z

1{~nn2

2 2lz1ð Þ q2

� �
ð7Þ

where ~nn~
ffiffiffiffi
ed
p

~ndzikd is the relative complex refractive index with

the relative real refractive index nd and the relative absorption index

kd. Near the dipole scattering resonance, only the term l51 in Mie

formula needs to be considered. For small particles, the magnetic

scattering amplitudes bl can be ignored. Then the scattering cross-

section becomes QMie
sc &6ja1j2

�
q, where a1 5al(l51) is determined

by Equation (6). At the Fröhlich resonance condition in the formula

for Fe
a(l) and Ge

a(l), the scattering cross-section due to the dipole

resonance can be expressed as,27

Qdip{Mie
sc &

8

3

v4
sp

v2{v2
sp

� �2

z4=9q6v4
sp

q4 ð8Þ

One may note that the c parameter (corresponding to dissipative

losses due to electron collisions) is ignored in the derivation. The

spectrum is found to have a Lorentz profile with an effective parameter

ceff, which has a similar role as the dissipation parameter in the

Rayleigh spectrum and can be expressed as ceff~2=3vspq3. This damp-

ing is due to the radiative losses of plasmons. This is different from the

dissipative loss term (c) in Rayleigh formula. Therefore, the singularity

in the corrected scattering formula is removed due to radiative losses,

even if dissipative losses are neglected.

Intuitively, the red shift of the peak in the dipole resonance with

increasing size is due to the weakening of the restoring force. This is

because the distance between charges on opposite sides of the particle

increases with size and so their interaction decreases. The red shift of

resonance can be addressed directly by numerical solution of the Mie

theory equations. The scattering cross-section, Csc from the dipole

term neglecting dissipative losses is plotted in Figure 1a. The red shift

is clearly seen. One may also note that the resonant scattering cross-

section is similar for the different sizes. However, with dissipative

losses, the scattering cross-section falls quickly with decreasing particle

size (Figure 1b). Clearly, the effect of dissipative losses on the scatter-

ing increases with decreasing size. The effect of the dielectric function

of the medium em on the plasmon resonance of small metal particles is

contained in the parameters q and ed. From Equation (3), Cabs is

proportional to

e
3=2
m Im ep

� �
Re ep

� �
z2em

� �2
z Im ep

� �� �2

The Fröhlich resonance condition then requires a decrease in

Re(ep), for an increase in em. For most metals, such as Au and Ag,

Re(ep) decreases and Im(ep) increases with decreasing frequency

around the resonance. Therefore, the peaks in the absorption spectra

are shifted to longer wavelengths and become broader and more

intense with the increase in em.22

OPTICAL SCATTERING BY DIELECTRIC PARTICLES

The light scattering by dielectric particles is easy to calculate using the

Mie theory. Figure 2a and 2b shows two typical scattering curves for

particles of refractive index n51.33 and n51.97 (that of water and

glass). The curves have a series of maxima and minima. Other dielec-

tric spheres with different refractive indices show similar behavior.

Finally, we note that in the limit of an extremely large particle the

scattering cross-section is twice as large as the geometrical cross-sec-

tion.19 All these results for the scattering and extinction cross-sections

were given 50 years ago.19 These results, taken in the far field, are

connected with the study of light transmission in mist, fogs, cloud
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chambers and so on, but the near field regions for dielectric spheres

have received attention much more recently.

For small size dielectric particles, the scattering cross-section will

increase with increasing refractive index. This result follows from the

Rayleigh theory and is indicative of the important role of dipole scat-

tering. The squares of the intensity of the electric fields in the near field

for different refractive indices are shown in Figure 3a–3c. The electric

field intensity increases in the near field region with increasing refrac-

tive index. However, the near field electric field intensity from the

dipolar mode does not become stronger as the size of dielectric particle

decreases. Instead, the maximal value of electric field intensity

increases along with a change in the spatial configuration, when the

particle size increases in Figure 3d–3f.

Usually, Mie scattering will dominate when the particle size is larger

than a wavelength. As shown in Figure 3d–3f, Mie scattering produces

complex field distribution patterns reminiscent of directional anten-

nas. This effect is sometimes referred to as a photonic nanojet. From

the point of view of geometrical optics, the increase in the scattering

field intensity with a more intense forward lobe reflects the fact that a

dielectric sphere with large size behaves as a convex lens.

Localized regions of high intensity, such as those near the particle,

can trap dielectric particles due to gradient forces (these are forces that

arise because a particle with a dielectric constant higher than medium

will lower the energy if it moves to the location of the maximum

electric field intensity). This effect was observed by Ashkin et al.45,46

more than 30 years ago.

The related optical tweezers technique, in which light is used to

manipulate small particles, has been applied in many different fields,

especially in medicine, biology and biophysics, where biologically inert

particles can be functionalized and then manipulated using light.47–49

Specifically, small dielectric particles can be picked up and controlled

by tightly focused visible light lasers. It is interesting that this qualita-

tive effect can also be understood just with ray optics.50

A photon with energy h�v carries the momentum h�k: If the photon

is adsorbed by an object, a force F on the object due to the transfer of

momentum will be produced and given by the formula F5nmP/c,
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Figure 1 Illustration of the red shift of the dipole resonance, showing the relative

scattering cross-section as a function of frequency for the different size para-

meters q in the cases of (a) Im[e]50 and (b) Im[e]50.1.
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where nm is the refractive index of the surrounding medium, P is the

power of light beam and c is the light speed in vacuum. A dimension-

less quantity Qet which is used to describe the efficiency of trapping

light by a particular object with any shape, is defined by the formula

Qet~nmP=cF. The refraction of light by a transparent object will result

in the reaction force acting on the object, since the momenta of the

photons are changed. For the plane perpendicular to the direction of

light beam, an intensity profile with high symmetry will result in a

force that will tend to move the object into the center of beam, since

the force from the refraction, which points to the center, will provide a

restoring force when the position of the object deviates from the

center, shown in Figure 4. If the focus of the beam just is above the

object, a force will be generated to lift the object up towards the focus.

The concepts of geometrical optics are simple and intuitively

appealing, but they are not strictly applicable to the case of particles

that have sizes below the wavelength. When one considers the electric

field in the near-field region, one sees that the force can be separated

into two parts (note that both force terms necessarily imply a rate of

momentum change of the light field). One is the force due to the

intensity gradient and another one is from the scattering of light.

The scattering force from the light beam with the intensity I0 can be

expressed as Fsc~I0Cscnm=c. The gradient force due to the intensity

gradient can be given by the formula46

Fgra~{n3
ma3 ed{1

edz2

� �
+ E2
� ��

2

where E is the electric field near the particle. Clearly, the force is

directed towards the higher intensity region and does not depend

on the light propagation direction. The control of particles by optical

trapping can be established when the gradient force exceeds the scat-

tering force. In practice this is readily done for small particles, and

precise three dimensional control of the particle position is possible by

using optical interference or crossed beams to define a localized max-

imum in intensity.

An optically trapped particle in a viscose medium (viscosity g) will

behave like a damped oscillator and thus the equation of motion will

be,50 m€xxzb _xxzkstx~0, where kst is the stiffness of optical trap and b

is the Stokes drag constant with the formula,51 b~6pag. Further

expressions for dielectric spheres including scattering can be obtained

using the explicit partial-wave representations.52

This type technique based on gradient forces has been broadly

applied in very diverse areas.53 These range from disease diagnosis

to gravitational detection. With new developments,54 optical tweezers

can be used to detect biological compounds at the single-molecule

level.55 Control of the motion of particles at nanometer scales with

piconewton forces enables studies of molecular and nanoscale

dynamics, for example the investigations of molecular motors.56

Furthermore, as mentioned and as shown in Figure 4, nanojets (dir-

ectionally concentrated electromagnetic radiation) can be formed

under large dielectric spheres. These nanojets are technologically

important as they can be used to enhance Raman signals. Thus a

dielectric particle, which is analogous to a nanosize convex lens, can

induce a high light intensity under the particle (the nanojet), and this

particle and its nanojet can be controllably moved and used as a

nanoscale Raman probe using optical tweezers57 (Figure 4f).

LOCALIZED PLASMONS OF METAL PARTICLES

It may be noted in the above discussion that the scattering efficiency

from the dipole term in Mie theory increases as the particle size

decreases in the small size region around the resonance frequency

(see Equation (8)). This is clearly different from ordinary Rayleigh

scattering. Ignoring dissipation, the high-order plasmon modes have

resonant frequencies, v2
l ~v2

pl
.

2lz1ð Þ. Since all the amplitudes, al

tends to go to unity for the corresponding frequency, the scattering

a

d e f

cb

-2 0 2

Figure 3 Near-field distribution of the square of electric field intensity for different dielectric particles including the small particles with the radius R51.8 nm and

different reflective indices (a) n51.33, (b) n52.5 and (c) n54 (scattering light l5496 nm) and with the reflective indices n51.33 and (d) different radii R550 nm, (e)

R5500 nm and (f) R51000 nm (scattering light l5500 nm). In a–f, Emax
2 51.90E0

2, 5.15E0
2, 7.10E0

2, 2.20E0
2, 16.0E0

2 and 38.0E0
2, respectively.
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cross-sections of high-order plasmon modes can be expressed as

Qsc(l)~
2(2lz1)

q(l)2 ~
2(2lz1)2

l

c2

v2
pa2

Since the resonance frequencies of different modes are different and

the resonant peaks of different modes are limited, the total scattering

cross-section for each resonant frequency is given by Qsc<Qsc(l).

Therefore, anomalous scattering of light with an inverse hierarchy of

the resonances will occur if the dissipation term in the dielectric func-

tion is very small, as shown in Figure 5. Usually, with the condition of

the actual dissipation,58 Imed(vl)vv

q2lz1

l½(2l{1)!!�2
, the anomalous

scattering rises. Note, however, that ordinary Rayleigh scattering is

restored when the size parameter q tends to zero.

The Fano resonance found in 196129 is well known in quantum phys-

ics. Fano spectra arise from the constructive and destructive interference

between a narrow resonant mode and a broad background spectral line.

Fano spectra exhibit an asymmetric shape, specifically taking the form,25

I vð Þ~ Fczv{v0ð Þ2

v{v0ð Þ2zc2

where F, v0 and c are the Fano parameters, the position and the width

of resonance, respectively. Fano resonances have been found in diverse

quantum systems, such as quantum dots and tunnel junctions. Fano

resonances are also expected to appear in light scattering. In plasmonic

materials, the resonant peak of each plasmon mode has a very different

linewidth. Therefore, different plasmon modes can coexist in the same

frequency region. Then Fano resonances can arise due to the con-

structive and destructive interference of plasmon modes with different

multipolarity.30 The resonant interference does not occur in the total

optical cross-section, such as the scattering and extinction cross-section

for a single particle. It is seen in differential scattering cross-sections,

such as forward scattering (fs) and radar back scattering (rbs), with the

formulas25

QMie
fs ~

1

q2

X?
l~1

2lz1ð Þ alzbl½ �
�����

�����
2

and

QMie
rbs ~

1

q2

X?
l~1

2lz1ð Þ {1ð Þl al{bl½ �
�����

�����
2

ð9Þ

The line width decreases quickly with increasing the order of plas-

mon mode, according to the formula,23

cl~
q2lz1(lz1)

½l(2l{1)!!�2(ded=dv)l

Clearly, the interaction of a dipolar mode and a quadrupole mode is

easiest due to the radiative coupling, especially for the relatively small

particles. The magnetic amplitude can be ignored, and then the low-

energy interference of the electric dipole and quadrupole is given by

formulas,25 Qfs~ 1=q2ð Þj3a1z5a2j2 and Qrbs~ 1=q2ð Þj3a1{5a2j2.

Qrbs and Qfs as the functions of frequency are shown in Figure 6a,

where a Fano resonance near the quadrupole resonance frequency is

clearly seen.
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The interference of incident and re-emitted light in the scattering

process generates complex patterns in the near-field region. The

energy flow, as represented by the Poynting vector, from the dipole

has helicoidally shaped vortices, while that from the quadrupole is still

more complex with vortices and singular points27 (Figure 6b).

Higher-order modes can also interfere with the broad dipole mode

as the size increases. However, it is important to note that the dissi-

pative losses of plasmonic materials must be weak for the Fano res-

onance to appear, since the higher-order modes are rapidly suppressed

when dissipative losses increase.

The Fano resonance of a single spherical particle is generally difficult

to observe due to dissipative losses. If the widths and energy positions of

plasmon modes can be modulated independently, the condition about

the interference between a narrow discrete mode and a broad back-

ground resonance is easier to realize. An example is a non-concentric

ring/disk cavity.59,60 The dipolar modes from disk and ring interact to

result in a hybridized bonding mode and a broad higher-energy anti-

bonding mode.61 The coupling between the quadrupolar mode from

the ring and the antibonding dipolar mode due to the symmetry break-

ing of the non-concentric geometry can induce an enhanced Fano

resonance. Related ideas can be also applied to the other plasmonic

nanostructures, such as nanoshells,62,63 dolmen-type structures,64,65

finite clusters of plasmonic nanoparticles66–68 and so on. In addition,

Fano resonances frequently appear in photonic crystals,69–71 such as

periodic metallic structures on a single-mode slab. The waveguide mode

from the slab can couple with the plasmon modes of the metallic

structures exited by the incident light. Optical Fano resonances have

recently been found in electromagnetic metamaterials.72–75 The high

asymmetrical profiles of Fano resonances suggests important applica-

tions, including novel sensors, as well as lasing and switching schemes.25

In the case of non-magnetic particles, there are also other uncon-

ventional Fano resonances. An example is in the light scattering by
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small particles with large dielectric permittivity or with spatial disper-

sion.76 This kind of resonance in scattering by small particles is beyond

the applicability of Rayleigh approximation. The electromagnetic

modes excited by the incident wave which can interfere with each

other have the same multipole moment l. This results in the conven-

tional Fano resonances, while those modes with different l, which have

spatial dispersion, can yield directional Fano resonances.77

Fano resonances can also occur in light scattering by magnetic

particles. This occurs with negative magnetic permeability (m,0)

and positive dielectric permittivity (e.0). In that case, the interference

of different magnetic multipole modes can result in the Fano effect,

such as that between magnetic dipole (b1) and quadrupole (b2).25 With

the effective magnetic permeability, the effect of magnetic modes on

the light scattering becomes important and the interference of electric

and magnetic modes (Kerker effect) can occur.78 With the condition

e5m, the backward scattering gain is zero. It is also possible that the

forward intensity is zero and the dipoles are out of phase, under the

second Kerker condition. Excitingly, an unconventional forward–

backward scattering asymmetry was recently observed experimentally

in scattering by a single subwavelength sphere.26

The Plasma is an important concept in physics. It is used to explain

the energy losses of fast electrons in thin metal films. The theoretical

work of Ritchie (1957)79 and the experimental work of Powell and

Swan (1959)80 laid the groundwork for the study of surface plasmons

by measurements of electron energy loss spectra. The optical prop-

erties of metallic materials in a low energy region are controlled mostly

by collective plasmonic excitations of conduction electrons.

Surface plasmons can be excited by optical beams using a prism with

the attenuated total reflection method as shown by Otto81 and

Kretschmann et al.82 in 1968. Importantly, in the case of metallic

particles, the finite surface area can localize the propagation of light

and result in localized surface plasmons, which as mentioned have

many current and potential applications.

The dielectric function of an ideal bulk metal at low energy can be

phenomenologically expressed by the Drude model of free electrons.

In modeling real metals, a term corresponding to Lorentz oscillators is

usually introduced to describe the increase of the imaginary part of

dielectric function Im(e) due to the interband transitions.1 These can

also be calculated in detail using first principles electronic structure

methods. According to Fermi liquid theory, the conduction bands of

metals are continuous near the Fermi surface and the low energy pro-

perties are like those of an electron gas, though renormalized from the

free electron gas and with anisotropy and other complexities reflecting

the crystal lattice and band formation. As such, given the band struc-

ture, the plasma frequency can be directly calculated from the band

dispersion at the Fermi surface and important insights about the nature

of the metallic state can be gained from its comparison with experi-

ment.83 In non-cubic solids, the Drude plasma frequency has the form

of a rank-2 tensor and therefore can be anisotropic. In any case, the

presence of conduction electrons will result in intraband excitations

within the conduction band by the creation of electron–hole pairs.

For noble metals, such as gold and silver, there are also inter-band

transitions from lower-lying d-bands to the sp-hybridized conduction

bands. These are the main causes of dissipative losses. In addition,

there are other generally weaker processes including elastic and ine-

lastic electron scattering, such as electron–electron, electron–phonon

and electron–defect interactions.84 All these dissipative loss mecha-

nisms can result in the non-radiative decay of plasmons and impor-

tantly can be phenomenologically described using the Lorentz–Drude

dielectric model.

The dielectric functions of bulk gold and silver are shown in

Figure 7e and 7g.85 Figure 7f and 7h shows the spatial configurations

of the square of electric fields of gold and silver particles with radius

R51.6 nm at the dipole resonance Re(ed)522. Clearly, the dissipative

losses have an important effect on the intensity in the near field. The

variation of the near-field electromagnetic intensity configurations

with particle size is shown away from resonance in Figure 7a–7d.

One may note that the strength of electric field in the near field does

not increase with this parameter and that this is obviously different

from the behavior illustrated for dielectric particles in Figure 3d–3f.

The localized surface plasmon resonances of noble metal particles

with the sizes of more than 10 nm have been well characterized experi-

mentally.86 The understanding of plasmon resonances for smaller sizes

is, however, still poor. This is because both experiment and theory are

challenging for small particle sizes.87,88 In particular, both quantum

effects and detailed surface interactions become important as the elec-

trons interact more strongly with the surface including the spill-over

of conduction electrons at the cluster surface, which complicates geo-

metrical analysis.89 Quantitative predictions then require detailed cal-

culations of the electronic structure for the actual atomic

arrangements of the clusters of interest. For experiment, optical detec-

tion in the far field becomes difficult for small particles due to the size-

dependent reduction in scattering intensity.1 Theoretically, time-

dependent density functional theory-based methods35,90–92 are usually

limited at present to particles with the sizes below 1–2 nm,93 but still

useful insights have emerged. Methods that bring detailed quantum

mechanical calculations to the longer length scales of interest would be

very valuable in better understanding the size regime where quantum

effects start to become important.

The first effect we mention is the red shift effect in the case of alkali–

metal particles, which is due to the finite surface area.94,95 The red shift

is understood in terms of the spill-over effect.96 At small size, the

electronic density profile will extend beyond the nominal surface.

This is an effect of the high kinetic energy of the s-electrons that make

up the conduction states of alkali metals. The resulting charge located

outside the surface cannot be efficiently screened by the other elec-

trons. So the polarizability is enhanced, which results in a decrease in

the resonant frequency.

The effect of electron scattering at the surface may be described via a

corrected dissipative loss term in the Drude model with the formula89

c0~cbulkz
AuF

R

where cbulk is the parameter describing bulk dissipative losses, R is the

particle radius and uF is the Fermi velocity. A is an empirical constant

that can be set using fits of experimental data. This effect also results in

a slight red shift of the resonant frequency.

Next we discuss the blue shift of the plasmon resonance of small

non-alkali metal particles. This can be understood in terms d-electron

contribution to the dielectric properties.84 In bulk materials, the

Lorentz term in Lorentz–Drude model represents the contribution

of interband transitions, involving the s–d interactions. The bulk plas-

mon resonant frequency is reduced from the unscreened value due to

screening from s–d interactions. For example, the bare plasmon energy

of Ag is reduced from 9.2 eV to 3.76 eV by screening.96 This is reduced

at the surface of small particles as the s electrons spill out. The reduced

screening that results will then yield a blue shift (the surface-to-bulk

ratio increases as the size decreases). Detailed quantitative characteri-

zation of spill-over effects on the surface plasmons of small particles

will depend on the development of atomistic methods for the surface
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electronic structure and excitations that can be applied for cluster sizes

of interest. It may be that interesting new effects will emerge from

studies that include detailed surface structures and interactions.

Both top-down and bottom-up methods have been adopted to

analyze the size-dependent plasmon frequency.97 Starting with bot-

tom-up approaches, cluster science has made an important contri-

bution to the understanding of the optical properties of small

particles both theoretically and experimentally.92,96,98–100 From the

top-down, plasmon resonances can be studied by aberration-cor-

rected transmission electron microscope imaging and monochro-

mated scanning transmission electron microscope electron energy-

loss spectroscopy.101 Microscopically, the free electron part of the

Drude model can be modified to a phenomenological model of very

small particles by considering the conduction electrons as an electron

gas constrained in an infinite potential barriers.102,103 Then, the

quantum size effects lead to a discrete set of energy levels near Fermi

surface instead of a Fermi liquid. As discussed by Scholl et al.,101 these

quantum size effects result in the blue shift of resonance frequency.

This is in addition to the spill-out effect and the resulting weakened

screening of d electrons, as discussed above. It is, however, important

to note that there remain inconsistencies between experimental results

from top-down and bottom-up approaches. Methods that can span

the full size range of interest will be very helpful in developing a more

quantitative understanding of the size dependence.97

This is an exciting time for nanophotonic applications based on

light scattering by particles. For applications, tuning of properties is

important. One avenue for this is through the use of core-shell parti-

cles, including the special case of hollow core particles, instead of

simple single component particles. For the spherical case, one has

two dielectric functions, the core radius and the particle (core1shell)
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radius as parameters, instead of the single dielectric function and

radius as tuning parameters for the single component case. One

example of a core–shell particle used in light scattering is the case of

metal particles in an aqueous solution. In this case, there may be

chemical effects at the surface. In particular, the interface between

particle and aqueous solution can be viewed as a double layer, and

furthermore anodic or cathodic polarization can induce chemical

changes due to anion adsorption or desorption, alloy formation and

metal deposition including deposition of a shell with a different com-

position (e.g., Ag on Pd).104 Light scattering in such cases can be dealt

with using core–shell models. Core–shell particles can be used to

obtain new optical properties that single spherical particles do not

exhibit.105–108 Furthermore, techniques for producing such particles

are well developed.109,110

The core–shell model has been studied using the full solution of Mie

theory111 and also can be solved approximately using an electrostatic

solution.112 The surface plasmon resonance condition becomes

Re(eshea1emeb)50 with ea5eco(322Pra)12eshPra and eb5ecoPra1

esh(32Pra), where eco, esh and em are the dielectric functions of the

core, the shell and the medium, respectively.112 The parameter Pra is

the ratio of the shell volume to the total volume of particle. The result is

that the plasmon resonance frequency depends on the ratio of the core

radius to the total radius of particle.

Core–shell structures also introduce the important concept of plas-

mon hybridization. This provides a powerful principle for the design of

complex metallic nanostructures.113,114 The plasmon modes of nano-

shells (core–shell particles with an empty core, i.e. hollow shells) can

be viewed as arising from hybridization of the plasmon modes of a

nanoscale sphere and a cavity.114 This hybridization results in a low-

energy bonding mode and high-energy antibonding mode, as mentioned

in relation to the Fano effect. Many non-trivial nanostructures, such as

gold nanostars115 and nanorice,116 have plasmons that can be understood

in terms the interaction of the coupled plasmons of simpler systems.117

The interparticle distance is another variable that can be used to

produce new physics and applications. Examples are quantum tunnel-

ing118 and large electromagnetic enhancements at the junctions.119

The development of nanoscale fabrication methods has made possible

the production of different forms of nanoparticle arrays.66,67,118,120

These include dimers, chains, clusters and uniform arrays. The sim-

plest prototype, which can be used as a model, is a nanoparticle dimer.

The interaction between localized plasmons and the interference of the

electromagnetic fields from these plasmons are the two major factors

that control the electromagnetic enhancements at the junctions.

Different methods, such as the coupled dipole approximation,120

the finite difference time domain method121 and plasmon hybridiza-

tion,122 have recently been used to understand the plasmonic properties

of dimers. For the practical calculation, the temporal couple-mode

model as an effective method is also developed.123,124 Within the frame-

work of the hybridization concept, the dimer plasmons can be treated as

bonding and antibonding combinations of the single particle plasmons.

The shifts of the plasmons at large interparticle distance then follow the

interaction between two classical dipoles, since this is the interaction

that leads to the hybridization. At shorter distances, the plasmon shifts

in dipolar models become stronger and vary more rapidly with distance.

This is a consequence of hybridization (or mixing) coming from higher

multipoles.122 In addition, new interesting effects beyond the hybrid-

ization models, such as Young’s interference, have been recently

observed in the plasmonic structures.125

The plasmon modes for the symmetric nanoclusters can be analyzed

based on plasmon hybridization with group theory.66 In addition, by

introducing the symmetry breaking, nonsymmetrical nanoclusters

can also be analyzed. In the case of uniform two-dimensional nano-

particle arrays with coupling to localized plasmons can result in a

coherent interaction of the array with light propagating in the plane

of the array. This results in a plasmonic band structure.126–129 In

addition, in the subwavelength nanostructures, there is an substantial

opportunity to obtain the superscattering if one can maximize the

contributions from different channels.130 These can be enabling for

a number of applications, including various photonic metamaterial

applications and plasmonic lasers.131,132

The polarization of a particle array can be expressed in the simple

dipole approximation as aarr~ 1=a{Sð Þ{1
, where a and S are the

polarization of a single particle and the structure factor of array,

respectively.133 There will be a geometric resonance when the wave-

length of scattering light is commensurate with the periodicity of the

particles array.134 The study on light scattering of uniform arrays of

nanoparticles is strongly connected with the fields of photonic crystals

and metamaterials. A detailed review was given by Garcia de Abajo,135

to which we refer the reader for details.

Finally, we note that nonlinear optical responses can be very

strongly increased using nanoparticle plasmons. This is by two main

mechanisms, namely through the field enhancement near the particle

surface and via the sensitivity of resonance frequency to the dielectric

function of surrounding medium.136 Some of the first work on non-

linear-optical effects of small metallic particles was on nanoparticle

colloids.137 Extension of Maxwell–Garnett theory for the low-concen-

tration limit of particles in the medium (Cra,,1) can be used. The

effective dielectric function of the nanoparticle colloids can be

expressed as22

eeff~emz3Craem
ep{em

epz2em

The resulting third-order susceptibility xm
(3) from plasmonic

enhancement then can give rise to substantial optical Kerr

effects.138,139 The formal electromagnetic description of small particle

second-harmonic scattering (hyper-Raleigh, which should vanish in

the dipole approximation due to inversion symmetry) was given by

Dadap et al.,140 who described the second harmonic generation on a

small centrosymmetric sphere on the basis of the Mie theory and

determined the nonlinear susceptibilities and radiation pattern. This

formalism, although based on the local bulk response, provides an

approach for dealing with the contributions from non-local dipole

and other multipole modes. Giant second-harmonic scattering has

been observed in experiments on suspensions of small gold par-

ticles,141 and even for individual gold nanoparticles.142 Effective

second-harmonic generation has also been studied in plasmonic struc-

tures with low symmetry, such as gold nanocones with a sharp tips,143

nano-apertures surrounded by gratings144 and non-centrosymmetric

gold nanocups.145

SPASERS: SURFACE PLASMON LASING FROM ACTIVE

PARTICLES

In lasers, coherent electromagnetic energy is generally concentrated in

the active region by a Fabry–Perot or similar resonator. Let us consider

an ideal resonator with two perfect mirrors. The minimal distance

between two mirrors for storing the electromagnetic field is half of

the wavelength, as shown in Figure 8b. However, by using resonance

between the electromagnetic field and a surface plasmon (described by

a dipole model for a small metal particle), the electromagnetic energy

can be concentrated in a much smaller region. The particle size for this
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can be estimated from the skin depth given by44

Ds~
l

2p
Re

{e2
p

epzem

 !1=2
2
4

3
5

{1

where l is the vacuum wavelength. In the optical region, the size (Ds,

corresponding to the so-called nanoplasmon) for noble metals, such as

silver, gold and copper, is roughly 25 nm.44 The minimum size of a

nanoplasmonic system is determined by the distance electrons move on

the surface in a period of the optical wave. This is given by the formula146

Lnl*uF=v

where uF is the effective Fermi velocity.

The resonance between a surface plasmon and the electromagnetic

field also results in the loss of energy due to the dissipative losses (from

the imaginary part of the dielectric function). This induces a loss of the

plasmonic field with a decay rate cp!(Imep){1. For a metal, a quality

factor is defined by

Qp~
{Re½e�
Im½e�

where e is the dielectric function of the metal. This provides a criterion

that can be used to estimate whether a given substance is a good

plasmonic material in an optical region of interest. The quality factors

of gold and silver are shown in Figure 8a. In addition, optical radiation

also results in the loss of plasmonic field according to the formula,44

cr
p~4e3=2

m

vspa

c

� �3 LReep vsp

� �
Lvsp

� �{1

Surface plasmons can be amplified by the stimulated emission of

radiation in the presence of a gain medium, such as dielectric materials

containing excited dye molecules. Lasing depends on the presence of

two principal conditions—a cavity for the resonant generation of

coherent optical modes and medium with gain due to population

inversion. A realization, the so-called spaser (surface plasmon amp-

lification by stimulated emission of radiation) consists of small plas-

monic metal particles surrounded by a gain medium such that the

linewidth of the light emission from the gain medium overlaps with

that of plasmon mode.147 Thus, the losses of energy of the plasmonic

particles due to dispersion and radiation can be compensated by light

emission of gain medium. The key point is that by using a composite of

plasmonic metal particles in a gain producing medium one may obtain

a coherent radiation field in a lasing system that is smaller than the

wavelength of the light.

Stockman used a quantized treatment of a gain medium and a qua-

siclassical treatment of the surface plasmon to construct a semiclassical
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dynamical equation for the spaser.148 This gives a description of the

spaser mechanism as shown in Figure 8c and 8d. The equation of

motion of the density matrix of a pth chromophore (the active elements

in the gain medium) can be expressed as ih� _rr(p)~ r(p),ĤH
� �

, with

ĤH~ĤHgz
P

n h�vnâaz
n âanz

P
p ÊE rp

� �
d̂d

(p)
, where ĤHg is the Hamil-

tonian of gain medium. rp and d̂d(p) are the coordinate vector and dipole

moment operators of the pth chromophore in gain medium, respec-

tively. The second term in the total Hamiltonian is for the quantized

surface plasmon and the third term is for the coupling between the

chromophore and the electric field of surface plasmon. By defining the

gain factor of chromophore, which is a two energy level system with the

formula

g~
4pv

ffiffiffiffiffi
em
p

3ch�C12

d12j j2nc

where d12 is the transitional dipole element between ground state and

excited state, the threshold gain for spasing can be obtained and

expressed as44

gth~
v

c
ffiffiffiffiffi
em
p Re s vð Þ½ �

1{Re s vð Þ½ � Im ep vð Þ
� �

ð10Þ

Here C12 is the rate constant for describing the polarization relaxa-

tion, nc is the density of the chromophores, and s(v)~em

�
em{ep

� �
is

Bergman’s spectral parameter.149 One may note that the threshold for

gain just depends on the spasing frequency and the dielectric prop-

erties of system. However, the spasing frequency is determined by the

geometry of the system.

Progress in spasers, including both theory and experiment, has been

rapid.44 The original theoretical concept of the spaser was proposed

with V-shaped metallic structures and semiconductor quantum

dots.10 Following this, a nanolens spaser was proposed with a linear

chain structure of metal nanospheres combined with an active me-

dium.150 A proposal for a spaser based on metal cores with an active

shell was considered on basis of linear electrodynamics.151 A narrow-

diversion coherent radiation on based on the combination of a meta-

material and a spaser was proposed by Zheludev et al.152 The com-

bination of the plasmon of an anisotropic spherical particle and an

active medium was also proposed to result in a spaser.42 In experi-

ments, a spaser was realized on a conjugate structure based on a

metallic core and a dye-doped dielectric shell38 (Figure 8). Spasers

have also been realized in other nanostructures, such as in CdS nano-

wires combined with a silver substrate and separated by a MgF2

layer.153 The development of active subwavelength optical elements

such as in spasers, is expected to lead not only to diverse applications,

but also to new fundamental insights into nonlinear light matter inter-

actions.

CONCLUSIONS

We have briefly reviewed the theory of light scattering by small spheri-

cal particles and aspects of the important progress on light scattering

on small spherical particles. It is remarkable that although many of the

fundamental aspects of the theory are more than 100 years old, there

continue to be new, surprising and useful developments, such as spa-

sers and optical tweezers based on it. The interest 100 years ago was in

the far field. While the formalism showed fascinating near field beha-

vior, specifically giant concentrations of electromagnetic energy in

regions much smaller than the wavelength and with complex spatial

distributions, this was not explored until much more recently. Now

these effects are being exploited to yield remarkable new nanoscale

effects and potential applications in different science areas, such as

high-resolution optical imaging, small-scale sensing techniques, light-

activated cancer treatments, enhanced light absorption in photovol-

taics and photocatalysis, and numerous biomedical applications. We

expect that many more applications will be developed exploiting

optical scattering by small particles, and especially nanophotonics

applications based on the near-field and far-field applications using

linear and nonlinear plasmonic effects.
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Magnetic and electric coherence in forward- and back-scattered electromagnetic
waves by a single dielectric subwavelength sphere. Nat Commun 2012; 3: 1171.

27 Luk’yanchuk BS, Tribelsky MI, Ternovsky V, Wang ZB, Hong MH et al. Peculiarities of
light scattering by nanoparticles and nanowires near plasmon resonance frequencies
in weakly dissipating materials. J Opt A Pure Appl Opt 2007; 9: S294.
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