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Mouse mesenchymal stem cells inhibit high endothelial cell
activation and lymphocyte homing to lymph nodes by
releasing TIMP-1
L Zanotti1,12,13, R Angioni2,3,13, B Calì2,3, C Soldani1, C Ploia1, F Moalli4, M Gargesha5, G D'Amico6, S Elliman7, G Tedeschi8,9, E Maffioli9,
A Negri8,9, S Zacchigna10, A Sarukhan11, JV Stein4 and A Viola2,3

Mesenchymal stem cells (MSC) represent a promising therapeutic approach in many diseases in view of their potent
immunomodulatory properties, which are only partially understood. Here, we show that the endothelium is a specific and key
target of MSC during immunity and inflammation. In mice, MSC inhibit activation and proliferation of endothelial cells in remote
inflamed lymph nodes (LNs), affect elongation and arborization of high endothelial venules (HEVs) and inhibit T-cell homing. The
proteomic analysis of the MSC secretome identified the tissue inhibitor of metalloproteinase-1 (TIMP-1) as a potential effector
molecule responsible for the anti-angiogenic properties of MSC. Both in vitro and in vivo, TIMP-1 activity is responsible for the anti-
angiogenic effects of MSC, and increasing TIMP-1 concentrations delivered by an Adeno Associated Virus (AAV) vector recapitulates
the effects of MSC transplantation on draining LNs. Thus, this study discovers a new and highly efficient general mechanism
through which MSC tune down immunity and inflammation, identifies TIMP-1 as a novel biomarker of MSC-based therapy and
opens the gate to new therapeutic approaches of inflammatory diseases.

Leukemia (2016) 30, 1143–1154; doi:10.1038/leu.2016.33

INTRODUCTION
Mesenchymal stem cells (MSC) are multipotent progenitor cells
with self-renewable capacity and the potential to differentiate into
various mesodermal lineages.1 MSC are present in the stromal
fraction of many tissues, where they reside close to blood vessels,2

a trait that is shared with pericytes. Indeed, when analyzed in vitro,
MSC and pericytes display similar morphological and functional
features, although the two cell types are likely to have different
functions in vivo.3 Although pericytes regulate capillary home-
ostasis and architecture,4 the in vivo functional role of MSC is less
clear and it is likely to be tissue-specific. For example, in the bone
marrow, MSC contribute to the formation of the ‘niche’ for the
hematopoietic stem cells (HSC), thus providing an appropriate
microenvironment for hematopoiesis.5 In other tissues, MSC may
be involved in homeostatic control and tissue repair.6

A well-established feature of MSC is their ability to inhibit
inflammation and immunity, both in vitro and in vivo. In mouse
models of human diseases, MSC have been shown to be highly
immunosuppressive being effective, for example, in the treatment
of experimental autoimmune encephalomyelitis,7 collagen-
induced arthritis8 or graft-versus-host disease.9 On the basis of
these experimental results, MSC are now used in several clinical
trials (see www.clinical trials.gov) and represent a new frontier in
cellular therapy. The anti-inflammatory effect of MSC can be

largely explained by their ability to secrete a vast array of soluble
mediators with immunomodulatory properties, such as
interleukin-10 (IL-10), prostaglandin E2, transforming growth
factor, nitric oxide (for mouse MSC) and indoleamine-2,3-
dioxygenase (for human MSC), and tumor necrosis factor-α (TNF-
α)-stimulated protein 6 (ref. 9–11) that may act in a paracrine or
endocrine manner. However, a unifying mechanism of action is
still missing, and it is likely that other specific mediators and
targets explaining the in vivo immunosuppressive effects of MSC
remain to be identified.
Both inflammatory and immune responses depend on migra-

tion of leukocytes. Recruitment of neutrophils and monocytes into
inflamed tissues is directed by chemokines induced by inflamma-
tory stimuli, including bacterial lipopolysaccharide, IL-1 and
TNF-α.12,13 On the other hand, adaptive immunity starts in
secondary lymphoid organs, where naive antigen-specific T cells
encounter dendritic cells loaded with cognate antigen. For this to
occur, T cells must enter lymph nodes (LNs) via specialized post-
capillary venules that are made up of endothelial cells with
cuboidal morphology and therefore called high endothelial
venules (HEVs).14,15 Endothelial cells have a major role in these
processes, changing their phenotypes to support various phases
of the inflammatory responses. The capacity of leukocytes to
interact with the endothelium is determined by the activation of
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endothelial cells that in turn leads to the expression of a variety of
chemoattractants and surface adhesion molecules including
intercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1).16 In addition, if the inflammatory
stimulus persists, then angiogenesis is initiated by the migration
of endothelial cells lining the venules into the tissue.16,17 The
generation of new blood vessels is required for the survival of
inflammatory cells within the tissue, and thus inhibition of factors
that promote angiogenesis may reduce inflammation and prevent
its pathological consequences such as inflammatory tissue
damage, autoimmunity, fibrosis or tumor growth.16,18

In this study, we have identified the endothelium as a specific
and novel target of MSC-based therapy.

MATERIALS AND METHODS
Mice
C57BL/6J mice were purchased from Charles River Laboratories (Calco,
Italy). All mice used as primary cell donors or recipients were between 8
and 12 weeks of age. Procedures involving animals and their care
conformed to institutional guidelines in compliance with national (4D.L.
N.116, G.U., suppl. 40, 18-2-1992) and international (EEC Council Directive
2010/63/UE; National Institutes of Health Guide for the Care and Use of
Laboratory Animals) law and policies. The protocol was approved by the
Italian Ministry of Health on 18 June 2007 and modified by Protocol
162/2011-B. All efforts were made to minimize the number of animals used
and their suffering. In all the experiment, the mice were sex and age
matched, no further randomization was applied.

Isolation of murine MSC
Detailed protocols are available in the Supplementary Materials and
Methods.

Collection of conditioned medium
Detailed protocols are available in the Supplementary Materials and
Methods.

Endothelial cell lines
Detailed protocols are available in the Supplementary Materials and
Methods.

In vitro endothelial cell activation
Detailed protocols are available in the Supplementary Materials and
Methods.

Tube formation assay
Detailed protocols are available in the Supplementary Materials and
Methods.

Immunization with Complete Freund Adjuvant/Ovalbumin
In all, 1 mg/ml Ovalbumin (OVA) (Sigma-Aldrich, Steinheim, Germany) was
emulsified in Complete Freund Adjuvant (CFA) (Sigma-Aldrich), and 100 μl
of emulsion was injected subcutaneously (s.c.) in three sites in the back.
After 24 h, 1 × 106 MSC were injected s.c. in the lumbar region. Immunized
mice were killed 4 days later, and the brachial draining LNs (dLNs) were
collected and frozen in OCT for immunofluorescence or digested for FACS
analysis.

In vivo tissue inhibitor of metalloproteinase-1
immunoneutralization
Goat polyclonal anti-TIMP-1 IgG19 (catalog no. AF980; R&D Systems,
Minneapolis, MN, USA) was intravenously (i.v.) administered (0.5 mg/kg) in
immunized mice 18 h after MSC transplantation. As a control, additional
mice were given equivalent doses of an isotype-matched goat IgG (catalog
no. AB-108-C, R&D Systems). Immunized mice were killed 2 days later, and
the brachial dLNs were collected and digested for endothelial cell analysis

by FACS. Data are representative of 36 LNs/group analyzed from four
independent experiments.

Tissue inhibitor of metalloproteinase-1 siRNA reverse transfection
Timp-1 Silencer Select Pre-designed siRNAs (Ambion, Waltham, MA, USA)
were exploited for mMSC transfection, and Silencer Select Negative
Control No. 1 siRNA (Ambion) was adopted as scramble. siRNAs were
diluted in Opti-MEM I reduced Serum Medium (Gibco, Waltham, MA, USA)
at the final concentration of 50 nM. Diluted siRNAs were placed 100 μl/well
in a 24-well tissue culture plate in the presence of 1 μl of Lipofectamine-
2000 (Invitrogen, Carlsbad, CA, USA), according to the manufacturer's
instructions. Murine MSC were seeded at a density of 6 × 104 cells/well and
cultured in antibiotic-free medium. Medium was replaced 24 h post
transfection with fresh DMEM low Glucose, 2 mM L-glutamine and 10% FCS
Biosera. mMSC tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion
was analyzed at 24, 48 and 72 h after transfection by ELISA (R&D Systems).
In vivo data with siRNA MSC are representative of 20 dLNs from 2
independent experiments.

AAV-mediated TIMP-1 overexpression
All the AAV vectors used in this study were generated by the AAV Vector
Unit (AVU) at ICGEB Trieste (http://www.icgeb.org/avu-core-facility.html) as
described previously.20 Briefly, AAV vectors of serotype 9 were produced in
HEK293T cells, using a triple plasmid co-transfection method. Viral stocks
were collected after CsCl2 gradient centrifugation. The total number of viral
genome was determined by real-time PCR; the viral preparations had titers
between 1× 1013 and 3× 1013 viral genome (vg) particles per ml. AAV9-
TIMP-1 was intraperitoneally injected at a dose of 2 × 1011 vg in 100 μl
PBS− /− . Equal amount of AAV9-LacZ was used as a control. One day after
AAV9 administration, mice were immunized with CFA/OVA as discussed
above (6 mice/group). Brachial dLNs were collected 4 days after
immunization and digested for FACS analysis. Data are representative of
one experiment out of two.

Immunofluorescence
Detailed protocols are available in the Supplementary Materials and
Methods.

Flow-cytometry analyses
Detailed protocols are available in the Supplementary Materials and
Methods.

LC-ESI MS/MS analysis
Detailed protocols are available in the Supplementary Materials and
Methods.

Optical projection tomography
In all, 5 μg of Alexa-594 MECA-79 antibody (conjugated according to the
manufacturer’s instructions using the Alexa-594 conjugation kit; Invitro-
gen) was injected i.v. 15 min before organ harvest. Brachial LNs were
excised, cleaned of surrounding fat and then incubated with AlexaFluor
488-conjugated anti-B220 (0.67 μg/ml) as previously described.21 Further
details are described in the Supplementary methods.

3D immunofluorescence
Mice were immunized and transplanted as described above. On day 3 after
immunization, single-cell suspensions were obtained from LNs of C57/Bl6
wt mice. CD4+ T cells were isolated using the mouse CD4+ T cell isolation
kit (Stem Cell Technologies, Vancouver, BC, Canada), according to the
manufacturer’s protocol. The lymphocytes were fluorescently labelled,
injected i.v. into CFA/OVA immunized recipient mice and allowed to home
for 20 min before blocking further homing with anti-L-selectin mAb. After
20 min, dLNs were isolated, treated and analyzed as previously
described.22 Data are representative of eight (CFA/OVA) and nine (+MSC)
mice from three independent experiments.

Cryo imaging
MSC labelled with qTracker 655 (Life Technologies, Oslo, Norway) were s.c.
injected into a control mouse or a mouse previously immunized with CFA/
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OVA. Mice were killed 4 days later, frozen and cryo-imaged using the
CryoViz cryo-imaging system (BioInVision, Inc., Cleveland, OH, USA) as
described in Roy et al.23,24 Cryo-images were acquired using the ProSCI
software as described in Roy et al.24 Further details are described in the
Supplementary methods.

Statistical analysis
The sample size per group was estimated from previous experience with
similar experiments. There were no pre-established criteria for mice or
sample exclusion: except evident technical damage. Data were collected
and analysis was done without the investigator knowing group allocation.
Data were analyzed using the Prism Software (GraphPad, La Jolla, CA, USA).
Data were expressed as mean± s.e. Differences were assessed using t-test,
Mann–Whitney test or one-way ANOVA. Statistic tests were performed
between data with similar variance. Results with a P-value of o0.05 were
considered as significant.

RESULTS
MSC transplantation affects endothelial activation in immune
reactive LNs
We have previously shown that encapsulated MSC injected s.c. are
able to control systemic and local inflammation through the
release of soluble factors.9 Moreover, we have demonstrated that
subcutaneous administration of MSC is more efficient than the
intravenous route, probably because most of the MSC injected i.v.
are trapped in the lungs and cleared after a few days.9,25–27 On the
basis of our previous data indicating that encapsulation was not
required to improve the efficacy of s.c. injected MSC,9 in this study
we performed subcutaneous injections of free MSC (not
encapsulated) in the lumbar area of mice that had been previously
immunized with OVA in CFA (CFA/OVA) in the upper dorsal region.
As expected, the immunization induced a robust and rapid
response in the brachial dLNs (Figure 1). MSC transplantation
significantly reduced this response, decreasing both the total
cellularity and the volume of dLNs and affecting the recruitment
of specific cell populations (Figures 1b–e), as already described.9

Using whole-mouse cryo-imaging analysis,28 we verified that s.c.
injected MSC did not migrate away from the site of injection
during the experimental time (5 days), both in immunized and in
untreated mice (Supplementary Movies S1 and S2). Together with

our previous study,9 these data indicate that MSC are able to
dampen inflammation through the release of soluble mediators.
LN growth during immune responses is accompanied by

endothelial activation and vascular expansion, two events that
are required for leukocytes recruitment and orchestration of
immunity. We analyzed the expression of two adhesion molecules,
VCAM-1 and ICAM-1, that are typically upregulated on the
inflamed endothelium (Figures 2a–d). Interestingly, the dLN
vessels of mice treated with MSC had a lower expression of both
VCAM-1 and ICAM-1, as demonstrated by the colocalization
analysis expressed as Mander’s coefficient (Figures 2b–d). More-
over, we observed that the dLNs of mice transplanted with MSC
showed reduced density of the endothelial marker CD31 and of
Lyve-1, a marker of the lymphatic endothelium, suggesting a
reduced vascular expansion upon MSC treatment (Figures 2a, c
and e).
Altogether, these data indicate that MSC inhibit activation of

vascular and lymphatic endothelium in the dLNs of
immunized mice.

MSC inhibit activation and elongation of HEVs and affect
recruitment of T cells to dLNs
The migration of leukocytes from the blood stream into LNs
occurs via HEVs, which are post-capillary venules structurally
adapted to support lymphocyte trafficking. Because of the
reduced numbers of leukocytes present in the dLNs of mice
treated with MSC (Figure 1),9 we asked whether MSC transplanta-
tion affects HEV activation, lymph-node vascularization and
leukocyte migration in vivo.
MSC were s.c. injected in the lumbar region of mice that had

been previously immunized in the dorsal region with CFA/OVA, as
already described (Figure 1), and HEV cells in brachial LNs were
analyzed. In particular, HEV cells were identified as CD45−CD31+

PNAd+ cells (Supplementary Figure S1). The reduced number of
CD45−CD31+ cells was confirmed by flow-cytometry analyses
(Figure 3a) and can be explained by the inhibition of endothelial
cell proliferation in MSC-treated mice, as shown by the reduced
uptake of BrdU (Figure 3b). In the dLNs of mice treated with MSC,
we observed a reduction in the absolute number of HEV cells as
compared with controls (Figure 3c). Moreover, HEV cells had a
reduced expression of VCAM-1 (Figure 3d).
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Analysis of entire LNs by optical projection tomography, which
allows a three-dimensional reconstruction of the HEV network,
allowed us to examine the morphologic alterations that occur in
HEV expansion after immunization with CFA/OVA in the presence
or absence of MSC. HEVs were labelled before imaging by
intravenous injection of fluorophore-tagged MECA-79, which
recognizes the PNAd epitope on the luminal surface (Figure 4a,
Supplementary videos S3 and S4). The HEV length was
significantly impaired in mice transplanted with MSC (Figure 4b)
and the analysis of the HEV volume suggested a tendency toward
vessel narrowing, although in this case the difference did not
reach statistical significance (Figure 4c). In addition, the morphol-
ogy of the HEV network was affected by MSC, as shown by the
significant decrease in the number of branches and segments
(Figures 4d and e), indicating that MSC limit both HEV elongation
and arborization.
The previous observation prompted us to address whether MSC

impair leukocyte homing to inflamed LNs. Fluorescently labelled

naive T cells were injected i.v. in mice previously immunized with
CFA/OVA, and transplanted or not with MSC. After 20 min,
alexa633-conjugated MECA-79 and MEL-14 mAbs were i.v.
injected to stain HEV and block L-selectin, respectively, and, after
20 additional minutes, the dLNs were harvested and prepared for
two-photon microscopy acquisition (Figure 4f).22 The analysis
demonstrated that MSC transplantation inhibited T-cell homing
into the inflamed LNs (Figure 4g).

Endothelial cells are a direct target of MSC
To understand whether the inhibition of endothelial cell activation
and proliferation observed in immunized mice treated with MSC
was due to a direct effect of MSC on endothelial cells, we analyzed
the effects of MSC supernatants in various in vitro assays using a
mouse vascular endothelial (1G11) and two mouse lymphatic
endothelial (MELC and SVEC4-10) cell lines.30–32 MSC were first
expanded as an adherent monolayer until confluence, and were
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then stimulated for 24 h in the presence or absence of IL-1β, IL-6
and TNF-α to resemble the inflammatory milieu that MSC find
in vivo.33,34 MSC supernatant was collected as conditioned
medium (CM) 18 h after cytokine withdrawal.
First, we analyzed the effect of MSC secretion on in vitro

angiogenesis using the tube formation assay.35 The soluble factors
released by stimulated MSC strongly inhibited the ability of
SVEC4-10 cells to form tube networks, whereas the medium
collected from the unstimulated MSC (unst MSC-CM) had no effect
(Figures 5a and b), indicating that in an inflammatory environment
MSC can directly inhibit angiogenesis. This effect was also
confirmed on another lymphatic endothelial cell line (MELC;
Supplementary Figure S2). On the basis of these results and of the
published literature,33,34 in the following experiments we focused
on the effects of the MSC-CM only.
As the in vivo data indicated that MSC transplantation affects

the expression of adhesion molecules on endothelial cells
(Figure 2b), we analyzed the expression of VCAM-1 and ICAM-1
on MELC and 1G11 cells treated with 20 ng/ml TNF-α for 24 h,30,31

in the presence or in the absence of MSC-CM. In agreement with
the previous data, the MSC-CM significantly reduced the expres-
sion of VCAM-1 and ICAM-1 on MELC (Figures 5c and e) and the
expression of VCAM-1 on 1G11 cells (Figures 5d and f).
Expression of VCAM-1 and ICAM-1 on endothelial cells is

regulated by NF-kB;36 and thus, we examined the nuclear
localization of NF-kB complexes using immunofluorescence
microscopy. As expected, in both MELC and 1G11 cells TNF-α
stimulation resulted in prompt translocation of p65 from the
cytoplasm into the nucleus. MSC-CM inhibited NF-kB translocation
in both cell lines (Figures 5g–j).
Altogether, these data indicate that endothelial cell activation is

directly inhibited by soluble factors released by MSC exposed to
inflammatory cytokines.

MSC inhibit in vitro angiogenesis through the release of TIMP-1
In an effort to understand the molecular mechanisms responsible
for the observed effects of MSC, we performed shotgun proteomic
characterization of the MSC secretome, comparing the super-
natants collected from MSC stimulated (MSC-CM) or not (unst
MSC-CM) with inflammatory cytokines. As detailed in Materials
and methods, only proteins present and quantified in at least
three out of five technical repeats, in both biological replicates,
were considered as positively identified; 1613 and 1630 proteins
were measured in the secretome of control and stimulated MSC,
respectively.
Differential expression was considered as significant if (a) a

protein was present only in MSC-CM or in control or (b) its LFQ
intensity resulted statistically significant as calculated by Perseus
(t-test cutoff at 1% permutation-based false discovery rate).
According to this analysis, 7.6 or 8.3% of the proteins detected
in the secretome of control or stimulated MSC, respectively, were
differentially expressed, either upregulated or downregulated.
These proteins were clustered according to their functions using
the DAVID platform37

filtered for significant Gene Ontology
Biological Process (GOBP) terms using a P-value of o0.05.
Concerning the 52 proteins that were significantly down-

regulated or present only in the secretome of unstimulated MSC
(Supplementary Table S1), GO analysis revealed that most terms
are related to metabolic processes (Supplementary Figure S3). As
for the 89 proteins that were significantly upregulated or present
only in the secretome of stimulated MSC (Supplementary Table S2
and Figure 6a), GO analysis indicated that 18 and 30% of the
proteins belong to categories that are related to regulation of
angiogenesis and inflammation processes, respectively
(Supplementary Table S2 and Figure 6b). In particular, the
presence of an ‘angiogenesis-related’ signature among upregu-
lated proteins was also confirmed by preliminary analyses of
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human MSC secretome, which reveals that all the 16 upregulated
proteins in stimulated MSC secretome common to human and
mouse are modulators of angiogenesis (Supplementary Table S3).
Among the several proteins upregulated in MSC by the

inflammatory cytokines that have a direct or indirect effect on
endothelial cells, we focused our attention on the TIMP-1 because
of its well-known anti-angiogenic properties.38 We thus used the
tube formation assay to analyze the effect of MSC-derived TIMP-1
on angiogenesis. Although the blocking anti-TIMP-1 antibody had
no effect on the ability of endothelial cells to form tubes when
cultured in the supernatants of unstimulated MSC, it totally
reverted the anti-angiogenic properties of the supernatant from
stimulated MSC (Figure 7a), indicating that, al least in this in vitro
setting, TIMP-1 is one of the key MSC-secreted molecules
targeting the endothelium. In an in vivo setting, the injection of
neutralizing anti-TIMP-1 antibody19 1 day after MSC transplanta-
tion reverted the MSC-induced reduction of endothelial cell
numbers and HEV in dLNs (Figures 7b–d), suggesting that TIMP-1
may be directly responsible for the anti-inflammatory effects of
MSC on LNs. To confirm this hypothesis, we used a siRNA
approach to knock down TIMP-1 expression in MSC
(Supplementary Figure S4). Again, the absolute cell numbers of
endothelial cells and HEV in dLN were reduced by MSC transfected

with the scramble siRNA control but not by MSC with TIMP-1
siRNA (Figures 7e–g).
On the basis of these results, we speculated that overexpression

of TIMP-1 might be sufficient to mimic the effects of MSC
transplantation, in terms of inhibition of angiogenesis in the
inflamed lymph nodes. TIMP-1 overexpression by AAV9-mediated
gene transfer20 in mice immunized with CFA/OVA (Figure 8a)
inhibited the inflammatory reaction in the draining LNs, as
indicated by the reduced total cellularity (Figure 8b), which was
due to a decreased number of both CD45+ cells (Figure 8c) and
endothelial and HEV cells (Figures 8d and e).

DISCUSSION
MSC have been studied across a range of clinical indications and
represent a promising therapeutic approach in many diseases in
view of their potent immunomodulatory properties. To design
better therapeutic protocols and define the clinical endpoints, it is
important to identify the specific targets of MSC anti-inflammatory
action in vivo. In this study, we have demonstrated that LN
endothelial cells and HEV are a direct target of MSC-based
therapy.
LNs are the organs where the initiation of immune responses

takes place and their structure guides and organizes the crosstalk
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between lymphocytes and antigen-presenting cells during both
normal responses to pathogens and immune-mediated diseases,
such as autoimmunity, allergy or graft-versus-host disease.39

When a robust immune response develops, infiltrating and
dividing lymphocytes markedly increase LNs cellularity, leading
to organ expansion. During this swelling, there is massive
endothelial cell proliferation and vascular expansion occurs.40

Both acute and chronic inflammatory processes are indeed
associated with pronounced vascular remodelling. Angiogenesis
and lymph angiogenesis, the growth of new blood vessels and

lymphatic vessels from pre-existing ones, are involved in a
number of physiological and pathological conditions, such as
wound healing, tumor growth, rheumatoid arthritis, inflammatory
bowel disease and asthma.41 Thus, the identification of therapies
that specifically inhibit angiogenesis may represent a weapon to
reduce inflammation and prevent disease progression.16

Recently, it was demonstrated that MSC have a potent
stabilizing effect on the vascular endothelium, having the capacity
of inhibiting endothelial permeability after traumatic brain injury42

and in hemorrhagic shock.43 Our results demonstrate that, during

0
1
2
3
4
5
6
7
8

**

V
C

A
M

-1
 M

F
I  

(x
10

00
)

0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5 *

IC
A

M
 -

1 
M

F
I (

x1
00

0)

ctr
+ mTNFa
+ mTNFa 
+MSC-CM 

0

1

2

3

4

5 **

V
C

A
M

-1
 M

F
I (

x1
00

0)

0

10

20

30

40

50

60

70

IC
A

M
-1

 M
F

I (
x1

00
0)

MELC

ct
r

+
 m

T
N

F
a

1G11

+
 m

T
N

F
a 

+
 M

S
C

-C
M

NFkB
Phalloidin
DAPI

%
 N

F
kB

 tr
as

lo
ca

tio
n

0

10

20

30

40

50

60 *** *** 

* 

MELC
0

10

20

30

40

50

60

%
 N

F
kB

 tr
as

lo
ca

tio
n

*** *** 

* 

1G11

MELC 1G11

VCAM-1 ICAM-1 VCAM-1 ICAM-1

CTR + MSC-CM+ unst MSC-CM

ctr

+MSCs-CM 

+ unst MSCs-CM

se
gm

en
t l

en
gh

t
%

 o
f v

ar
ia

tio
n 

0

20

40

60

80

100

**
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Figure 6. Distribution into biological processes of the proteins upregulated in MSC-CM. The proteins that were significantly upregulated or
present only in MSC-CM were classified into different biological processes according to the GO classification system. (a) The bar chart shows
the count of the top 26 most-enriched GO terms in MSC-CM versus unstimulated MSC-CM. Color coding indicates the fold enrichment.
(b) Proteins categorized as modulators involved in inflammation processes and/or angiogenesis. The histograms report the GOBP groups
related to angiogenesis or inflammation.
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an immune response, MSC inhibit HEV proliferation, activation and
elongation in dLNs, thus reducing the recruitment of immune
cells. In agreement with our data, homing of dendritic cell to dLNs
was reduced in the presence of MSC in several mouse models44,45

and in vitro co-cultures of MSC with endothelial cells down-
regulated cytokine-induced recruitment of neutrophils and
lymphocytes.46

In our study, the effects of MSC on endothelial cell activation,
HEV elongation and T-cell trafficking do not require MSC homing
to LNs and are all mediated by soluble factors released by MSC.

This is in agreement with another study showing an anti-
angiogenic activity for soluble factors present in media derived
from MSC/glioma co-cultures.47 The proteomic analysis of the MSC
secretome indicated that, upon activation by inflammatory
cytokines, MSC upregulate the expression of several proteins
potentially affecting angiogenesis and inflammation through
multiple pathways. Interestingly, when we compared the secre-
tomes of human and mouse MSC, we found that only 16 proteins
are upregulated in both cell types and 11 of them modulate
angiogenesis directly or indirectly, thus supporting the idea that
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the endothelium is a specific target of MSC during inflammation.
Notably, although many soluble factors released by cytokine-
triggered MSC are positive regulators of angiogenesis, in the
experimental system here described the overall in vivo effect of
MSC is a reduced dLN vascular expansion.
Angiogenesis requires degradation of the vascular basement

membrane and remodelling of the extracellular matrix to allow
endothelial cells migration and invasion into the surrounding
tissue. This process requires the action of matrix metalloprotei-
nases (MMPs) that degrade both matrix and non-matrix proteins
and have central roles in morphogenesis, wound healing, tissue
repair and in progression of chronic diseases.48 The balance
between MMPs and their natural inhibitors, the TIMPs, is critical for
extracellular matrix remodelling and angiogenesis. The TIMP
family comprises four protease inhibitors: TIMP-1, TIMP-2, TIMP-3
and TIMP-4. With the exception of TIMP-4,49 all three TIMPs inhibit
angiogenesis in vivo,38 although through diverse mechanisms.
MSC secrete both MMPs and their inhibitors, and thus contribute
to the regulation and protection of the perivascular niche.50

Using both in vitro and in vivo assays, we identified the
metalloproteinase inhibitor TIMP-1 as the molecule responsible for
the anti-angiogenic effects of MSC. TIMP-1 is known to inhibit
endothelial cells migration by MMP-dependent and MMP-
independent mechanisms.51–53 The latter involve regulation of
various biological processes such as cell growth, apoptosis and
differentiation through the CD63 receptor.54,55 In addition, TIMP-1
was shown to induce secretion of soluble VEGFR-1 by human
endothelial cells, leading to a decrease of bioavailable VEGF and of
blood vessel growth.56 TIMP-3 has also been identified as a soluble
factor produced by MSC with beneficial effects on endothelial cell
function in a mouse model of traumatic brain injury;57 however,
we did not find evidence for TIMP-3 upregulation in the mouse or
human MSC secretomes. It is likely that, in vivo, other soluble
factors in addition to TIMP-1 contribute to MSC-mediated immune
regulation: MSC are also known to produce prostaglandin E2 and
thus inhibit the activation of macrophages,58 which are a source of
multiple growth factors that enhance endothelial cell proliferation
and survival.59 Indeed, we confirmed prostaglandin E2 secretion
by stimulated MSC (not shown) and, in addition, we found that

MSC release several other anti-inflammatory lipids, such as
resolvinD1 and LipoxinA4 (not shown) that may also affect
endothelial cell activation and/or proliferation. Another interesting
mediator found in the MSC secretome is the soluble form of
VCAM-1 (sVCAM-1). High levels of sVCAM-1 have been detected in
the synovial fluid of patients with rheumatoid arthritis60 and in the
blood of patients with different types of cancers,61 but its origin is
not entirely clear and our data suggest that MSC may represent an
important source of this molecule. Although sVCAM-1 is described
as a promoter of angiogenesis,62 by altering leukocyte trafficking63

or inhibiting T-cell activation,64 it may contribute to the MSC-
induced suppression of T-cell recruitment that we observed in
this study.
The results presented here clearly position endothelial cells as a

key target of MSC-mediated immunomodulation during ongoing
inflammatory responses and pave the way for developing
strategies that exploit MSC-mediated inhibition of lymph-node
angiogenesis in the treatment of inflammation-associated pathol-
ogies. Furthermore, by identifying TIMP-1 as a critical effector of
the anti-inflammatory properties of MSC, this study pinpoints a
potential new biomarker in clinical settings. Further studies on the
role of TIMP-1 in human MSC are required to confirm its
correlation with clinical outcomes or its value in selecting the
best source of MSC for immunomodulation.
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