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How does epistasis influence the response to selection?

NH Barton

Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic
variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when
genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift.
In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate
change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even
when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to
~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation
load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in
reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when
selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests
that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be
because of alleles in the infinitesimal regime, in which epistasis has modest effects.
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INTRODUCTION

The relation between an organism’s DNA sequence and its fitness is
extremely complex, being mediated by gene expression, physiology,
development and behaviour, all in interaction with the environment.
Population and quantitative genetics use simple and abstract models to
explain the evolutionary consequences of this relationship—a bold
undertaking. Many have questioned whether this approach can
account for the complexities of gene interaction (that is, of epistasis),
and have suggested that properly incorporating epistasis will radically
change our ability to determine the causes of quantitative variation,
and our understanding of evolution (Carlborg and Haley, 2004; Carter
et al., 2005; Huang et al., 2012; Hansen, 2013; Nelson et al., 2013).
In fact, classical quantitative and population genetics do allow for an

arbitrary relation between genotype and phenotype, and for evolution
across a ‘rugged fitness landscape’. Phenotypic traits (including fitness)
depend on interactions among sets of alleles, as well as on the
marginal effects of individual alleles. Remarkably, the variance
associated with sets of one, two or more genes can be estimated from
correlations of the trait between relatives, without any need to know
the detailed genetic basis of trait variation (Fisher, 1918; Lynch and
Walsh, 1998). Within this framework, epistasis has two distinct roles.
First, it generates nonrandom associations among alleles (that is,
linkage disequilibria). However, in a sexual population these are
broken up by recombination, and hence have no long-term con-
sequence. More important, epistasis makes the marginal (that is,
additive) effects of alleles depend on the current genetic background.
Thus, even though the immediate response of allele frequencies to
selection is due to the additive component of genetic variance, these
additive effects may change over time. Indeed, an amino acid that is

benign in one species may be lethal when in the genetic background of
even a closely related species (Kondrashov et al., 2002).
Fisher and Wright developed methods that can describe arbitrary

epistasis: the analysis of variance (Fisher, 1918), leading to the
‘Fundamental Theorem of Natural Selection’ (Fisher, 1930), and
selection gradients on the ‘adaptive landscape’ (Wright, 1931).
In both models, the response of allele frequencies to selection is
primarily because of the additive effects of individual alleles: non-
additive variance does not contribute directly to long-term evolution.
However, Fisher and Wright held very different views on the
evolutionary significance of epistasis (Provine, 1988). Wright (1931)
argued that gene interactions lead to multiple ‘adaptive peaks’, and
that progressive evolution is limited by the difficulty of crossing
between these. In contrast, Fisher (1930) held that because environ-
ments fluctuate, and because evolution occurs in a space of extremely
high dimension, there can be a continuing response to selection
without the need ever to cross a fitness valley in opposition to
selection.
In the following, I bring together theoretical results that show that

the evolution of complex traits can be described by an ‘infinitesimal
model’ that is not sensitive to the detailed way in which genes interact.
Epistasis has surprisingly little effect on the response to either
directional or stabilising selection, even when substantial fractions of
the genetic variance are because of gene interactions, and the under-
lying fitness landscape is rugged. This leads to robust limits to the
number of traits that can be kept close to an intermediate optimum,
and suggests that selection is most efficient in the infinitesimal regime,
when it is comparable with the strength of random drift on individual
alleles.
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THE INFINITESIMAL MODEL

Practical quantitative genetics depends on the infinitesimal model,
under which the components of genetic variance remain approxi-
mately constant despite selection. Defined at the individual level, in its
simplest form this model states that two parents produce offspring
whose breeding values are normally distributed around the mean
breeding value of the parents, with variance independent of these
parental values. This definition extends to the whole pedigree, such
that the distribution of descendants is multivariate normal, with a
covariance that is independent of the ancestral values. This implies
that selection of specific individuals as parents only affects the
offspring means and not their covariance (Lange, 1978; Bulmer, 1980).
This standard infinitesimal model can be justified as the limit of an

additive model, when the number of loci tends to infinity (Fisher,
1918; Bulmer, 1980). However, the model extends to allow for
substantial epistasis (Barton et al., 2016; Paixao and Barton, 2016).
The key assumption is that phenotypes occupy a narrow range, relative
to the range of multilocus genotypes that are possible, given the
standing variation. This is consistent with the basic observation that
artificial selection can shift the mean phenotype far outside its original
range, within a few tens of generations, and implies that very many
genotypes are consistent with any specific trait value; recombination
between these different genotypes generates new variation. Thus,
knowing the trait value gives little information about individual
genotype, and hence hardly influences the distribution of allele
frequencies. Therefore, selection on a trait that depends on very many
loci hardly perturbs the variance components away from their neutral
evolution.
This is illustrated by Figure 1 which includes strong epistatic

interactions, so that most of the additive variance is due to epistatic
coefficients; as is typical, the epistatic variance is much smaller than
the additive component (lower pair of curves at right). Selection
rapidly changes the mean, by ~ 11 genetic s.d. over 100 generations,
However, the variance components are only modestly changed from
their neutral evolution: the additive component is reduced by 25%,
and the nonadditive component by 31%, after 100 generations
(compare dashed and solid lines at right).

To account for epistasis, the basic infinitesimal model must be
extended, such that individual trait values are represented by
components due to sets of one, two or more loci. However, the
distribution of these components among offspring follows rules that
depend only on the components of genetic variance, and not on the
values of the parents (Figure 2). The infinitesimal model can apply
even when much of the genotypic variance is due to epistatic
interaction. The covariance between relatives is given by the rules of
classical quantitative genetics, and just as in the additive case, these
covariances depend only on the components of genetic variance in the
base population. Allele frequencies may change substantially as a result
of random drift: the crucial assumption is that selection on the
phenotype causes only a small perturbation away from neutrality. The
cumulative effects of these small perturbations change the genetic
components of the trait mean significantly, but not the variance
components themselves.
Though only a few examples are shown here, the infinitesimal

model applies very widely. Nevertheless, it clearly does not apply to all
forms of epistasis: systematically positive or negative interactions, such
as might be produced by a scale change, would cause offspring
distributions to be non-Gaussian, and to be centred away from the
mean of the parents. The key point in this section, however, is that
random epistatic interactions are consistent with an infinitesimal limit,
in which the response to selection on quantitative traits can be
predicted from classical quantitative genetics. The complications of
epistasis are entirely absorbed into a few variance components that are
hardly perturbed by selection.
The overall sign of epistasis has received much attention: system-

atically negative epistasis would give an advantage to sex and
recombination, and would allow a higher mutation rate without
leading to excessive load (Kondrashov, 1988). However, invoking
systematic epistasis raises the question of why the effects of

Figure 1 The effect of selection on the mean and variance components in
the presence of epistasis. Directional selection, β=0.2 (solid line) is
contrasted with the neutral case (dashed line); shaded areas indicate ±1
s.d. The left panel shows the change in mean from its initial value and the
right panel shows the additive variance, VA, and the additive× additive
variance, VA A (lower pair of curves). Only the genic components of variance
are shown; random linkage disequilibria make no appreciable difference on
average. There are M=3000 loci, and N=100 haploid individuals. Alleles
are given equal main effects but random sign g ¼ 7 1ffiffiffi

M
p . Sparse pairwise

epistasis is represented by choosing a fraction 1/M of pairwise interactions,
ωι j, from a normal distribution with s.d. 4ffiffiffi

M
p ; oii ¼ 0; oijaoj i .The trait is

now defined as z= δ.γ+δ.ω.δT, where δ=± (1/2). Initial allele frequencies are
drawn from a U-shaped β-distribution, mean p ¼ 0:2 and variance 0.2 p q.
Individuals are produced by Wright–Fisher sampling from parents chosen
with probability proportional to W= eβ z. For each example, three sets of
allelic and epistatic effects are drawn and for each of those, three
populations are evolved; this gives 9 replicates in all.

Figure 2 The mean and variance of offspring plotted against components of
the parents’ trait values. Top left: additive component of offspring, AO,
against the mean of the parents’ additive component, AP. The line
represents AO=AP. Top right: the same, but for the additive× additive
components. The line shows a linear regression. Bottom left: additive
variance among offspring, VA,O against the mean additive components of the
parents, AP. Bottom right: additive× additive variance of offspring against the
mean additive× additive component of the parents. Lines in the bottom row
show quadratic regressions. The example shows a nonadditive trait under
selection β=0.2, with M=3000 loci and N=100 haploid individuals, as in
Figure 1. At generation 20, 200 pairs of minimally related parents
(F=0.165) were chosen, and 1000 offspring were generated for each pair.
For each offspring, the components of trait value were calculated relative to
the allele frequencies, p, in the base population. Defining genotype by X=0,
1, these components are A= ζ.(α+(ω+ωT).(p−1/2)), AA= ζ.ω.ζT, where
ζ=X−p.
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interactions between alleles should be biased with respect to the
marginal effects of these alleles on fitness. This might be a side effect of
how organisms are built, which might in turn be because of past
selection for (say) robustness to environmental or genetic perturba-
tion. There is a close analogy here with the evolution of dominance.
The immediate cause of dominance may be that losing function from
one copy of a gene causes little fitness loss, whereas losing both is
strongly deleterious. However, this raises the question of why
organisms should typically have excess capacity; that redundancy
may itself be because of selection for robustness against environmental
fluctuations (Wright, 1929; Bourguet, 1999).

DIRECTIONAL SELECTION

This extension of the infinitesimal model immediately leads to a
remarkably general expression for the effect of epistasis on the limits
to directional selection on standing variation (Paixao and Barton,
2016). (Note that here, I use directional selection to refer to an
exponential relation between fitness and trait; other forms of selection
—for example, truncation selection—will select on the variance as well
as the mean). Under the infinitesimal model, the additive variance, VA,
decreases by a factor (1− 1/(2Ne)) per generation, whereas the mean
increases by βVA, where β is the selection gradient. Therefore, the total
change in mean sums to 2Neβ which is just 2Ne times the change in
the first generation (V 0

A being the initial additive variance). Robertson
(1960) showed that this result can be derived by considering the slight
increase in fixation probability of favourable alleles because of
selection—a derivation that makes clear that the infinitesimal model
implicitly assumes selection on individual alleles, s, to be weaker than
drift (that is, Nesoo1).
The same argument applies with epistasis: classical quantitative

genetics gives expressions for the conversion of epistatic variance into
additive variance because of the changes in additive effects of alleles as
the genetic background changes (Hill et al., 2006). The total response
to directional selection β of a haploid population is Neβ, V

0
G which

only depends on the total initial genotypic variance V 0
G. Because the

change in mean in the first generation, β, is proportional only to the
additive component of the genetic variance, the response to selection is
slower in the presence of epistasis (for a given total variance, V 0

G). It is
remarkable that the ultimate change in trait mean, which may take the
phenotype far beyond its initial range, can be predicted simply from
the components of variation in the original population.
Epistatic variance makes a bigger contribution to the ultimate

response of a diploid population: the increase in mean is
2Ne bSk2k�1 V 0

AðkÞ, where V 0
AðkÞ is the initial kth order variance

component. However, it is still unlikely that higher-order variance
components can be substantial, for two reasons. First, for biallelic loci
with allele frequencies p, q, VA(k) is proportional to (2pq)k, and as the
product of allele frequencies pq is less than one-fourth, we expect 2k− 1

VA(k) to decrease with k, especially when the contributing alleles are
rare (Maki-Tanila and Hill, 2014). Second, for the additive variance to
be much smaller than epistatic variance, the marginal effects of alleles
must be small—as, for example, for variation in fitness components
that is maintained by balancing selection. However, such special
situations are sensitive to allele frequency, and any change in allele
frequencies will generate additive variance. In addition, balancing
selection is likely to act on a small number of loci with relatively large
effect that would be rapidly fixed by strong directional selection (an
exception is where recessive lethals increase a selected trait when
heterozygous; see, for example, Yoo, 1980). Such extreme cases cannot
be common, as artificially selected traits usually do not revert when
selection is relaxed (Weber, 1996).

Epistatic variance makes a relatively larger contribution to selection
response in diploids than in haploids, as represented by the factor 2k− 1

in the above formula. This is because an allele has twice the effect in a
homozygote as in a heterozygote, and hence the ultimate effect of
interaction among a set of k alleles is greater by a factor 2k, compared
with their effect when segregating as heterozygotes. We have ignored
dominance here, but note that rare recessives can inflate additive
variance when they become common, and that this ‘conversion’ of
dominance to additive variance may be much larger than the
conversion of epistatic variance (Hill et al., 2006). However, there
must still be a systematic bias towards favourable effects of rare
recessives to increase the expected selection response.
The connection between the components of initial standing

variation and the ultimate selection response is very general: it applies
for any form of epistasis, provided that interactions are not strongly
biased with respect to the selected trait, and provided that genetic
variance is dissipated primarily by sampling drift rather than by
selection. It applies even when the fitness landscape is ‘rugged’, so that
large populations would be trapped at local ‘adaptive peaks’. This is
simply because when selection on individual alleles is weak relative to
drift, populations can readily cross between such peaks. As I argue in
the following, selection is, in some sense, most efficient in this
‘infinitesimal’ regime.
How does epistasis affect the response to directional selection in the

opposite case of a very large population? Now, the initial variance
components are not directly relevant, because very rare alleles, which
initially make hardly any contribution to the variance components,
can increase to determine the ultimate response. Nevertheless, we can
compare the total change in mean with that what would be achieved
under the corresponding additive model, in which the effects of alleles
on the original genetic background remain constant. Of course, if
epistasis is systematically positive, there will be an accelerating
response, and a much larger total change than with the original
additive effects; conversely, systematically negative epistasis leads to a
smaller selection response (Hansen, 2013).
If epistatic interactions are random with respect to the marginal

effects on the trait, and if the optimal genotype is the same under the
epistatic and the corresponding additive models, then epistasis has no
expected effect (Paixao and Barton, 2016). However, if epistasis is
sufficiently strong, the marginal effects of alleles will change sign as
allele frequencies change, so that a different optimal genotype will be
reached. Now, epistasis does increase the expected response, even
when interactions are random with respect to fitness. The magnitude
of this effect can be predicted if interactions among different sets of
genes are independent of each other, and matches simulations of
random pairwise epistasis well. Overall, however, the effect of epistasis
on selection response is modest (Paixao and Barton, 2016; Figure 3).
These arguments apply to the initial response to selection because of

standing variation. Over longer timescales (450 generations, say; Hill,
1982), mutation makes a significant contribution, increasing additive
variance by VA

m per generation. Under the standard infinitesimal
model, the additive variance approaches an equilibrium between
mutation and random drift of 2NeV

A
m, and the mean will change

under directional selection in proportion to this variance. In the short
term, mutation generates negligible epistatic variance, unless muta-
tions have large effect, as it introduces alleles at low frequency (Hill
and Rasbash, 1986). However, epistasis makes additive effects condi-
tional on genotype, so that the effect of new mutations may change
with the mean. In the long term, the genetic variance will evolve
unpredictably, as new alleles introduced by mutation become com-
mon enough to interact with each other. Nevertheless, as mutational
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variance is ubiquitous (Houle et al., 1996; Lynch and Walsh, 1998), an
indefinite response to directional selection is expected.
When multiple traits are selected, the mean changes in proportion

to the additive genetic covariance matrix (termed the ‘G matrix’) that
in turn is proportional to the mutational covariance in the infinite-
simal limit. The G matrix has received much attention on the grounds
that it constrains adaptation. However, artificial selection has proved
successful even when deliberately applied to trait combinations that
show minimal variance (see, for example, Weber et al., 1999; Hill and
Kirkpatrick, 2010; Marchini et al., 2014): as long as there is some
additive variance in the direction of selection, selection can change the
mean. Of course, the G matrix has very high dimension, and some
directions may have zero variance (that is, there may be some zero
eigenvalues). Even then, however, the G matrix does not necessarily
constrain adaptation in the long term: it inevitably changes as new
mutations arise, with effects in different directions. Imagine that traits
may be influenced by a very large number of sites, n, of which only a
much smaller number, 1oo nsoo n, are segregating at any one
time; any allele potentially has random effects on all k traits. At any
time, G will have dimension ns, but as alleles are lost or fixed, in the
long run adaptation can occur through the whole space of dimension
n 44 ns. Thus, evolution is constrained by the total number of sites
that could affect the traits, and not by the number segregating at any
particular time. Therefore, observation of the G matrix at any one time
would not inform us about constraint on long-term evolution. This is
illustrated in Figure 3. The left panel shows that in any one generation,
most variance is explained by o50 dimensions, regardless of the
number of traits under stabilising selection. In contrast, the right panel
shows that over 50 000 generations, variance is spread over a number
of dimensions proportional to the number of traits. Thus, each trait is
kept close to the optimum, regardless of how many traits are being
selected.

STABILISING SELECTION

Variation of the mean
How does epistasis affect the precision of adaptation to an inter-
mediate optimum? As with directional selection, there are general
constraints on adaptation that are insensitive to gene interaction—
even when the underlying adaptive landscape supports many local
fitness peaks.

First, consider how accurately selection can keep the population
mean near to some optimum. Assume that fitness falls away from the
optimum as a Gaussian function, exp ð�ðz � zoptÞ2=ð2VsÞÞ, of the
individual trait value. Then, the mean moves towards the optimum at
a rate ∂tz ¼ �ðz � zoptÞVA=V s, and fluctuates because of random
sampling, with variance. E½dz2� ¼ VA=Ne When very many loci affect
the trait, the genetic variance evolves slowly, and hence VA can be
taken as constant. Therefore, the variance of the mean around the
optimum is varðzÞ ¼ E½dz2�=ð2VA=V sÞ ¼ V s=ð2NeÞ, and the loss of
fitness due to this variation is 1/(4Ne) (Lande, 1976). The argument
extends to multiple loci, predicting a loss of mean fitness of 1/(4Ne)
per trait. This seems to set a strong constraint on the number of traits
that can be kept near their optima, despite random drift. Crucially, the
argument applies even if there is epistatic variance for the trait: both
the change in mean due to selection and the variance of fluctuations
depend on the additive component of variance that cancels from the
final expression.
This argument for the precision of phenotypic adaptation applies to

quantitative traits, and is independent of the strength of selection on
individual alleles. Kondrashov (1995) has made a related argument for
the loss of fitness because of the random fixation of deleterious alleles
for which Nes~1, and Lynch and Hagner (2015) have argued that
adaptation is limited by the requirement that selection on each allele
be stronger than drift (that is, Nes ≳1). However, Charlesworth
(2013a, b), points out that these arguments do not apply to polygenic
traits under stabilising selection: a trait can be kept near its optimum
even when it depends on very many sites, such that the selection on
each is much weaker than random drift. Indeed, this is the assumption
on which the infinitesimal model is based (Robertson, 1960). Never-
theless, random drift does limit the effectiveness of selection, regard-
less of Nes on individual alleles. Taken at face value, the ‘drift load’
seems to limit the number of independently selected traits to ~ 4Ne.
The same result can be derived in a more concrete way by using

stationary distribution of Wright (1938) for allele frequencies:

cðpÞ ¼ 1

Z

�Y
i

p4 Nem�1
i q4 Ne v�1

i

�
W

2 Ne

¼ 1

Z

�Y
i

p4 Nem�1
i q4 Ne v�1

i

�
exp �Ne

V s
z � zopt
� �2 � Ne

V s
VG

� �

ð1Þ
This assumes (as throughout this paper) linkage equilibrium,

biallelic loci and mutation at rates μ and ν to alleles P and Q,
respectively. Z is a normalising constant. Mean fitness only depends on
the mean and total genetic variance of the trait, VG. We can therefore
average over allele frequencies, conditional on these, obtaining the
joint distribution of the mean and genetic variance:

c� z;VG½ � ¼ 1

Z� c
�
N z;VG½ � exp �Ne

V s
z � zopt
� �2 � Ne

V s
VG

� �
ð2Þ

where c�
N is the neutral distribution of fz;VGg (Barton, 1989). We

can go further, and find the stationary distribution of the trait mean by
integrating out the genetic variance:

c�� z½ � ¼ 1

Z�� c
��
N ½z� exp �Ne

V s
z � zopt
� �2� �

ð3Þ

where c��
N ðzÞ is the distribution of the mean in the absence of any

selection on the mean, but including selection against the variance. By
assuming that the variance of the mean when selection on the mean is
relaxed is much larger than the variance of the adaptive landscape, W
(that is,

R ðz � zoptÞ2c��
N ðzÞdzbV s), we immediately find that

Figure 3 The effective dimension of trait variation in short versus long term.
Left: the fraction of variance explained by the largest 1, 2, …, eigenvectors
for 10, 100, 1000 traits (black, blue, red, top to bottom), measured in the
final generation. Right: the same, but for a population that contains all
mutations that fixed over 50 000 generations (that is, an F2 between the
ancestral and derived population). An additive infinite sites model was
simulated, with free recombination, stabilising selection exp(− |z|2/(2Vs)),
Vs=100, N=100 haploid individuals, and mutation rate U=0.1 per
genome per generation. Mutations have magnitude |α| drawn from an
exponential with mean 1 with random direction. In these simulations, the
variance of each trait mean around the optimum is close to the predicted Vs/
(2N)=0.5, causing a loss of fitness 1/(4N)=0.0025 per trait. A full colour
version of this figure is available at the Heredity journal online.
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varðzÞBV s=ð2NeÞ, just as derived above by a purely phenotypic
argument. Again, we have made no specific assumptions about the
relation between genotype and phenotype: the load due to random
fluctuations of the mean away from the optimum is independent of
the genetic variance and its components.

Variance around the mean
Adaptation depends on individuals being close to the optimum, not
just on the population mean being close. Specifically, under Gaussian
stabilising selection the loss of fitness due to genetic variance around
the population mean is ~VG/(2Vs). To find VG and its components, so
as to understand how epistasis affects the genetic load, we must make
assumptions about the maintenance and genetic basis of trait
variation. When mutation rates per locus are low, the alleles that
contribute genetic variance are rare, and hence the effects of new
mutations are larger than the genetic s.d. at each locus. Though there
has been considerable debate, the consensus is that this is typically the
case (Turelli, 1984; Johnson and Barton, 2005). Rare alleles evolve
approximately independently of each other, and hence rather than
considering a continuum of alleles, we can assume two alleles
per locus.
There has been much debate recently over what fraction of variance

in complex traits is due to rare versus common alleles (see, for
example, Robinson et al., 2014). This is a different question, which
asks whether an individual allele that contributes variance is typically
at (say) 0.1, 1 or 20%. In contrast, theoretical results on maintenance
of variation depend on the distribution of effects at a locus, the
question being whether there is typically a common ‘wild type’, with
variation being because of one or more rare alleles, or instead, many
alleles with a continuous distribution of effects. Under the ‘con-
tinuum-of-alleles’ model, every allele is rare.
The classical model for the maintenance of trait variation through a

balance between mutation and stabilising selection assumes low
mutation rates and additive effects, and goes back to Fisher (1930)
and Wright (1935). In an infinite population, assuming that the mean
is at the optimum, and that selection is stronger than mutation, the
equilibrium genetic variance is VG=VA=2UVs, where U ¼ 2 Simi is
the genomic mutation rate. The loss of fitness because of mutation is
therefore just U, consistent with Haldane's Principle (Haldane, 1927).
Although trait variance is entirely additive under this model, there is

strong epistasis for fitness: an allele that increases the trait is favoured
only if the trait is below the optimum. Many combinations of alleles
can come close to the optimum, and hence there are very many stable
equilibria. If alleles have equal effects, equilibria may deviate from the
optimum, and have substantially inflated genetic variance, well above
the simple prediction VA= 2UVs (Figure 4, top). Thus, it would seem
that the rugged fitness landscape generated by epistasis for fitness
impedes adaptation by inflating variance around the optimum. Such
trapping of populations at inferior local optima motivated the ‘shifting
balance’ theory of evolution of Wright (1931).
This simple model of equal allelic effects and an infinite population

is misleading, however. When allelic effects are broadly distributed,
there are still many alternative equilibria, but these have more similar
properties, with mean close to the optimum and a genetic variance
that is close to the naive prediction, 2UVs (Vladar and Barton, 2014;
Figure 4, bottom). Here, the genomic mutation rate, U, is summed
over an effective number of loci that have effects higher than a critical
value of

ffiffiffiffiffiffiffiffiffiffiffi
8mV s

p
; thus, the genetic variance is lower, to the extent that

some loci have effects below this threshold (Figure 4). Moreover, in a
finite population, populations can readily shift between adaptive peaks,
provided that Nes for individual alleles is not too large; as we have

seen, relatively strong drift at individual loci is compatible with precise
adaptation of the mean. Thus, we can use simple quantitative genetic
models, even when there is strong underlying epistasis for fitness, and
a rugged fitness landscape.

Epistasis allows the genetic variance to evolve. With a strictly additive
trait, the mutational variance is fixed, and the genetic variance
maintained around any particular ‘adaptive peak’ is the same. In
contrast, if there is epistasis for the trait, this gives a flexibility to the
genetic system that allows the evolution of robustness to mutation
(Wilke et al., 2001; Hermisson et al., 2003; Jones et al., 2007). Allelic
effects now depend on the genetic background, and we may expect
that under stabilising selection, they will evolve to lower values. This
will lead to a reduction in both the additive variance generated by
mutation, Vm, and the standing additive variance, and hence will
increase fitness. However, epistasis itself generates additional non-
additive variance, and hence it is not obvious how the overall fitness
will be affected by epistasis. We explore this issue in the following
paragraphs, where we consider stabilising selection on a trait with an
arbitrary genetic basis.

Figure 4 Adaptation on a rugged landscape. Each panel plots the genetic
variance against the trait mean for an additive trait under stabilising
selection towards an optimum at zero; fitness is exp (−Sz2/2), with
S=0.005. There are 100 loci each with two alleles and symmetric mutation
μ=0.0005. Populations are evolved for 104 generations from an initial
β distribution with variance Fpq, with F=0.5, p=0.1, 0.5, 0.9 (black, blue,
grey). Large dots show the final state for an infinitely large population (100
replicates), whereas small dots show results for a diploid population of
N=3×104 individuals. The upper panel is for equal effects (γ=1) and the
lower panel for unequal effects, drawn from an exponential distribution with
mean γ=1. A full colour version of this figure is available at the Heredity
journal online.
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First, consider very low mutation rates (4Neμ≪1) so that popula-
tions are near fixation for a single genotype. The stationary distribu-
tion is proportional to W

2Ne , and will simply be concentrated around
those genotypes that most closely match the optimum. As the
mutation rate increases, the distribution will still be concentrated
around these genotypes that are associated with higher mean fitness,
but selection now favours lower trait variance as well as proximity of
the mean to the optimum. Alleles with effect that outweighs mutation
reduce mean fitness by an amount equal to the mutation rate,
independent of their marginal effect, and hence at first one might
think that only the distance of the predominant genotype to the
optimum matters, and not the effects of variance away from that
genotype. However, under stabilising selection Vs, alleles with marginal
effect smaller than

ffiffiffiffiffiffiffiffiffiffiffi
8mV s

p
are held at intermediate frequency by

mutation, causing a smaller load, and are hence more probable under
the stationary distribution (Vladar and Barton, 2014). In addition, the
load decreases below the mutation rate in the presence of negative
epistasis (Kimura and Maruyama, 1966). For these two reasons,
populations tend to evolve towards genotypes with smaller additive
effects, and as a result, the mutational variance Vm decreases.
Figure 5 illustrates these points, using deterministic simulations of

the model of sparse pairwise epistasis from Figures 1 and 2.
As mutation rates increase, variance around the optimum increases,
and allelic effects evolve so as to reduce the additive variance (top
panel, middle line). However, epistatic variance increases with μ2, and
predominates for high mutation rates (top panel, lower line). In this
example, these two effects compensate precisely, so that the total
genotypic variance is indistinguishable from that in an additive model
with the same initial allelic effects (top panel, upper line). The lower
panel shows the variance of allelic effects, which is proportional to Vm.
When mutation rates are low, these increase slightly over time (lower
panel, left), but with high mutation rates, allelic effects decrease (lower
panel, right). Despite the evolution of some robustness, epistasis does
not increase mean fitness overall, but may have consequences for
further adaptation if the optimum shifts.
Hermisson et al. (2003) studied a similar model of pairwise

epistasis, but allowing a continuum of allelic effects. Their determi-
nistic analysis showed that epistatic selection necessarily acts to
decrease the additive variance, but that the mutational variance may
nevertheless increase. Loci with higher mutation rates are under
stronger selection to reduce additive effects, but loci with lower
mutation rates may become less buffered. Thus, ‘canalization’ does not
necessarily evolve in such models of random pairwise epistasis. Jones
et al. (2007) consider a different model, involving multiple traits, and
analysing a modifier that alters the genetic correlation. Such modifiers
allow the evolution of strong correlations that reduce the net genetic
covariance and hence increase mean fitness under stabilising selection.
Overall, it is not clear how readily epistasis can allow evolution of
robustness that increases mean fitness, and that can therefore be
considered an adaptation for robustness. This depends on the nature
of epistasis that is allowed: random pairwise interactions or interac-
tions that systematically modify robustness.

LIMITS TO SELECTION

Mean fitness
Is the number of degrees of freedom that can be optimised by
selection inevitably limited by the effective population size? Just as for
the mutation load in a sexual population (Kimura and Maruyama,
1966; Kondrashov, 1988), negative epistasis for fitness can greatly
reduce the ‘drift load’. To understand how this apparently general
limit can be evaded, consider a simple model in which fitness depends

only on the Euclidean distance, r, from an optimum. This is similar to
Fisher’s ‘geometric model’ (Fisher, 1930; Orr, 2000), except that we
consider populations of individuals, rather than an adaptive walk
between fixed states. The distance, r, can be treated as a quantitative
trait with an approximately normal distribution within populations.
Crucially, we expect that when there are very many degrees of
freedom, individuals will almost all be a substantial distance away
from the optimum, even if in widely different directions. The
stationary distribution of r under the influence of selection, mutation
and random drift depends on how selection eliminates the least fit
individuals. Figure 6 compares quadratic stabilising selection with
truncation selection, the most extreme form of negative epistasis. With
quadratic selection, the loss of fitness due to mutation and random
drift increases in proportion to the number of traits: any number of
traits can be kept close to the optimum, but at the cost of a decreasing
mean fitness. With truncation selection, the load also increases with

Figure 5 Evolution of the additive variance under stabilising selection in the
presence of epistasis. Top: variance components are plotted against the
mutation rate, μ, for the epistatic model (solid lines show the mean, and
grey areas the s.d.). The upper line shows the total genotypic variance, VG,
that is the sum of additive and nonadditive components (middle, lower
lines). This is compared with the variance, V �

A, under the corresponding
additive model, starting from the same allele frequencies and the same
additive effects; this is indistinguishable from VG (upper line). The (small) s.d.
among 10 replicates is indicated. Bottom: the variance of additive effects at
the beginning and end; this is proportional to the mutational variance V �

m.
Fitness is 1− z2/(2Vs), Vs=5. The trait, z, is the sum of exponentially
distributed main effects plus random pairwise interactions. There are
M=1000 biallelic loci, but otherwise parameters are as in Figures 1 and 2.
A single realisation of the genetic architecture is used with 10 replicates
for each mutation rate starting from allele frequencies drawn from a
β-distribution with mean=0.2 and variance 0.2. Simulations are
deterministic and run for 50 000 generations. Linkage equilibrium is
imposed, so that only allele frequencies are followed.
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the number of selected traits, but is an order of magnitude smaller
(Figure 6). This is essentially the same argument as made by
Kondrashov (1988) for the mutation load in a sexual population.
As more generally for these kinds of ‘load’ argument, one can ask

why selection should act in this special way, systematically to reduce
the load (Kimura, 1983), and whether it in fact does so. Note that if
population size were to change, then the load would remain low only
if there were a steep gradient of mean fitness with respect to r2, at the
current value. Evasion of the load requires some kind of frequency
dependence (for example, because of competition), such that the steep
gradient in mean fitness coincides with the position of the population.

Information gain as a measure of the effect of selection
The genetic variance in fitness may pose a more robust constraint on
the effectiveness of selection, as it is a quantity that can be measured
on an actual population, and is clearly limited by reproductive
capacity. We can ask, for a given variance in fitness, how many alleles
can be substituted, how far the trait mean can be changed and how
many traits can be kept close to their optimum. To make these
questions precise, we need a common measure that applies to both
discrete genes and continuous traits.
The increase in mean fitness is not a satisfactory measure for several

reasons. Absolute fitness must remain close to 1 if the population is to
survive. The component of fitness increase due to selection on allele
frequencies is, according to the ‘Fundamental Theorem’ of Fisher
(1930), precisely equal to the additive genetic variance in fitness,
leading to a circular argument; in any case, the increase in mean fitness
because of selection does not necessarily reflect progressive change.
More fundamentally, fitness differences are the forces that drive
adaptation and should not be used to measure its outcome.
An obvious measure, which generalises to both discrete and

continuous variation, is the mutual information of the actual prob-
ability distribution, ψ, compared with the neutral distribution in the
absence of selection on the mean, ψN (Mustonen and Lässig, 2010).
This is also termed the Kullback–Leibler divergence of the selected

from the neutral distribution:

J ¼ E H½ � where H ¼ log
c
cN

� �
ð4Þ

Here, H is the log probability of a given state, relative to its
probability in the absence of selection. ℐ is a measure of information
that can also be thought of as a negative entropy; Iwasa (1988) and
Barton and Vladar (2009) define entropy as SH=−ℐ. Here, we
choose to include the effect of mutation in the baseline distribution,
ψN, whereas Iwasa (1988) and Barton and Vladar (2009) kept it
separate.
This information gain, ℐ, measures the degree to which the

distribution of states of the population is concentrated around a
particular state. In itself, ℐ is independent of whether the evolved
states are more or less fit, though we expect selection to tend to pick
out fit states. Rather, it is a measure of the improbability of the actual
outcomes in the absence of selection. If the population is certain to be
in some particular state, then ℐ is minus the log probability of that
state being reached by neutral evolution.
This information measure applies to quantitative traits as well as to

discrete alleles. If the trait follows a normal distribution, then the state
of the population is described by its mean and variance ðz;V gÞ,and
ℐ measures the change in the distribution of these variables because
of selection. For simplicity, assume that the distribution of the
variance is not affected by selection (that is, the infinitesimal limit),
and further assume that the trait mean follows a Gaussian, with
expectations E½z�; EN ½z� and variance v, vN under selection and in its
absence. Then:

J ¼ 1

2
log

VN

V

� �
� 1þ V

VN

� �
þ E z½ � � EN z½ �ð Þ2

2VN
ð5Þ

The first term depends only on the factor by which selection has
changed the variance of the mean; it is always positive, and increases as
1/2 log [vN/v] for v≪vN. The second term is also positive, and is
proportional to the squared change in expected mean caused by
selection relative to the neutral variance, vN.
The gain in information because of selection can be calculated from

the distribution of allele frequencies or from the distribution of trait
means and variances. What is the relation between these two versions?
At a stationary state, Wright’s distribution is simply the product of the
neutral distribution, and W

2Ne (Equation (1–3)). Therefore, ℐ is the
same, whether measured from allele frequencies or from the distribu-
tion of the quantitative traits that determine fitness. This is a
consequence of the fact that the distribution of allele frequencies
conditional on mean fitness is independent of selection under Wright’s
distribution. When the population is not drawn from a stationary
distribution, the equivalence of the two measures of ℐ is not exact.
However, because the distribution of allele frequencies remains close
to the stationary form even when rapidly evolving (Barton and Vladar,
2009), the measures are likely to be close to each other. (Note that
throughout this section, we have ignored linkage disequilibrium; this
will be valid when selection is weak relative to recombination).

Information gain for a given variance in fitness
The simplest example is the substitution of a single allele under
constant directional selection; we will see that this readily generalises
to the change in mean of a quantitative trait under directional
selection. Here, I show that for a given fitness variance, the
information gain is maximised when selection is weak relative to
random drift.

Figure 6 Comparison between quadratic and truncation selection on the
deviation from a multitrait optimum. The left panel shows the distribution of
distance from the optimum, r, for n=3, 10, 30, 100 traits (left to right),
under quadratic stabilising selection; the upper curve shows the fitness, exp
(− (S/2) r2). The right panel shows the same, but for truncation selection in
which only individuals with ro2 reproduce. Simulations are of 100 haploid
individuals, each with 100 unlinked loci; alleles have continuously
distributed vectors of effects. The trait is the sum of effects of each locus.
Mutation rate is 0.001 per locus, and adds a random Gaussian with s.d.
σ=0.1 for each trait. Results are averaged over generations 4000 to
20 000. Under quadratic stabilising selection, the reduction in mean
fitnesses is 0.014, 0.046, 0.127 and 0.318 for 3,…, 100 traits. In
contrast, under truncation selection the loss of mean fitness (that is, the
fraction of offspring with r42) are 0.00247, 0.00642 and 0.0269 for 3,
10, 30 traits. With 100 traits under truncation selection, the population
does not equilibrate: loci fix deleterious alleles, leading to a decline in
fitness through Muller’s Ratchet.
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Suppose that the allele starts in enough copies to evolve determi-
nistically (Nes p0441). Then, it is certain to fix under selection,
compared with a neutral probability of fixation p0. The ultimate gain
in information is therefore log (1/p0). This was first pointed out by
Kimura (1961), who showed that it equals the ‘cost of selection’ of
Haldane (1957)—the total loss of mean fitness because of slowly fixing
a favourable allele by selection rather than immediately establishing
the fittest allele. Kimura (1961) argued that this cost limits the rate of
adaptation, and estimated a maximum gain of 108 bits on the
vertebrate lineage since the Cambrian.
However, as with other such arguments from the genetic load, it

can be alleviated if there is negative epistasis—or in the most extreme
case, truncation selection. Suppose that in every generation, the fittest
fraction θ is selected. Then, every rare allele will increase by a factor
1/θ, and will quickly rise to high frequency; in a sexual population,
recombination then combines these alleles to assemble the fittest
genotype. (With asexual reproduction, different favourable alleles
compete, and the ‘cost of selection’ is not alleviated by epistasis;
Worden, 1995. To a lesser extent, linkage disequilibrium will also
reduce mean fitness). With truncation selection, or similar schemes
with negative epistasis, the rate of adaptation is limited by the variance
in reproductive success, rather than by the mean fitness, relative to the
optimal genotype.
In the simplest case, of constant selection on a single allele, the total

variance in fitness during a substitution is
RN
0 2s2pqdt ¼ 2

R 1
p0 sdp ¼

2sq0B2s for p0oo1. Thus, the gain in information for a given fitness
variance is greatest when selection is weak. However, when selection is
so weak that drift becomes significant, favourable alleles may be lost,
and the information gain decreases below log (1/p0). Appendix A
shows that the expected information gain per fitness variance is
maximised in the infinitesimal limit, tending to Ne/2 as Nes–40.
This argument extends to directional selection on an additive trait;

with a selection gradient β, an allele with effect γ on the trait
experiences selection s= βγ. This scenario is essentially that considered
by Robertson (1960): individual alleles evolve almost neutrally, but
overall there is an excess of favourable over unfavourable substitutions.
The overall ratio of ℐ/VW(a) will be a mixture across strongly and
weakly selected substitutions. Starting from a poorly adapted state, the
mean fitness will increase in proportion to the variance in fitness, but
ℐ will increase more slowly, as weakly selected variants start to
contribute to adaptation. Ultimately, the trait mean, and hence the
mean fitness, will increase as a result of more strongly selected alleles,
yet the net change in allele frequencies, as measured by ℐ, may be
because of much more weakly selected alleles.
Watkins (2002) gives a similar argument, justifying information as a

measure of adaptation, and showing that the amount of information
that can be maintained in a balance between mutation and truncation
selection is much greater when a wide range of genotypes are fit than
when specific genotypes are selected. This advantage only exists under
sexual reproduction; Peck and Waxman (2010) lay out this argument
in more detail.
The same result can be derived more directly by considering the

quantitative trait under the infinitesimal model. With a selection
gradient β, the variance in fitness is β2 Vg. The variance of the trait
mean, v, increases as a result of random drift, but independent of
directional selection; thus, v= vN in Equation (5), and
J ¼ ðE½z� � EN½z�Þ2=ð2VNÞ. The additive variance decreases by a
factor (1− 1/(2Ne)) per generation (assuming diploidy), whereas the
variance of the mean increases by V t

a=Ne. Therefore, v= vN= 1/Ne.
The expected mean increases by bV t

a in each generation or b
Pt�1

i¼0 V
i
a.

Therefore, J ¼ Neb
2ðPt�1

i¼0 V
i
aÞ=2 ¼ Ne V tot

WðaÞ=2, where V tot
WðaÞ ¼

b2ðPt�1
i¼0 V

i
aÞ is the total fitness variance, summed over the whole

time course. We see that the rate of information gain per generation is
just (Ne/2) times the additive fitness variance, exactly as found by
considering individual alleles. This is higher by a factor ~Ne than the
limit set by the ‘cost of selection’ (Kimura, 1961).
How does epistasis affect this argument? At the level of individual

substitutions, the problem seems very difficult, as the fixation
probability depends on a marginal selection that changes through
time as the genetic background changes. However, in the infinitesimal
limit, we can take the variance components to be constant. The same
argument carries through, except that the rate of information gain
because of selection on the trait mean depends on the additive
variance, whereas the genetic variance in fitness includes epistatic
components. Therefore, epistasis reduces the information gain under
directional selection. This argument is close to that made by Paixao
and Barton (2016), in their extension of the selection limit of
Robertson (1960).

A general bound on the rate of accumulation of information
It is hard to find results for stochastic processes that are far from their
stationary state; even in physics, progress has been surprisingly recent.
A remarkably general result, which applies to complete histories of
dynamical systems, was derived by Jarzynski (2001) and Crooks (1998,
2000). Mustonen and Lässig (2010) apply this relation to population
genetics to show a very general relation between the net response to
selection, measured by the ‘fitness flux’, Φ, and the concentration of
populations into states that would be highly improbable in the absence
of selection, as measured by H:

E exp �2NeFþ DH½ �½ � ¼ 1 where F �
Z T

0

X
i

si
dpi
dt

dt ð6Þ

for a haploid population. The expectation is over all paths between
arbitrary start and end points. (There is a pervasive factor of two error
in Mustonen and Lässig (2010) that is corrected here; Appendix B).
This equation applies with epistasis: the selection coefficients si are
then the marginal selection on each allele, and depend on the changing
genetic background.
Because E½e�x�Ze�E½x�, this implies that:

2NeE½F�ZE½DH� ¼ J
(Mustonen and Lässig, 2010, Equation (5)). In the special case

where selection can be described by a constant adaptive landscape
(that is, if genotype fitnesses are fixed), the fitness flux is equal to the
log mean fitness: F ¼ log ðWÞ. If we also assume that the neutral
process is constant, Equation (7) then corresponds to the result of
Iwasa (1988), which defined a ‘free fitness’ that never decreases. Thus,
Mustonen and Lässig (2010) have generalised the analysis of Iwasa
(1988) to allow for fluctuating adaptive landscapes, and for cases
where the dynamics cannot be described by any potential function.
The fitness flux, Φ, is the net increase in fitness that would occur if

changes in genotypic fitness over time were ignored. It measures the
extent to which allele frequencies change in the direction favoured by
selection, and corresponds to the total work done on a physical system
(that is, to the integral of force times displacement). We can
understand the fitness flux by separating the change in allele frequency
into components due to selection, mutation and drift. The change due
to selection on allele frequencies is Δs pi= si pi qi, which contributes
s2i piqi to the fitness flux in haploids. This is just the partial change in
mean fitness identified by the Fundamental Theorem of Fisher (1930),
and is equal to the additive genetic variance in fitness in a haploid
population, VW(a). Changes in allele frequency due to mutation and
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drift also contribute to the fitness flux. These do not depend directly
on the effects of the allele on fitness, but if the population is well
adapted, we expect them typically to make a negative contribution to
the fitness flux. Mutation and drift are expected to interfere with
selection, and to reduce the fitness of a well-adapted population.
The fitness flux is not a practicably observable quantity: it is the sum

over the selection on, and the change in frequency of, every allele.
However, if the variance in fitness is generally larger than the fitness
flux, that sets a more useful bound on the rate of gain of information:

2 NeE

Z T

0
VwðaÞdt

� �
\2Ne E F½ �ZE½DH� ¼ J ð7Þ

This is not an exact result: if a population is initially in an unusually
maladapted state, then mutation or drift may tend to increase fitness,
in which case the fitness flux would be larger than the variance in
fitness. However, to the extent that populations are well adapted, so
that forces other than selection tend to degrade fitness, the product of
population size and additive variance in fitness sets an upper bound to
the rate at which selection can accumulate information, regardless of
the degree of epistasis or fluctuations in selection.
Figure 7 shows an example in which selection on one of two alleles

is either increased abruptly to a constant value (left), or gradually
(right); the inequality (8) holds in both cases. With an abrupt increase,
the distribution moves to a new stationary state, leading to an increase
in information, and a larger increase in total fitness flux (red and blue
curves, respectively). The total fitness variance is always higher than
the fitness flux, and continues to increase even after a stationary state
has been reached. If selection increases gradually (right), the increase
in information approaches the fitness flux; these two become equal if
selection changes sufficiently slowly (Mustonen and Lässig, 2010). The
total fitness variance is always higher and continues to increase.
The previous section showed that the increase in mean of an

additive trait under directional selection leads to an increase in
information equal to Ne/2 times the total variance in fitness; this
holds for both haploid and diploid populations. The inequality (8)
necessarily still holds, but the fitness flux no longer approaches the
increase in information as selection is changed gradually. This is
because neither the distribution under selection nor the neutral
distribution with which it is compared are stationary: the variance
in mean keeps increasing.

DISCUSSION

Epistasis in the infinitesimal limit
The argument set out here is that though the mapping from genotype
to phenotype is complex, with strong interactions between many
genes, the evolution of complex traits may nevertheless be approxi-
mated by just a few parameters, using an extension to the infinitesimal
model. This approximation requires three assumptions: that many
genes affect each trait; that the range of trait variation is narrow
relative to what is possible in the current population; and that
interactions are not systematically biased with respect to the direction
of selection. Then, trait evolution depends on just a few variance
components that are hardly influenced by selection, at least assuming
free recombination. On this view, the complexities of epistasis are
limited in two ways: (1) they are absorbed into a few variance
components, and (2), of these, the additive component typically
dominates.
Epistasis can sustain multiple ‘adaptive peaks’ that can trap

populations in suboptimal states. However, when selection on each
allele is comparable to drift (that is, Nes≲1), random fluctuations allow
populations to evolve more or less freely across rugged landscapes.
Crucially, multiple traits can still be kept close to their optima, even
when drift dominates selection on individual alleles (Kimura, 1965;
Charlesworth, 2013a, b). In this infinitesimal regime, epistasis does
influence the response to directional and stabilising selection, but its
effects are limited by the typically modest magnitude of the non-
additive variance. Specifically, the effective population size limits the
total response to both directional and stabilising selection: a selection
gradient, β, causes a total change Neβ for haploids (Robertson, 1960;
Paixao and Barton, 2016), whilst random drift causes a variance of the
mean around the optimum Vs/(2Ne), hence reducing mean fitness by
1/(4Ne).
In principle, quantitative trait locus mapping, and genome-wide

association studies allow us to identify interactions between alleles as
well as their marginal (that is, additive) effects. However, estimates of
epistatic interactions are hard to validate. More important for the
argument here, strong interactions among loci may have little effect in
aggregate. This point is illustrated by the contrasting analyses of Weber
et al. (1999) of the same cross between populations of Drosophila
selected for different wing shape. A model of 11 interacting loci with
strong interactions fit best, yet because these interactions varied in
sign, the overall data fit closely to an additive infinitesimal model.
Though classical quantitative genetics allows epistasis and dom-

inance to be described by higher-order variance components, which
remain approximately constant in the infinitesimal limit, the simpler
additive model is often adequate. For example, a large meta-analysis of
twin studies in humans found 69% of cases to be consistent with
additivity (Polderman et al., 2015). There are strong theoretical
arguments that even when the underlying genes interact strongly,

Figure 7 Each plot shows the increase in information, the fitness flux
multiplied by 2N, and the cumulative variance in fitness, multiplied by 2N
(red: ΔH, blue: 2N Φ, black: 2N V). Initially, the population is in the
stationary state, with μ=0.0025 and a haploid population of N=50. The
left plot shows an abrupt increase in selection to s=0.05, whereas the right
plot shows a linear increase from s=0 to s=0.05 over 10 000 generations.
In both examples, the increase in information (red) is smaller than the
fitness flux (blue) that in turn is smaller than the cumulative variance in
fitness (black). However, the increase in information is closer to the upper
bound set by fitness flux when selection increases gradually. Numerical
values are calculated using the Wright–Fisher transition matrix. A full colour
version of this figure is available at the Heredity journal online.

Figure 8 The gain in information, ℐ, and the expected total heterozygosity,
E ½RN

0 2pqdt �=ð2NeÞ, plotted against initial allele frequency, p0 (left and
middle respectively). The right plot shows the ratio between the information
gain and the expected total fitness variance. Selection strength is
4Nes=α=0.125, 0.25,…, 8 (black…red). In the limit α→0, the scaled
ratio tends to 1/16, independent of p0. A full colour version of this figure is
available at the Heredity journal online.

Epistasis and the limits to selection
NH Barton

104

Heredity



most variance is additive (Hill et al., 2008). In particular, deleterious
mutations are rare, and rare alleles necessarily contribute mostly
additive variance. Huang et al. (2012) argue that there is widespread
epistasis for behavioural traits in Drosophila. However, their estimates
are for variance among inbred lines, rather than an outcrossed
population, which amplifies nonadditive variance. Variation in esti-
mated allelic effects across backgrounds may also be because of
statistical error rather than epistasis (Maki-Tanila and Hill, 2014, pp
363–364).
The infinitesimal limit depends implicitly on selection being weak

relative to random drift (that is, Nes≲1). This is plausible for artificially
selected populations of a few hundred individuals that are selected for
up to a hundred generations (Hill and Kirkpatrick, 2010). Indeed, the
review of Weber and Diggins (1990) of laboratory selection experi-
ments found the selection response over 50 generations to be
remarkably close to the infinitesimal prediction of Robertson (1960).
However, the strength of selection relative to drift in natural
populations remains obscure—despite intense debate during the last
decades of the previous century, and despite the present abundance of
sequence data (Kimura, 1983; Hey, 1999). The following section
briefly summarises the various lines of evidence on the strength of
selection on traits and on the underlying alleles.

The strength of selection relative to drift
First, consider selection on traits. Direct estimates of directional and
stabilising selection, made by correlating trait values with fitness
components, typically give strong values. The survey of Kingsolver and
Diamond (2011) of 143 studies found an average directional selection
gradient of 0.08 on survival, 0.19 on fecundity and 0.17 on mating
success, standardised relative to phenotypic s.d. Stabilising selection is
also typically strong but, surprisingly, is as often negative (that is,
disruptive) as positive. Larger studies gave systematically smaller
estimates, suggesting that publication bias may inflate estimates
(Kingsolver et al., 2001). In addition, long-term studies find that trait
means often remain constant, despite high heritability and strong
directional selection (see, for example Kruuk et al., 2002). Never-
theless, despite these difficulties, traits do typically seem to be
associated with strong fitness differences. This seems paradoxical: it
is hardly conceivable that all traits are strongly selected. Possibly,
measured traits are correlated with a small number of strongly selected
traits, such as body size (Barton, 1990). The problem can be stated
more precisely by considering the matrix of stabilising selection on the
multivariate phenotype: the leading eigenvalues of this matrix may be
large, yet the bulk of eigenvalues may be far smaller (Walsh and Blows,
2009). Long-term stability of the phenotype implies that there must be
some net stabilising selection, but this is in practice impossible to
measure directly and might be very weak for the great majority of
degrees of freedom.
How strong is the selection on the alleles responsible for trait

variation? It is difficult to identify such alleles, let alone directly
measure their effect on fitness. However, several indirect approaches
can be used. If genetic variation is maintained by a balance between
mutation and selection, then the strength of selection against
deleterious mutations can be estimated from the ratio between the
rate of increase of additive variance due to mutation and the standing
genetic variance, VA

m/Vg. This suggests selection coefficients of s~10− 3

or more, estimates being remarkably consistent across diverse traits
and species (Lynch and Walsh, 1998; Johnson and Barton, 2005).
Decades of classical work on Drosophila has applied essentially this
approach to fitness components such as female fecundity and larval
viability. Charlesworth (2014) reviews this work, and concludes that

the selection on the mutations that sustain fitness variance is relatively
strong, averaging a few percent. The difference between estimates for
quantitative traits in general and fitness components is to be expected:
if alleles have a random vector of effects on traits, the mean selection
against alleles contributing to fitness variance will be stronger than that
on arbitrary traits. Charlesworth (2014) also concludes that genomic
mutation rates are not high enough to explain observed levels of
fitness variance, suggesting a substantial component contributed by
balancing selection.
The distribution of fitness effects of deleterious mutations can also

be estimated by comparing the frequencies of putatively selected alleles
with a neutral baseline. This approach is sensitive to demography,
though that is to some extent controlled by the comparison between
neutral and selected variants within the same population. In a
Rwandan population of Drosophila melanogaster, thought to have a
stable history, a broadly log-normal distribution was estimated, with
mean selection s~10− 3 against non-synonymous mutations
(Kousathanas and Keightley, 2013; Charlesworth, 2014). This low
value appears inconsistent with estimates from Vm/Vg for fitness
components of a few percent. However, the estimates can be
reconciled if some of the mutation load is due to a different class of
mutations that are strongly selected—for example, transposable
elements (Charlesworth, 2014). In any case, selection coefficients of
s~10− 3 are strong relative to random drift, in all but the sparsest
species: for example, Ne for the D. melanogaster example above was
estimated from synonymous diversity as ~ 7× 105, so that Nes~680.
These indirect estimates, whether based on Vm/Vg or on the allele

frequency spectrum, give the selection against deleterious mutations.
Positive selection can be detected from an excess of nonsynonymous
divergence relative to polymorphism (McDonald and Kreitman,
1991), or from the reduction in diversity around a selective sweep
(Maynard Smith and Haigh, 1974). The former method does not give
an estimate of selection strength, whereas reduced diversity may be
because of deleterious mutations (‘background selection’) as well as
positive selection. However, diversity is lower in regions of reduced
recombination, and it is also lower around nonsynonymous substitu-
tions. Elyashiv et al. (2016) use these patterns of diversity and
divergence in D. melanogaster to fit a model that includes the
distribution of fitness effects of both deleterious mutations and
adaptive substitutions. They find that both processes substantially
reduce neutral diversity across the genome. The estimated selection on
deleterious mutations is ~ 10− 1.5, similar to the values estimated from
Vm/Vg; however, the estimated mutation rate is excessive, suggesting
that the patterns attributed to background selection may be partly
because of other forms of linked selection. The reduction in diversity
around nonsynonymous substitutions leads to estimates of positive
selection: a small fraction of substitutions are driven by moderately
strong selection (~10− 3.5), whereas the bulk are estimated to be under
much weaker selection (~10− 6–10− 5.5).
Such indirect estimates of selection, based on the effects of linked

selection across the genome, are at best tentative; indeed, previous
estimates spanned many orders of magnitude (Sella et al., 2009). There is
a consensus that although selection against nonsynonymous mutations
spans a wide range, it is on average much stronger than drift.
However, the majority of sites under constraint are noncoding, and
likely to be under much weaker purifying selection than amino-acid
changes. Although most fitness variance may be because of mutations
with effects on fitness much stronger than drift (including most
amino-acid substitutions and transposable element insertions), most
of the functional genome might be maintained by much weaker
selection. Similarly, although we know many examples of adaptation
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due to strong selection on major alleles, and whereas most of the
fitness variance associated with adaptation may be because of alleles
for which selection is much stronger than random drift, it might still
be that most substitutions are under much weaker selection, and have
been strongly influenced by drift. In that case, many substitutions may
be of deleterious alleles, or may compensate for previous maladaptive
substitutions. Indeed, in the infinitesimal limit, there can be rapid and
precise adaptation of multiple traits through imperceptible shifts in
allele frequency distribution that could not be detected by any of the
indirect methods just discussed. This may be the case for most recent
adaptation in humans (Hernandez et al., 2011).

How many degrees of freedom can be maintained despite random
drift?
Regardless of the strength of selection on each allele, there is a robust
limit to the number of traits that can be kept close to their optima: for
every degree of freedom, fluctuations in the mean reduce mean fitness
by ~ 1/(4Ne), which would seem to limit the number of degrees of
freedom to of order effective population size. As with other such
arguments from genetic load, this limit can be evaded by a specific
form of epistasis that ensures that the loss of mean fitness relative to
the optimum is much smaller than expected from the marginal effect
of additional small deviations (Figure 6). In the absence of evidence
that this is the case, or theoretical arguments that it should evolve, this
drift load should be taken seriously.
It is important to realise that this constraint does not depend on the

amount of variation within the population. Although it can be derived
by considering a genetically variable quantitative trait, it can also be
derived from the stationary distribution of genotype frequencies
(Equation (3)) that in turn depends on the ratio between fixation
probabilities of deleterious versus favourable alleles. Therefore, the
number of evolvable degrees of freedom may be much larger than the
number of segregating alleles, which depends on the mutation rate as
well as population size: in the long term, populations can explore a
space of much higher dimension than that determined by the
currently segregating alleles (Figure 3). In the very long term, there
can be qualitative changes in what is possible (most obviously,
following ‘major transitions’ in genetic organisation; Szathmáry and
Maynard Smith, 1995); over such long time-spans, the idea of a
stationary distribution makes little sense.
An organism is described by an essentially infinite number of

variables. Clearly, the genome of a multicellular organism does not
specify the precise change in morphology and physiological activity
through development and across environments. This is most obvious
if we consider the extraordinary complexity of connections in the
brain, but even a single-celled organism has a highly complex
intracellular structure and biochemical activity that may respond to
a variety of environmental stimuli. Rather than specifying this
complexity directly, the genome regulates gene expression that in
turn influences the organism’s change through time in response to
changing conditions. However, though we cannot regard the genome
as directly specifying the organism, neither can we regard it as simply
triggering an invariant program that is determined largely by the
cellular machinery: very many features of the organism can evolve, and
indeed must do so if the species is to adapt to new conditions. The
number of degrees of freedom that can be optimised lies somewhere
between the extremes of precise and detailed specification versus
triggering an invariant program. It is intriguing that the size of the
functional genome (as measured by the amount of constrained
sequence or the number of coding genes) varies rather little between
organisms with apparently very different complexities.

To make the question more concrete, we can focus on gene
expression. An initial estimate for the number of degrees of freedom
would then be the number of genes, ∼ 2× 104 for a typical multi-
cellular eukaryote such as human or Drosophila. Clearly, gene
expression must be maintained at an appropriate level in response
to multiple stimuli, including the concentration of transcription
factors expressed during development, biochemical feedbacks and
environmental signals. In eukaryotes, the expression of alternative
splice variants must also be regulated. Thus, ‘expression’ of a single
gene is itself a complex multivariate trait that we might guess involves
at least 10 and possibly many more degrees of freedom. Of course, sets
of genes tend to be coexpressed, but to the extent that they each have
their own promoter that can evolve independently, we must still
consider every gene as having its own independent degrees of freedom.
Overall, this line of argument suggest at least 105 degrees of freedom.
Previous discussions have given far smaller estimates for the effective

number of dimensions. Kirkpatrick (2009) shows that most trait
variance may be concentrated along a few axes, so that the effective
number of dimensions (defined by the distribution of eigenvalues) is
small. Martin and Lenormand (2006, Table 2) estimate the effective
number of dimensions in which mutations act, based on the distribu-
tion of fitness effects and assuming Fisher’s geometric model. Their
meta-analysis, which gives very small values (~1) for the effective
number of dimensions, seems dubious, because it relies on the predicted
form for the distribution of fitness effects under restrictive assumptions,
and because high mutation rates for quantitative traits and large
numbers of estimated quantitative trait loci imply extensive pleiotropy
(Johnson and Barton, 2005). In any case, the drift load depends on the
total number of dimensions rather than on an ‘effective dimensionality’
that is weighted towards axes with large effect. (Martin (2014) refers to
this total as the number of ‘optimised traits’).
What happens to a population that decreases in size? The success of

domestication shows that populations of just a few hundred can adapt
well to radically new conditions (Hill and Kirkpatrick, 2010).
However, over longer timescales, it would seem that a substantial
and possibly catastrophic fitness decline must ensue, as random drift
fixes slightly deleterious mutations (Kondrashov, 1995; Lynch and
Hagner, 2015), and moves trait means away from their optima.
Charlesworth (2013a) has criticised such arguments on the grounds
that compensatory mutations prevent decline, and that stabilising
selection can be effective even when individual alleles are dominated
by drift. However, as argued above, small populations should
ultimately be unable to maintain more than ~ 4Ne traits close to their
optima. Decline is expected to be slow. Immediately after population
size falls, genetic variation will decrease, but even in the most extreme
case, will fix a genotype that is ~

ffiffiffiffiffiffi
Va

p
s.d. from the optimum, and

hence not far outside the initial range of phenotypic variation. Decline
continues more slowly, as new mutations are fixed that take the mean
ever further from the optimum. A new equilibrium is reached when
the marginal selection becomes strong enough to make fixation of
deleterious mutations unlikely (Figure 6). Thus, functional complexity
will only be lost over the timescale of molecular evolution.

Summary
Since long before there was any understanding of genetics, we have
known that artificial selection is remarkably effective; indeed, this was
one of Darwin’s strongest arguments that natural selection is
responsible for complex adaptation. The analysis of variance intro-
duced by Fisher (1918) describes an arbitrarily complicated relation
between genotype and phenotype via a series of variance components,
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yet the additive component almost always explains the bulk of
variance, and allows accurate predictions for the response to selection.
Our understanding of the underlying genetic complexity, first

through classical genetics and later through molecular biology, seems
incompatible with this simple view, and supported the long-standing
argument that epistasis constrains evolution (Wright, 1931; Wolf,
2000; Hansen, 2013). Specifically, it is argued that epistasis makes the
marginal effects of alleles unpredictable, so that selection becomes
ineffective. If epistasis is strong enough that allelic effects change sign,
then populations may be trapped at suboptimal ‘adaptive peaks’.
Related arguments for constraints on selection are that pleiotropic
allelic effects, and tradeoffs between different fitness components,
prevent response to selection. From the quantitative genetic viewpoint,
these are all arguments that there may be no additive variance for
selected traits—and are most obviously countered by the observation
that there is almost always ample heritable variance, much of it
additive. It is impossible to reject the possibility that the additive
genetic variation occupies a space of limited dimension, so that there is
indeed no additive variance in some directions. However, although the
dimensionality that can be explored by any one population is limited
by the number of segregating alleles, the space that can, in the longer
term, be explored by mutation may be much larger.
Many of these arguments are supported by models of a few

interacting loci under strong selection that typically do lead to a
rugged fitness landscape on which selection is ineffective. Here, I have
argued that if traits depend on very large numbers of loci, so that
alleles are influenced by drift as well as selection, then epistasis is no
longer a constraint: populations can escape local adaptive peaks, and
traits evolve under the infinitesimal model in which the additive
variance is not eroded by selection.
In the long term, epistasis obviously matters: separate populations

inevitably diverge, accumulate different gene combinations and
eventually become incompatible with each other, even if traits are
under the same selection. The relation between fitness and traits may
also be complex, with multiple peaks that reflect interactions between
traits. My argument is not that epistasis is irrelevant to evolution, but
rather that it does not significantly constrain the way populations
respond to selection on complex traits. Populations typically contain
abundant additive variance that allows them to follow a moving
optimum in a high-dimensional trait space.
Though gene interactions may not prevent adaptation of multiple

traits, population size sets a fundamental constraint that applies
independently of the nature of epistasis. The change in mean because
of directional selection on standing variation is proportional to Ne,
regardless of epistasis (Robertson, 1960; Paixao and Barton, 2016); a
similar argument applies when mutation sustains a continued
response that we again expect to be proportional to Ne in the
infinitesimal limit. The number of traits that can be optimised by
stabilising selection seems limited to ~4Ne by the loss of mean fitness
associated with fluctuations of each trait. If this limit could be
somehow evaded, a more robust limit is set by the variance in fitness
that is required to accumulate information. However, this more
fundamental limit is proportional to Ne VW(a) per generation, the
product of effective size and additive variance in fitness, which leaves
ample scope for the evolution of complexity. Perhaps most important,
such selection is most efficient (that is, maximises the gain in
information per fitness variance) under the infinitesimal regime.
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APPENDIX A

Information gain and fitness variance

One locus, two alleles, no mutation
Suppose that a locus is initially at p0, and is then subject to constant
selection s. It will ultimately fix one or other allele, with probabilities
cS½0� ¼ e�4Ne sp0�e�4Ne s

1�e�4Ne s cS½1� ¼ 1�e�4Ne sp0

1�e�4Ne s for the two alleles. The neutral
probabilities are just ψN[0]= q0,ψN[1]= p0:

J ¼
X1
X¼0

cS X½ � log
cS X½ �
cN X½ �

� �

¼ 1�e�ap0

1�e�a log 1�e�ap0

p0

h i
þ e�ap0�e�að Þ

1�e�a log e�ap0�e�a

q0

h i
� log 1� e�a½ �

where α= 4Nes p0.
The corresponding total variance in diploid fitness is E

R
2s2pqdt

	 

,

taking the integral over the whole time course to loss or fixation. To
find this, we find t(x;p0), the expected time spent at x, given an initial
frequency p. From Ewens (2004, 5.52–5.55), setting h= 1/2, α= 4Nes,

the unconditional values are (5.48):

t x;p0ð Þ
2N ¼ 2

ax 1�xð Þ
eaq0�1ð Þ
ea�1ð Þ eax � 1ð Þ 0rxrp0ð Þ

2
ax 1�xð Þ

1�e�aq0ð Þ
1�e�að Þ 1� e�a 1�xð Þ� �

p0rxr1ð Þ
The expected total heterozygosity is therefore:

Z
01
2x 1� xð Þt½x; p�dx

For small p, this tends to 8Np0ð 1
1�e�a � 1

aÞ, that itself tends to 16Np0
for small α. Thus, a single neutral mutation, initially at p0= 1/N
contributes E½RN

0 2xð1� xÞdt� ¼ 8 on its way to loss or fixation.
Figure 8 (right) shows the scaled ratio between the information gain

and the expected total fitness variance. This is maximised at 1/16 in
the infinitesimal limit, independent of p0, when α= 4Nes–40.
Rescaling, we find that ℐ/VW(a)=Ne/2.

APPENDIX B

Minor errors in Mustonen and Lässig (2010)
Note that there is a pervasive factor of two error in Mustonen and
Lässig (2010). Their Equation (2), which corresponds to Wright’s
stationary distribution (Equation 1), should include a factor of 2 in
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the exponent. This is not due to the assumption of haploidy versus
diploidy: Wright’s formula is the same in both cases, with the
factor of 2 in the number of genes compensating a factor of 2 in
the definitions of mean fitness. The factor of 2 in Wright’s formula

arises from the factor of 1/2 in the stochastic term of the diffusion
equation that is missing from Mustonen and Lässig (2010,
Equation (S20)).
There is also a sign error in Ω in Equation (S74).
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