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Helicobacter pylori-derived extracellular vesicles
increased in the gastric juices of gastric
adenocarcinoma patients and induced inflammation
mainly via specific targeting of gastric epithelial cells

Hyun-Il Choi1, Jun-Pyo Choi2, Jiwon Seo3, Beom Jin Kim3, Mina Rho4, Jin Kwan Han1 and Jae Gyu Kim3

Evidence indicates that Helicobacter pylori is the causative agent of chronic gastritis and perhaps gastric malignancy.

Extracellular vesicles (EVs) play an important role in the evolutional process of malignancy due to their genetic material cargo.

We aimed to evaluate the clinical significance and biological mechanism of H. pylori EVs on the pathogenesis of gastric

malignancy. We performed 16S rDNA-based metagenomic analysis of gastric juices either from endoscopic or surgical patients.

From each sample of gastric juices, the bacteria and EVs were isolated. We evaluated the role of H. pylori EVs on the

development of gastric inflammation in vitro and in vivo. IVIS spectrum and confocal microscopy were used to examine the

distribution of EVs. The metagenomic analyses of the bacteria and EVs showed that Helicobacter and Streptococcus are the two

major bacterial genera, and they were significantly increased in abundance in gastric cancer (GC) patients. H. pylori EVs are

spherical and contain CagA and VacA. They can induce the production of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β
by macrophages, and IL-8 by gastric epithelial cells. Also, EVs induce the expression of interferon gamma, IL-17 and EV-specific

immunoglobulin Gs in vivo in mice. EVs were shown to infiltrate and remain in the mouse stomach for an extended time.

H. pylori EVs, which are abundant in the gastric juices of GC patients, can induce inflammation and possibly cancer in the

stomach, mainly via the production of inflammatory mediators from gastric epithelial cells after selective uptake by the cells.
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INTRODUCTION

Gastritis, duodenal ulcers, gastric ulcers and gastric cancer are
the most common gastric diseases. The main causes of gastric
disease are suggested to be salt, helminth infection, dietary
antioxidants and cigarette smoking. Healthy people can also
have acute gastritis, which suggests the presence of various
other causes. Helicobacter pylori can induce gastric mucosal
inflammation and is one of the major causes of peptic
ulceration and gastric adenocarcinoma. Approximately half of
the world’s population is estimated to be colonized by this
bacterium. The development of chronic superficial gastritis in
normal mucosae from H. pylori infection is one of the first
steps in the progression to gastric carcinoma.1 Over the course

of inflammation, interleukin (IL)-8, a chemokine that increases
the risk of severe inflammation and gastric cancer in Asian and
Caucasian populations, is involved in the innate immune
response. However, the details of its role are not yet known.2

The gut microbiota, especially in gastric juices, and their
gene products affect a host’s immune system, development and
metabolism. Previously, the sequencing of a shotgun library
was conducted to compare adult- and infant-type microbiota3

and to characterize microbiota in the human stomach and the
effect of H. pylori on gastric microbiota.4 The introduction
of next-generation metagenomic sequencing resulted in an
unprecedented understanding of the effect of microbiota in
relation to gut health or gut-related diseases.5 However, these
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previous metagenomic studies were conducted using genomic
DNA isolated from a population of microbial cell pellets
obtained from feces3 or through gastric mucosal biopsy.4 The
results showed that Streptococcus was increased but Helicobacter
was decreased in the biopsies of gastric cancer patients.6

In detecting risk factors of gastric cancer, including gastritis
and H. pylori infection, gastric juice analysis was a superior
alternative to conventional tests, such as a simple endoscopy,
especially in the detection of H. pylori.7,8

Microbial communities inhabiting animal organs produce
extracellular vesicles (EVs) that function as intercellular
communicators between the microbes and host cells.9 EVs
are evolutionally conserved, spherically shaped vesicles that
exist in a wide range of sizes and are surrounded by a
phospholipid bilayer; they not only play a role in removing
unwanted waste from inside the cell but also in transmitting
genetic information, contributing to the development
and normal physiology of cells, which includes immune
suppression, antigen presentation, and signal transduction,
and the pathophysiology of diverse diseases such as tumor
growth, metastasis and angiogenesis.10 EVs are easily detected
in culture media and biological fluids and therefore function
as excellent biomarkers. Of particular interest are the EV
functions related to inflammatory responses. Previous evidence
has shown that EVs derived from Escherichia coli, Pseudomonas
aeruginosa or Staphylococcus aureus induce pro-inflammatory
cytokines and then cause inflammatory diseases such as sepsis,
lung inflammation and atopic dermatitis, respectively.11–13 In
addition, previous reports have shown that H. pylori-derived
EVs induce apoptosis, and CagA-containing exosomes from
H. pylori-infected patients induce morphological change in
AGS cells.14,15

To date, no metagenomic sequencing has been performed in
relation to the successive progression of gastric diseases leading
to gastric cancer. It is known that H. pylori produces EVs,
whereas the role of H. pylori-derived EVs in the pathogenesis of
gastric malignancy remains largely unknown.16,17 In the pre-
sent study, we hypothesized that H. pylori-derived EVs are
important in the development of gastric inflammation and
subsequent adenocarcinoma. To test this, we evaluated the
clinical significance of H. pylori EVs in gastric juices from
gastric cancer patients using metagenomics. We prepared
bacterial cell pellets and EVs from gastric juices of healthy
controls (HC en) and patients with duodenal ulcer (DU en),
gastric ulcer (GU en) or gastric cancer (GC en), which were
obtained by endoscopy and from the gastric juices of gastric
cancer patients obtained during surgery (GC sg). Genomic
DNAs purified from bacterial cell pellets and EVs were then
subjected to next-generation metagenomic sequencing of the
microbial 16S rDNA genes. We compared the changes in
microbial taxonomic composition between the populations of
bacterial cells and EVs in relation to gastric disease progression.
H. pylori-derived EVs were increased in gastric juices from
gastric cancer patients compared with healthy controls. Then,
we studied the functional mechanisms of H. pylori-derived EVs

in vitro and in vivo and verified that H. pylori-derived EVs are
taken up in stomach epithelial cells by selective targeting.

MATERIALS AND METHODS

Patients
All gastric juices were collected between January 2011 and December
2014 from patients who underwent esophagogastroduodenoscopy and
gastric surgery at Chung-Ang University Hospital (Seoul, Republic of
Korea). All of the samples were gathered from 10 healthy controls and
10 patients each with gastric cancer, gastric ulcers, and duodenal ulcers
and from patients undergoing gastric cancer surgery. Esophagogas-
troduodenoscopy was performed using an Olympus device (GIF-H290
or GIF-H260Z; Olympus, Tokyo, Japan). Then, a washing pipe was
used to collect gastric juices from each lesion. Collection of gastric
juice through laparoscopic gastrectomy or open gastrectomy was
performed using an aseptic process. The medical records of the
patients were reviewed with regard to age, sex, medical history,
laboratory findings, endoscopic records, including Helicobacter pylori
positivity and surgical records. The exclusion criteria were as
follows: medication affecting gastric acid secretion, medication with
antimicrobials within the previous 4 weeks and gastric surgery. This
study protocol was approved by the Institutional Review Board of
Chung-Ang University Hospital (IRB No. 10-080-12-23).

16S rDNA gene-based metagenomic analysis
DNA extraction and 16S rDNA PCR of bacteria and EVs derived from
gastric juices. After sample preparation for EVs, the bacterial portion
derived from the gastric juices was extracted using a DNA extraction
kit (DNeasy Blood & Tissue Kit; Qiagen, Hilden, Germany).
We followed a standard protocol and confirmed 16S rDNA sequences
using PCR. Briefly, for the PCR, we used the universal 16S primers
27F (5′-GAGTTTGATCMTGGCTCAG-3′) and 518R (5′-WTTACCG
CGGCTGCTGG-3′) at 94 °C for 3 min followed by 35 cycles of 94 °C
for 15 s, 55 °C for 45 s and 72 °C for 1 min with a final elongation step
at 72 °C for 8 min. The PCR products were purified using AMPure
beads (Beckman Coulter, Brea, CA, USA).

Library construction and sequencing. The library was prepared using
16S rDNA PCR products according to the GS FLX plus library
prep guide. The libraries were quantified using a PicoGreen assay
(Victor 3, PerkinELMER, MA, USA), and clonal amplification of the
purified library was conducted using the GS-FLX plus emPCR Kit
(454 Life Sciences, Branford, CT, USA).

Metagenome profiling and analysis. The high-throughput sequencing
reads were filtered based on read length (⩾300 bp) and quality score
(average Phred score in a window ⩾ 20). The read counts for each
sample are provided in Supplementary Table 2. Operational taxonomy
units (497% similarity) were clustered using the sequence clustering
algorithm UCLUST.18 Subsequently, taxonomy was assigned to each
operational taxonomy unit using QIIME against the 16S rDNA sequence
database of GreenGenes 8.15.13.19 The alpha diversity was measured
using the Chao1 index. The bacterial composition (45% in multiple
samples) at the genus level was plotted in the heatmap, and the statistical
significance among the groups was evaluated using the R package.

Isolation and characterization of H. pylori EVs
Culture of H. pylori in vitro. H. pylori (HP99) was kindly donated by
H.C. Jung (Seoul National University, Seoul, Republic of Korea). This
strain (HP99) was isolated from a Korean patient and identified as a
CagA- and VacA-positive strain.20,21 Briefly, H. pylori (HP99) was
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cultured in modified Brain Heart Infusion Broth (Becton, Dickinson
and Company, NJ, USA) with 10% HyClone fetal bovine serum
(GE Healthcare Life Sciences, Franklin Lakes, NJ, USA) at 37 °C with
10% CO2 to an optical density of 1.2.

EV isolation. The bacteria were cleared by centrifugation at 10,000 g
for 20 min at 4 °C and filtered. The filtrated supernatant was
concentrated by the tangential flow filtration system (EMD Millipore,
Billerica, MA, USA) with a 100-kDa hollow-fiber membrane filter.
The concentrate was further cleared through a 0.22-μm filter
and ultracentrifuged at 150,000 g for 3 h at 4 °C. The pellet was
resuspended in 1 ml phosphate-buffered saline (PBS). The EVs
between a 10 and 30% OptiPrep solution (Sigma, St Louis, MO,
USA) were density-gradient ultracentrifuged at 100,000 g for 2 h at 4 °
C. Next, PBS was added to the separated EV fractions, and the samples
were ultracentrifuged to remove the OptiPrep solution and resus-
pended in PBS. The final protein concentrates were quantified by the
BCA assay (Thermo Scientific, Rockford, IL, USA) and stored at − 80 °
C until they were ready for use.

Transmission electron microscopy. To prepare for transmission
electron microscopy analysis, 500 ng of EVs in 10 μl of PBS were
bound to 300-mesh Cu-coated grids (Electron Microscopy Sciences,
Hatfield, PA, USA) and stained with 2% uranyl acetate. The grid was
then incubated for 12 h until dry and analyzed using a JEM 1011 at
× 100 and × 200 resolutions (JEOL, Tokyo, Japan).

Dynamic light scattering. To determine the size distribution profile of
the EVs, 1 ml of the EVs (20 μg ml− 1) was analyzed at 25 °C using a
Zetasizer (Malvern Instruments, Worcestershire, UK) according to the
manufacturer’s protocols with low-volume disposable sizing cuvettes.
There were a total of 30 runs. Three measurements were recorded to
verify the consistency.

Functional evaluation of H. pylori EVs
Western blotting. Proteins from H. pylori-derived EVs were separated
on a 10% SDS-polyacrylamide gel electrophoresis and transferred to
nitrocellulose membranes. The membranes were blocked with 5%
skim milk and incubated with anti-CagA (sc-25766) and anti-VacA
(sc-25790) antibodies (Santa Cruz Biotechnology, Dallas, TX, USA)
and secondary antibodies before development.

Analyses of in vitro cytokine production
Analyses of in vitro cytokine production induced by H. pylori-derived
EVs. Production of pro-inflammatory cytokines in cultured media
from human (differentiated THP-1 cells) and mouse (RAW 264.7
cells) peritoneal macrophage cells and the human stomach epithelial
cells (AGS cells) were measured by an enzyme-linked immunosorbent
assay (ELISA; R&D Systems, Minneapolis, MN, USA). Briefly, 5× 104

macrophage cells and 1× 105 epithelial cells seeded in 24-well plates
were treated with 10, 100 or 1000 ng ml− 1 of EVs for 12 h before the
culture media was subjected to analyses.

To confirm the toxicity of the lipopolysaccharide-induced (LPS;
E. coli O55: B5; Merck Millipore, Damstadt, Germany) immune
response by EVs derived from H. pylori, peritoneal macrophages were
isolated from wild-type (C57BL/6) and TLR4-deficient mice, and
5× 104 cells were seeded in a 24-well plate. The cells were treated with
EVs for 12 h before cytokine levels in culture media were measured by
ELISA (R&D Systems). Six-week-old C57BL/6 mice (The Jackson
Laboratories, Bar Harbor, ME, USA) were bred in an animal facility
at Pohang University of Science and Technology. H. pylori EVs

and bacterium in PBS (100 μg per 100 μl) were administered
intraperitoneally and orally for 4 weeks, respectively. Administration
was performed for five consecutive days for the first week and twice a
week for the remainder of the schedule (following a protocol in
Figure 5a). The mice were killed on the 23rd day.

Characterization of T-cell subsets. We seeded 1× 106 cells from
spleens on a 24-well plate coated with 0.1 μg ml− 1 of anti-CD3
antibodies and anti-CD28 antibodies (eBioscience, San Diego, CA,
USA). After incubation at 37 °C for 12 h, the supernatants were
collected, and interferon gamma (IFN-γ), IL-17 and IL-4 cytokine
levels were measured in a Versa Max ELISA Microplate Reader
(Molecular Devices, Sunnyvale, CA, USA).

Quantitation of serum antibodies. The serum immunoglobulin (Ig)G1

antibody level was measured by ELISA (Bethyl Laboratories,
Montgomery, TX, USA) for IgG1s specific for EVs according to the
suggested protocols.

Fluorescent imaging of EVs in vitro and in vivo. H. pylori and
H. pylori-derived EVs were labeled with Cy7 (Cy7 Mono NHS Ester,
GE Healthcare Bio-Sciences, Pittsburgh, PA) in PBS for 1 h at
room temperature and were orally administered to abdomen-shaved
C57BL/6 mice. The fluorescence was measured using an IVIS
spectrum CT (PerkinElmer, Waltham, MA, USA) at 780–800 nm
wavelengths. EVs labeled with DiI Stain (1,1′-dioctadecyl-3,3,3′,
3′-tetramethylindocarbocyanine perchlorate ('DiI'; DiIC18(3),
Thermo Scientific)) were applied to 1× 105 epithelial cells seeded on
gelatin-coated glass for 12 h. The cells were washed with PBS, fixed
with 4% paraformaldehyde in PBS at 37 °C for 1 h, and stained with
DAPI (Invitrogen, Waltham, MA, USA) for 10 min.

Statistical analysis
All of the statistically significant differences were calculated using
GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA).
A t-test was used for single comparisons, and one-way analysis of
variance was used for multiple comparisons. The statistical significance
was set at Po0.05.

RESULTS

Characterization of EVs derived from the gastric juices of
patients with gastric disease
EVs were purified from gastric juices collected from patients
with duodenal ulcer (Du en), gastric ulcers (GU en) or
gastric cancer (GC en) and from healthy controls (HC en).
Transmission electron microscopy images showed that the EVs
were spherical in shape regardless of the disease type
(Figure 1a). A dynamic light scattering analysis showed that
the size of EVs was heterogeneous with diameters ranging from
20 to 200 nm (Figure 1b).

16S rDNA gene-based metagenomic analyses of bacteria and
EVs from endoscopically obtained gastric juices from HC
and patients with DU, GU or GC
16S rDNA was sequenced from purified DNA collected from
bacteria-containing pellets and EVs in gastric juices of HC and
patients with DU, GU or GC. Alpha diversities (within-
community diversities) using Chao1 indices were measured
to estimate species richness in each group (HC, DU, GU and
GC) based on 16S rDNA gene sequencing data for bacterial
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Figure 1 Characterization of extracellular vesicles (EVs) and the composition profiling derived from the gastric juices of patients.
(a) Transmission electron microscopy (TEM) images of EVs derived from gastric juices. (b) Size distribution of EVs determined using
dynamic light scattering (DLS). (c) Alpha diversity of the Genome Sequencer FLX+ system-based sequencing of 16S rDNA genes in
bacteria samples. (d) Alpha diversity of the Genome Sequencer FLX+ system-based sequencing of 16S rDNA genes in EVs. (e) Heatmap
comparing the relative abundance of bacteria and EVs at the genus level in gastric juices from patients.
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pellets and EVs, respectively. The GC group had the highest
Chao1 index and was the most diverse among the four groups
for both the bacterial pellets and EVs, followed by the HC
group. The GU group was the least diverse among the four
groups in its bacterial composition, whereas the DU group was
the least diverse based on the EV composition (Figures 1c
and d). Common microorganisms among the four groups were
selected based on the relative abundance in each sample and
are shown as a heatmap (Figure 1e). Streptococcus (Po0.05),
Gemellaceae (Po0.05), Oribacterium (Po0.05) and TM7-3
(Po0.01) were increased in the bacterial pellets and EVs from
gastric cancer (GC en) patients compared to the healthy
control (HC en) patients. Although not statistically significant,
there was an increase in Helicobacter in EVs and bacterial
pellets (Supplementary Figures 1 and 2 and Supplementary
Table 1).

16S rDNA gene-based metagenomic analyses of the bacteria
and EVs from surgically obtained gastric juices from GC
patients
We validated the results of the 16S rDNA gene-based
metagenomic analysis from the endoscopically obtained gastric
juices of GC patients using the sequencing of gastric juices that
were directly collected during surgery. For both the bacterial
pellets and EVs, gastric cancer samples obtained by endoscopy
(GC en) and surgery (GC sg) showed almost identical patterns
of alpha diversity, which was significantly higher than the
diversity observed in the HC en specimens (Figure 2a).
At a genus level, several microorganisms showed differential
abundance among the healthy control (HC en), endoscopic
(en) gastric cancer and surgical (sg) gastric cancer samples in
both bacterial pellets and EV samples (Figure 2b). Common
microorganisms among the three groups were selected, and
their relative abundance in each sample is shown as a heatmap
(Figure 2c). Based on this, we compared healthy controls (en)
to gastric cancer (en) and gastric cancer (sg) samples for the
bacterial pellets and EVs (Table 1).

Difference in 16S rDNA gene-based metagenomes of the
bacteria and EVs from surgically obtained gastric juices from
GC patients
Some bacteria were increased in the cancer group. In recent
reports, biopsies of gastric cancer patients showed an increase
in Streptococcus but a decrease in Helicobacter.4,22,23 Therefore,
we focused on Helicobacter. In particular, high differential
abundance was observed for Helicobacter. A higher level of
Helicobacter in the bacterial samples from the surgical gastric
cancer group was observed in comparison to the healthy
control group (P= 0.06) (Figure 3a). In particular, EVs showed
a statistically higher level of Helicobacter in the surgical gastric
cancer (sg) group than in the healthy control group (Po0.05;
Figure 3b). Patient-wise, Helicobacter showed a strong
correlative increase between bacterial cells and EVs. These
results suggest that even though multiple microorganisms
showed differential abundances among stomach-related
diseases, only Helicobacter showed significant and correlated

changes in regard to gastric diseases in both bacterial cells and
EVs (Figure 3c).

Characterization of H. pylori-derived EVs
To characterize the physical and biochemical properties of
H. pylori-derived EVs free of bacteria, the purified EVs were
observed by transmission electron microscopy. Spherical EVs
(arrows, Figure 4a) with a diameter range of 25–200 nm were
observed (Figure 4b).

To test if EVs contain H. pylori-specific virulence factors,
Western blots of H. pylori extracts and EVs were probed with
toxin-specific antibodies (Figure 4c). The extracts of wild-type
H. pylori showed the presence of CagA and VacA proteins
with higher amounts of VacA than CagA (‘Hp,’ Figure 4c).
This detection is specific because the extract from the CagA
knockout strain of H. pylori (HpΔCagA) showed a complete
absence of CagA protein, whereas VacA remained constant
(Figure 4c). Both CagA and VacA were present in
H. pylori-derived EVs (lane 1, Figure 4c), and their relative
abundance resembled the pattern observed in H. pylori cells.
This shows that cell-free EVs that contain CagA and VacA
virulence factors can be purified from H. pylori.

In vitro production of pro-inflammatory cytokines induced
by H. pylori-derived EVs in human stomach epithelial cells
Previous evidence has shown that H. pylori induces
pro-inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), IL-1, IL-6 and IL-8, through Toll-like receptor (TLR)
signaling pathways.24–26 We evaluated whether H. pylori-
derived EVs containing virulence factors could induce the
same group of cytokines. We used human stomach epithelial
cells (AGS) that did not have inflammatory cytokines induced
by LPS but in which IL-1β is known to activate IL-8
synthesis.27,28 The treatment of AGS with H. pylori-derived
EVs also induced IL-8 in a dose-dependent manner
(Figure 4d). These results show that H. pylori-derived EVs
induce cytokines independently of LPS.

In vitro production of pro-inflammatory cytokines from
macrophage cells of mice induced by H. pylori-derived EVs
We next tested whether H. pylori-derived EVs can simulate the
activity of LPS in inducing pro-inflammatory cytokines in vitro.
Peritoneal macrophages from C67BL6/J mice that were treated
with LPS showed a drastic increase in IL-6 in culture media;
treatment of cells with H. pylori-derived EVs also induced
dose-dependent IL-6 induction (Figure 5a). Induction of IL-6
by LPS was completely suppressed in a TLR4 knockout
strain of C67BL6/J. However, TLR4 knockout did not abolish
the ability of H. pylori-derived EVs to induce IL-6. Levels
of induced cytokines of macrophages from the wild-type
C67BL6/J were higher than those of the TLR4 knockout
(Figure 5b). Therefore, LPS was also important for inducing
inflammatory cytokines.
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Characterization of adaptive immune responses induced by
cell-free EVs
Because we showed that cell-free EVs from H. pylori could
induce innate immune network-mediated inflammatory
responses in vitro and in vivo, we next determined the effects
of cell-free EVs on adaptive immune responses (Figure 5c).
Extracted spleens were tested for IFN-γ and IL-17, and
representative cytokines for TH1 and TH17-mediated adaptive
immune responses, respectively. IFN-γ was significantly induced
in the spleens from mice that received H. pylori bacteria orally
compared with the blank media treatment, and cell-free EVs also
induced to ~50% of the level that was induced by bacterial
administration (Figure 5d, 1st graph). Intraperitoneal adminis-
tration of H. pylori induced even higher levels of IFN-γ and
IL-17 than when the bacteria were administered orally
(Figure 5d, 2nd graph). Equivalent levels of IL-4 were induced
in mice with oral or intraperitoneal administration, and bacteria

and cell-free EVs from H. pylori induced equivalent levels of IL-4
(Figure 5d, 3rd graph). Next, the generation of immunoglobulin
was measured to determine if cell-free EVs could induce
sufficient and specific antibody generation. EV-specific IgG1

was generated by oral administration of bacteria and EVs, and
the level of IgG1 generation was highly increased by intraper-
itoneal administration of both bacteria and EVs (Figure 5e).
These data indicate that cell-free EVs from H. pylori can induce
TH1- and TH17-mediated adaptive immune responses in vivo to
a level similar to that induced by bacterial infection, and oral
administration of H. pylori-derived EVs showed a more localized
immune response compared with intraperitoneal administration.

Absorption and distribution of H. pylori and their secreting
EVs after oral ingestion in mice
To examine the kinetics of a whole-body distribution of
cell-free EVs, Cy7-labeled H. pylori and cell-free EVs were

Figure 2 Composition profiling derived from gastric juices obtained directly during surgery. (a) Alpha diversity of the Genome Sequencer
FLX+ system-based sequencing of 16S rDNA genes in bacteria samples. (b) Alpha diversity of the Genome Sequencer FLX+ system-based
sequencing of 16S rDNA genes in extracellular vesicles (EVs). (c) Heatmap comparison of the relative abundance of bacteria and EVs at
the genus level in gastric juices from patients.
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orally administered to C57bL/6 mice, and the fluorescence was
measured using the IVIS spectrum CT (based on a previously
published protocol).29 Oral administrations of both bacteria
and cell-free EVs resulted in strong Cy7 signals in the mouths
and stomachs of mice, whereas PBS administration did not
produce any Cy7 signals. Strong Cy7 signals were observed as
soon as the bacteria and EVs were ingested and remained up to
3 h after administration. Cell-free EVs remained in the stomach
area for up to 24 h after EV administration, whereas bacterial
signals were absent at the 24-h time point (Figure 6a).

Examination of mouse tissues 24 h after the administration
revealed that strong Cy7 signals remained only in the stomach
when Cy7-labeled EVs were administered. In comparison,
administration of PBS and bacteria did not show any
signals in any of the tissues 24 h after ingestion (Figure 6b).
Quantitation of Cy7 fluorescence confirmed the presence of
residual EVs in the stomach (Figure 6c) and consequently
demonstrated that the penetrating ability of EVs was higher
than that of bacteria. Collectively, these findings suggest that
H. pylori EVs specifically target stomach epithelial cells.

Table 1 Abundance and classification of bacteria and EVs from gastric juices of GC patients.

Bacteria EV

Taxon Endoscopy Surgery Endoscopy Surgery

Gram Phylum Genus HC (%) GC (%) GC (%) HC (%) GC (%) GC (%)

Gram-positive Actinobacteria Actinomyces 2.58 4.28 4.42 2.66 2.30 0.56
Gram-positive Actinobacteria Corynebacterium 0.44 2.31 0.37 0.52 0.09 0.17
Gram-positive Actinobacteria Rothia 1.23 3.73 7.83a 0.15 0.96 0.12
Gram-positive Actinobacteria Propionibacterium 7.40 0.08a 0.19a 1.64 0.21 0.52
Gram-positive Actinobacteria Atopobium 0.76 3.08 0.51 0.38 1.59 0.35
Gram-positive Firmicutes Alicyclobacillus 5.53 0.03 0.09 0.21 0.09 0.19
Gram-positive Firmicutes Staphylococcus 1.16 1.36 0.16 19.36 26.34 0.16
Gram-positive Firmicutes Gemellaceae(f) 0.93 3.28a 0.78 1.43 1.53 0.85
Gram-positive Firmicutes Lactobacillales(o) 0.00 0.00 0.06 0.75 2.71 1.14
Gram-positive Firmicutes Granulicatella 1.62 3.59 1.89 1.99 0.80 1.51
Gram-positive Firmicutes Lactobacillus 1.03 2.81 5.49 0.77 4.48 1.67
Gram-positive Firmicutes Leuconostoc 0.03 0.10 0.06 0.51 1.27 1.46
Gram-positive Firmicutes Lactococcus 0.00 0.20 0.02 0.26 6.56 2.85
Gram-positive Firmicutes Streptococcus 10.81 38.07a 37.44a 8.62 9.52 21.52
Gram-positive Firmicutes Clostridiales(o) 0.17 1.57 0.15 1.47 2.82 0.05
Gram-positive Firmicutes Clostridium 1.25 0.02 0.00 0.00 0.00 0.00
Gram-positive Firmicutes Oribacterium 0.19 1.52a 0.57 0.25 1.35 0.05
Gram-positive Firmicutes Veillonella 0.29 0.61 1.41 0.35 0.15 1.94a

Gram-negative Bacteroidetes Porphyromonas 0.98 1.35 0.46 0.76 0.56 0.24
Gram-negative Bacteroidetes Prevotella 2.34 2.66 2.23 3.50 1.00 3.13
Gram-negative Bacteroidetes Prevotella_ 0.39 0.05 0.73 0.63 0.21 3.00
Gram-negative Fusobacteria Fusobacterium 0.81 0.64 0.65 0.82 0.36 0.54
Gram-negative Proteobacteria Bradyrhizobiaceae(f) 0.15 0.00 0.00 3.04 0.21 0.76
Gram-negative Proteobacteria Methylobacterium 7.54 0.42 0.19 0.31 0.57 0.13
Gram-negative Proteobacteria Sphingomonas 0.26 0.09 0.02 0.30 0.16 0.99
Gram-negative Proteobacteria Comamonadaceae(f) 2.24 0.04 0.09 0.03 0.11 0.05
Gram-negative Proteobacteria Neisseria 3.31 1.10 5.66 0.81 0.57 9.83a

Gram-negative Proteobacteria 0319-6G20(f) 0.14 0.00 0.00 0.56 0.05 0.00
Gram-negative Proteobacteria Helicobacter 1.92 6.99 16.76 1.02 4.24 27.27a

Gram-negative Proteobacteria Enterobacteriaceae(f) 4.99 0.09 0.06 0.25 0.13 0.26
Gram-negative Proteobacteria Haemophilus 0.77 1.17 1.63 0.23 0.22 3.7a

Gram-negative Proteobacteria Acinetobacter 0.26 0.01 0.03 5.17 0.83 4.95
Gram-negative Proteobacteria Pseudomonas 5.66 0.15 0.30 32.24 15.07 2.41a

Coexistence TM7 TM7-3(c) 0.09 2.05a 0.25 1.11 2.16 0.23
Eukaryotic Streptophyta Streptophyta(o) 1.47 0.62 0.90 0.01 0.15 0.26

Abbreviations: GC, gastric cancer group; HC, healthy control.
For all the groups n= 10. The mean value (%) is provided. These results are comparisons between HC and other groups.
aP-valueso0.05 are shown in bold.
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Figure 3 Comparison and correlation between groups of Helicobacter. (a) Percentage of Helicobacter-specific sequence reads obtained by
analyzing bacterial pellets and extracellular vesicles (EVs) from gastric juices. (b) Percentage of Helicobacter-specific sequence reads
obtained by analyzing bacterial pellets and EVs from gastric juices. (c) Correlation between bacteria and EVs from gastric juices.

Figure 4 Characterization of purified H. pylori-derived extracellular vesicles (EVs) and induction of IL-8 with EVs in vitro. (a) Transmission
electron microscopy (TEM) images. (b) Size distribution of EVs determined using dynamic light scattering (DLS). (c) Confirmation of CagA
and VacA in cell extracts and EVs by western blotting. Hp, HpΔCagA and HpEV denote cell extracts from wild-type H. pylori strain HP99
(Hp), isogenic H. pylori with CagA gene deletion (HpΔCagA), and EVs from H. pylori strain HP99 (EV), respectively. (d) Induction of IL-8
in human gastric adenocarcinoma cell line AGS by IL-1β (positive control) and EVs (*Po0.05 refers to a significant difference compared
with the phosphate-buffered saline treatment).
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Figure 5 Extracellular vesicle (EV)-induced TH1 and TH17 adaptive immune responses in vivo. (a) Induction of TNF-α and IL-6 in mouse
macrophage RAW 264.7 cells by lipopolysaccharide (LPS) and EVs. (b) Induction in vitro of interleukin (IL)-6 in peritoneal macrophages
from C67BL6/J mice following LPS or EV administration (gray bar), and corresponding responses from peritoneal macrophages from the
TLR4 knockout (KO) C67BL6/J mice (black bar) (*Po0.05, **Po0.01 refer to significant differences compared with the phosphate-
buffered saline (PBS) treatment). (c) A protocol for the oral and intraperitoneal administration of H. pylori and H. pylori-derived EVs in
C57BL/6 mice. (d) Expression levels of TH1 and TH17 type cytokines IFN-γ, IL-17 and IL-4 measured from the culture supernatants of
spleen cells (from a) activated with anti-CD3 antibodies and anti-CD28 antibodies. (e) The serum level of EV-specific immunoglobulin (Ig)
G1 (Po0.05 refers to a significant difference compared with the PBS treatment). ‘Bacteria P.O.’ and ‘EV P.O.’ refer to the oral
administration of H. pylori and H. pylori-derived EVs, respectively. ‘Bacteria I.P.’ and ‘EV I.P.’ refer to the intraperitoneal administration of
H. pylori and H. pylori-derived EVs, respectively.
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Figure 6 Infiltration of H. pylori-derived Extracellular vesicles (EVs) into the gastric mucosal layer of C57BL/6 mice and endocytosis of EVs
into the stomach epithelial cells. (a) Fluorescent imaging of mice at 0, 3 and 24 h post oral administration of Cy7-labeled H. pylori and
H. pylori-derived EVs. (b) Fluorescence imaging of dissected organs 24 h post oral administration of PBS, Cy7-labeled H. pylori, and
Cy7-labeled H. pylori-derived EVs. (c) Quantitation of fluorescent intensities in the stomachs of mice that received PBS, H. pylori
(Bacteria), and Cy7-labeled H. pylori-derived EVs (EV). (d) Endocytosis of EVs into the stomach epithelial cells. Fluorescent images of
human stomach epithelial cells (blue, DAPI) treated with DiI-labeled EVs (red) were obtained using confocal microscopy.
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Endocytosis of EVs into stomach epithelial cells
We evaluated the endocytosis of H. pylori-derived EVs into
target cells. AGS cells were exposed to DiI-stained cell-free EVs.
Large amounts of DiI-stained cell-free EVs were observed
inside the AGS cells within the DAPI-stained areas 12 h post
injection (Figure 6d). However, the PBS treatment did not
show any EV-like particles within or outside the cells.
DiI-stained H. pylori-derived EVs readily entered AGS cells
and were easily distinguished from PBS-treated controls
(‘EV’ and ‘PBS,’ respectively, Figure 6d). In total, our results
imply that EVs can enter the stomach cells of mice via oral
routes and can remain inside the cells for an extended time.

DISCUSSION

Almost all of the studies of microbiota in the human stomach
have been based on tissue or media from cultured gastric
juices. However, in the present study, we analyzed gastric juices
directly using genome sequencing. Gastric cancer patients
have a greater variety of bacteria than those with gastritis.
We speculated that the inflammatory process suppresses
acid production.30–32 In recent reports, gastric cancer patients
showed an increased level of Streptococcus but a decreased
level of Helicobacter according to biopsy.4,22,23 We analyzed
sequencing results by separately studying bacteria and EVs
collected from gastric juice. Our data showed significant
increases in Streptococcus and Helicobacter in gastric cancer
patients, which is probably due to the differences in the
biopsy and gastric juice samples. We assumed that biopsy
only represented part of the stomach, whereas gastric juice
represents most of the stomach. There was no correlation
between Helicobacter and Streptococcus in the bacterial pellets
or EVs. However, Helicobacter in the bacterial pellets and
EVs from gastric juices were correlated. Thus, we studied
H. pylori-derived EVs (Supplementary Figure 3).

EVs are transporters of DNA, RNA, phospholipid and
proteins in all forms of life9,33 including H. pylori.34 In
particular, H. pylori-derived EVs and their interaction with
human cells have been extensively characterized, demonstrating
that EVs contain more than 1500 different proteins including
adhesion- and virulence-associated proteins.16 Internalization
of H. pylori-derived EVs into AGS cells has also been well
characterized. The binding of EVs to AGS cells is enhanced by
the presence of VacA cytotoxin, whereas VacA-containing
vesicle uptake is inhibited by LPS, and VacA-depleted EVs
are dependent on clathrin-mediated endocytosis for uptake
into AGS cells.17 In the present study, we also showed that
H. pylori-derived EVs are taken up by AGS cells, and EVs
can even infiltrate the gastric mucosa of the stomach and
remain there for up to 24 h. In contrast, Cy7-labeled H. pylori
was not present in vivo in this amount of time. Although EV
derived gut microbes, such as Pseudomonas panacis, penetrate
the gut barrier and travel throughout the entire body,35

H. pylori-derived EVs remained in the stomach. Together
with the data showing that EVs can induce cytokine
production from gastric epithelial cells, these results suggest

that H. pylori-derived EVs appear to be the main mediator of
H. pylori-derived gastric malignancy.

The infection of gastric epithelial cells (AGS) by H. pylori
results in the overexpression of IL-8 and MCP-1 with Ras,
MAPK cascade, AP-1 and NF-κB acting upstream of
the transcriptional pathways of these chemokines.36 The
upregulation of pro-inflammatory cytokines IL-1, IL-6 and
TNF-α has also been reported.37 Cis, trans-isomerase secreted
by H. pylori is able to drive a TH17 response. H. pylori infection
induced low cytotoxic gastric tumor-infiltrating lymphocytes
response, matrix degradation and pro-angiogenic pathways are
related to the pathogenesis of gastric cancer.38 Of the various
pathogenic factors derived from H. pylori, CagA is one of the
major agents leading to gastric cancer; among the patients
infected with H. pylori, those who had IgG antibodies against
CagA had a higher chance of developing gastric cancer.39

In addition, VacA is also an agent that induces acute
inflammation of the gastric mucosa and plays a role in
vacuolization in many cells.40 There are many reports on
H. pylori-derived EVs. VacA-positive H. pylori-derived EVs
have been reported to induce apoptosis in AGS and increase
the carcinogenic potential in the stomach.14,15 Recently, CagA
was detected in serum EVs from patients infected with
H. pylori, and it has been reported that CagA-containing EVs
can be taken up by AGS cells and induce morphological
changes.41 CagA is localized at the surface, in contrast to VacA,
which is located at both the surface and inner membrane
of H. pylori-derived EVs.16 Combined with the previous
aforementioned data supporting the characteristics and
mechanisms of H. pylori-derived EVs and their interactions
with host human cells, our current data provide the first direct
links between H. pylori-derived EVs and their pathogenic
contribution to the induction of host immune responses
in vitro and in vivo. We showed that H. pylori-derived EVs
could penetrate gastric cancer and macrophage cell lines and
induce IL-1ß, IL-6, IL-8 and TNF-α expression in vitro (Figures
6a and b; Supplementary Figures 4a and b). H. pylori-derived
EVs also elicited TH1- and TH17-mediated immune responses
through IL-17 and IFN-γ induction in vivo. These combined
data clearly demonstrate that EVs independent of H. pylori cells
can penetrate and induce immune responses in target cells.
Our data indicate that both bacteria and EVs induce localized
immune responses with oral administration and systemic
immune responses with intraperitoneal administration. Based
on our in vivo imaging data, we suggest that these effects are
due to stomach-specific relationships.

As indirect evidence of the relationship between
H. pylori-derived EVs and gastric cancer, a small-scale analysis
showed that both H. pylori cells and H. pylori-derived EVs were
present at a significantly higher level in the gastric juices of
gastric cancer patients than in normal controls. Due to the
lack of appropriate animal models in which H. pylori and
H. pylori-derived EVs not only induced inflammatory
cytokines, but ultimately resulted in gastric cancer in a
reasonable time frame, we utilized the 16S rDNA metagenome
analysis of gastric juices from normal control and gastric cancer
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patients. In this analysis, not only the cells pelleted by
centrifugation from gastric juices but also the cell-free EVs
(Methods) were subjected to analysis of microbial composition.
Both H. pylori cells and H. pylori-derived EVs were significantly
more abundant in gastric cancer samples compared with
normal controls. These results suggest that EVs secreted from
Helicobacter in the stomach lead to infiltration of the gastric
mucosae and eventually to gastric cancer. The sequencing data
from the gastric juices demonstrate that EVs derived from
other bacteria, such as Streptococcus, require additional study in
the context of gastric disease.

In summary, the present study showed that H. pylori-derived
EVs, which are abundant in the gastric juices of GC patients,
can induce inflammation and possibly cancer in the stomach,
mainly via the production of inflammatory mediators, such as
IL-8, from gastric epithelial cells after selective uptake by
the cells.
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