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Neuronal survival in the brain: neuron type-specific
mechanisms

Ulrich Pfisterer1 and Konstantin Khodosevich*,1

Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage.
Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated
in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local
circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External
signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To
accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular
signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon
neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the
brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron
type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on
how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain
regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various
types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain,
without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment
on neuronal survival during development.
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Facts

� During development neurons express a set of pro-survival/
death molecules that are not present in adult brain.

� Neuronal survival in the brain often relies on different
external factors in comparison with the spinal cord
and PNS.

� Different types of neurons in the brain possess some
common, but also distinct components of pro-survival
signaling.

� Immature neurons aremore vulnerable to stress factors that
trigger neuronal death than mature neurons.

Open questions

� How abundant are distinct components of pro-survival
signaling in different types of neurons that might adapt
neuronal survival to the region of the brain, that is, neuron
type-specific survival?

� How do survival mechanisms of embryonically and adult-
born neurons differ, that is, survival in immature versus
mature brain?

� During what period of brain development do the various
types of neurons die?

� What mechanisms account for higher vulnerability of
immature neurons to stress factors?

During brain development, an excessive number of neurons is
generated and, depending on the region and neuronal type, a
varying number of neurons die before they mature.1–5 A high
rate of neuronal death also occurs in the regions of adult
neurogenesis.6–9 The process of neuronal overproduction and
elimination is necessary to optimize brain connectivity.
Disturbances in regulating developmental neuronal death
not only change cell composition and connectivity within local
neuronal networks, but also alter global brain activity and,
thus, cognition. Several types of brain disorders enhance the
death of immature neurons (i.e., postmitotic neurons, but
before complete maturation) during brain development that
could lead to decline in cognitive abilities. After maturation,
neurons become resistant to the signaling that was involved in
the life/death decision at immature stages since, once
neurogenesis is halted, it is advantageous to protect mature
neurons that cannot be produced again (protection of
immature and mature neurons is compared in Benn and
Woolf10 and Kole et al.11).
There are two distinct modes of neurogenesis – although

the majority of neurons are generated during the
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embryonic period and their production is discontinued
either in the embryonic brain or early postnatally (later
referred to as embryonic neurogenesis),12 some populations
of neurons are continuously generated throughout the life of
an animal (later referred to as adult neurogenesis)13,14

(see Figures 1a and b, respectively). The death of

neurons that are born embryonically reaches a peak
in the neonatal brain and affects neurons that are still
immature,15–17 and the critical period for survival of adult-
generated neurons is within 4 weeks after their birth; following
this period of maturation, they become resistant to cell
death.8,9,18
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Principles of neuronal survival are often generalized and
data from different areas of the CNS are extrapolated to the
CNS as awhole. Indeed, pro-survival signaling does converge
on some common core components (Figure 2). However, data
accumulated over the recent years show that different types of
neurons in the brain might use different pro-survival mechan-
isms as there are a variety of routes by which core pro-survival
components could be activated. Thus, we propose 'neuron
type-specific' pro-survival mechanisms that will heavily rely
upon (1) composition of extracellular pro-survival factors that
are available in a certain brain area at a certain time period, (2)
composition of transmembrane molecules (e.g. receptors or
ion channels) that are expressed on distinct types of neurons
and (3) composition of cytosolic molecules that could
propagate pro-survival signaling from the cell membrane
toward common core components (Figure 2).
It should be noted that not only pro-survival, but also pro-

death pathways could be neuron type specific. In general
terms, it is pro-survival signaling that blocks intrinsic pro-death
signaling, and when there is a lack of pro-survival signaling,
pro-death pathways are triggered. However, in a recent
paper19 it was shown that survival of CNS neurons during
development is regulated by 'dependence receptors' that
activate pro-death signaling when not bound to their ligands
(reviewed in Dekkers et al.20). Although the extent of
expression and the number of dependence receptors still
remain to be determined in the developing brain, the presence
of such a mechanism indicates that neuron type-specific
pro-death pathways do exist.

Neuron type-specific pro-survival mechanisms

As different types of neurons survive in different brain areas
and at different periods of brain development, the transcrip-
tome of the surviving neuron should 'prepare' the neuron to
survive in a certain environment. The preparation is coordi-
nated by distinct sets of transcription factors that are involved
in differentiation of specific types of neurons. These transcrip-
tion factors drive expression of transmembrane and intracel-
lular molecules that are necessary to recognize and respond
to the local environment. Neurons failing to differentiate
properly are less likely to respond to signals from local brain
environment and could be eliminated during maturation.
Interestingly, the period of developmental cell death differs
across types of neurons/brain areas. For instance, GABAergic
interneurons of the cortex and medium spiny neurons exhibit
one peak of cell death at P7-P111 and P2-P7,21 respectively,
whereas two distinct peaks of developmental cell death have

been observed for dopaminergic neurons, at P0-P6 and
~P14,2 and for Purkinje cells, at ~E15 and ~P3.22

The difference in survival mechanisms between embryoni-
cally and adult-born neurons illustrates the importance of time
period of neuronal survival with regard to brain maturation,
since embryonically born immature neurons must survive in
immature brain, whereas adult-born immature neurons must
survive inmature brain. Thus, there is high pressure for adult-
born neurons to integrate into the pre-existing mature circuits,
which is absent for embryonically born neurons. This is
supported, for instance, by a higher vulnerability of adult-born
neurons to impairment in NMDA receptor (NMDAR)
expression, since ablation of NR1 or NR2B subunit markedly
augments death of adult-born neurons duringmaturation,23–25

whereas studies of global or early postnatal knockout of these

Figure 1 Neuronal death during embryonic and adult neurogenesis. (a) During embryonic brain development, neurons are born around the ventricles and migrate toward
various brain regions. Cortical principal neurons and interneurons are born in the dorsal and ventral telencephalon, respectively. The majority of interneurons are born in the
medial and caudal (data not shown) ganglionic eminences (MGE and CGE, respectively), whereas striatal medium spiny neurons are born in the lateral ganglionic eminence
(LGE). Dopaminergic and cerebellar neurons are born in the ventricular zones of the mesencephalon and cerebellum, respectively. Red cells in each region depict dying immature
neurons. Peak period of developmental cell death is given for each type of neurons. (b) The SGZ of the dentate gyrus in the hippocampus and the SVZ of the lateral ventricles
continue to generate neurons throughout life. The SGZ generates neuroblasts that translocate within the SGZ and mature into excitatory granule cells. Neuroblasts that are
generated in the SVZ migrate a long distance through the rostral migratory stream toward the olfactory bulb and mature into two major populations of inhibitory interneurons –
granule and periglomerular cells. More than half of adult-generated neurons die by apoptosis. Red cells in each region depict dying immature neurons. Peak period of
developmental cell death is given for each type of neurons. CB, cerebellum; CP, cortical plate; CX, cortex; DG, dentate gyrus; GE, ganglionic eminence; HP, hippocampus; LGE,
lateral GE; LV, lateral ventricle; MB, midbrain; MGE, medial GE; RMS, rostral migratory stream; OB, olfactory bulb

Figure 2 Components of survival/death signaling in immature neurons.
Extracellular pro-survival factors that are available in a certain brain area stimulate
a variety of receptors and ion channels on neurons located in the area. Transcription
factors involved in neuronal differentiation determine what combination of receptors
and ion channels will be expressed on a particular neuron. Such neuron type-specific
combination of receptors and channels propagates pro-survival signaling to
intermediate components, some of which express broadly, whereas others have
restricted expression only in one or few types of neurons. Finally, all pro-survival
signaling converges on core components that inhibit neuronal death
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subunits do not report increase in apoptosis of embryonically
produced neurons.26–28

The effect of brain maturation on neuronal survival might
also be illustrated by a decrease in survival of small axonless
neurons – a type of neurons that is generated both during
embryonic and adult neurogenesis.29 The majority of these
neurons survive in the deep cortical layers when circuits are
still immature, and gradual maturation of the brain correlates
with a decreased number of newly added neurons,29 although
the number of these neurons could be increased by
pathological conditions such as stroke.30

Support of neuronal survival by the local environment
depends on whether a specific factor itself and its receptor are
expressed in the region. Availability of pro-survival factors
varies within the brain and even cortical layers,31–33 and
response to different pro-survival factors markedly changes
over a course of neuronal maturation.34 Moreover, certain
intracellular pro-survival molecules are present only in some
types of neurons, but not in others. For instance, BDNF
promotes survival of dopaminergic neurons, medium spiny
neurons and cerebellar granule cells,35–37 but it is dispensable
for survival of GABAergic neurons in the cortex1 although the
latter express TrkB receptor and BDNF is available in the
surrounding environment.31,38

In the following, we summarize the evidence for neuron
type-specific pro-survival mechanisms during embryonic and
adult neurogenesis (see overview in Table 1).

Embryonic neurogenesis: glutamatergic neurons. The
most information regarding survival of glutamatergic neurons
in the brain was obtained by studying cerebellar granule cells
and principal neurons of the hippocampus and cortex
(Figure 3a). The peak of cortical principal neuron cell death
is at P4–P8,39 whereas the majority of immature cerebellar
granule cells die at P5–P9.40 Although knockout of a single
neurotrophic factor or its receptor does not have large effects
on neuronal survival during brain development,41 double
knockout of Ntrk2 and Ntrk3 (genes coding for TrkB and TrkC,
respectively) results in the massive death of immature
granule cells in the cerebellum and dentate gyrus.42 This
could be explained either by redundancy of intracellular pro-
survival pathways that are triggered by each of the receptors
or by compensatory effects in knockout mice. Furthermore,
often data obtained in vivo differs from in vitro experiments,
highlighting importance of brain environment for action of a
particular pro-survival factor. For instance, BDNF was shown
to promote neuronal survival in the culture,43 but deletion of
Bdnf in all postmitotic neurons in the brain did not have a
large effect on their survival.44

Granule cells of the cerebellum represent a population of
glutamatergic neurons that could be a target of pro-survival
action of BDNF. Deleting Camk4 and Camkk2 genes in mice
enhances apoptosis in immature granule cells in the cere-
bellum, which is associated with a decrease in levels of
CREB1 and BDNF expression.37 It was proposed that Ca2+

entering immature granule cells triggers activation of the

Table 1 Examples of neuron type-specific pro-survival genes

Factorsa Embryonic Adult References

CX EX CB GC MB DA CB PC ST MS CX IN OB PG OB GC DG GC

BDNF/TrkBb - + + - + - +c - ?d 35–37,44,56,58,59,76,145,146

NGF/TrkAe - - - - - - - - ?f 147–151

NT-3/TrkC - + - - + -g ? ? - 35,42,152–155

IGF1/ IGF1R +h + - + ? -i - - + 45,46,51,84,85,156,157

β2 nAChR - ? ? ? - -g - + - 68,158–160

TGFβ/TGFβR + ?j + ? ? ? + - + 9,64,83,161

CTGF - - - - - - + - - 9,162

p75NTR - - + - ? ? +k + ? 60,74,163–167

NR1l,
m

- - - - - - + + + 23,24,26,100,168,169

NR2Bl - - - - - - + + ? 25,27,28

Abbreviations: Neuron types: CXEX, cortical excitatory neurons; CBGC, cerebellar granule cells; MBDA,midbrain dopaminergic; CBPC, cerebellar Purkinje cells; ST
MS, striatal medium spiny neurons; CX IN, cortical interneurons; OBPG, olfactory bulb periglomerular cells; OBGC, olfactory bulb granule cells; DGGC, dentate gyrus
granule cells
'+' involved; '-' studied, and no involvement was found; '?' no in vivo data/controversial data
aNote that only data from in vivo experiments are included in the Table, as neuron type-specific mechanisms of survival rely on complex brain environment
bAlthough TrkB can be also activated by NT-3 and NT-4, usually the phenotype of mice with ablated/disturbed TrkB expression correlates with those mice where Bdnf
expression was ablated/disturbed
cOnly dopaminergic
dUsing different mouse models and experimental conditions, BDNF/TrkB signaling was either shown to be involved in or to be dispensable for apoptosis
eOwing to highly specific expression of TrkA in cholinergic (ChAT+) neurons, none but a subpopulation of ChAT+ neurons in the brain depends on NGF/TrkA,
highlighting neuron type-specific pro-survival mechanisms
fOnly exogenously delivered NGF was shown to have an effect on hippocampal neurogenesis
gFew gene ablation studies showed lack of effect on neuronal death in the cortex, although interneurons as a subclass of neurons were not studied
hMainly layer V
iNot all subtypes were analyzed
jAlthough there are a number of in vitro studies showing both positive and negative involvement of TGFβ in survival of granule cells, there is a lack of in vivo data
supporting a role of TGFβ in neuronal survival in the cerebellum
k Likely to be affected as many migrating neuroblasts exhibit p75NTR-dependent apoptosis
lOnly in vivo data regarding involvement of Grin1 (NR1) and Grin2b (NR2B) genes are included in the Table, and studies with pharmacological inhibition of NMDA
receptors are omitted
mKnockout of Grin1 was shown to increase death only in the thalamus,169 but not in any other region of the brain, highlighting neuron type-specific pro-survival
mechanisms
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Figure 3 Neuron type-specific pro-survival signaling in embryonically born neurons. (a) Signaling involved in survival and cell death of glutamatergic neurons exemplified by
cerebellar granule cells and cortical projection neurons. (b) Pro-survival and apoptotic signaling in GABAergic neurons illustrated by Purkinje cells, medium spiny neurons and
cortical interneurons. (c) Signaling regulating survival or cell death in dopaminergic neurons. Green arrows: activation of signaling; dashed green arrow: proposed activation of
signaling; red blunt arrows: inhibition of signaling; black arrows: activation of receptors on immature neurons from the extracellular space; dashed black arrows: protein secretion
to the extracellular space; red cross: lack of signaling; Pi: phosphorylation
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calmodulin/CaMKK2/CaMKIV cascade, which, in turn, acti-
vates CREB1 and transcription of Bdnf gene.37 Survival of
granule cells is also promoted by IGF1 that enhances
expression of Bcl-2 and Bcl-xL thus inhibiting caspase-3
activity.45

The existence of neuron type-specific pro-survival mechan-
isms in glutamatergic neurons was recently highlighted by the
identification of a pro-survival pathway that was largely
restricted to cortical principal neurons of layer V, which require
trophic support frommicroglia to survive during early postnatal
development.46 Microglia secrete IGF1, which binds to IGF1R
on immature layer V neurons and activates the IRS1/PI3K/
Akt1 cascade inhibiting caspase-3-dependent apoptosis.46

Microglia are activated via CX3CL1, which is released from
layer V neurons and interacts with CX3CR1 on microglia.
Interestingly, caspase-3-dependent apoptosis of cortical

excitatory, but not inhibitory, neurons was shown to be
activated by Rho GTPase RhoA.47 Inhibiting RhoA signaling
in the developing brain rescues up to 25% of cortical neurons
from apoptosis.

Embryonic neurogenesis: GABAergic neurons. Only few
studies have investigated developmental death of GABAergic
neurons, and these were mainly focused on Purkinje cells of
the cerebellum and medium spiny neurons of the striatum
that exhibit a peak of cell death at ~E15 and ~P3,22 and at
P2–P7,21 respectively (Figure 3b). Lhx1/Lhx5 transcription
factors together with their co-activator Ldb1 promote survival
of postmitotic Purkinje cells at E13.5–E15.5.48 Interestingly,
two members of the EBF (early B-cell factor) family of
transcription factors – EBF1 and EBF2 – are involved in
survival of medium spiny49 and Purkinje neurons,50 respec-
tively, during perinatal development. In Purkinje cells, EBF2
binds to Igf1 promoter and activates Igf1 expression that
results in local IGF1 secretion and potentiation of Akt1-
dependent pro-survival signaling.51 All the aforementioned
transcription factors were also shown to be involved in
differentiation and/or migration of medium spiny and Purkinje
neurons, and thus immature neurons might die because they
are not able to complete their differentiation programs.
Although, overall, neurotrophins do not have a large role in

survival of immature GABAergic neurons, BDNF and NT-3
were shown to enhance survival of immature medium spiny
neurons, as they are secreted by midbrain dopaminergic
neurons during a critical period of striatal neuron survival and
activate pro-survival signaling via TrkB and TrkC receptors.35

Recently, it was shown that around 40%of immature cortical
GABAergic interneurons die during the first two postnatal
weeks (with the peak at P7–P11).1 Their survival did not
depend on TrkB expression, but was regulated by either cell-
autonomous or population-autonomous mechanisms that
activated pro-apoptotic Bax signaling.

Embryonic neurogenesis: dopaminergic neurons. Apop-
tosis of immature dopaminergic neurons occurs at two
developmental stages – at P0–P6 and ~P14.2 Three main
transcription factors involved in specification dopaminergic
neurons – Nurr1, Pitx3 and En1 – also regulate their
survival.52–55 Both Nurr1 and Pitx3 were shown to activate
expression of BDNF,56,57 which promotes survival of a

subpopulation of dopaminergic neurons from E16 onward36

via TrkB receptors58,59 (Figure 3c).
Another BDNF receptor, low-affinity neurotrophin receptor

p75NTR, promotes cell death of immature dopaminergic
neurons.60 Expression of p75NTR is repressed by En1/2,60

and as En1 was also proposed to co-activate expression of
Nurr1-dependent genes,61 En1 could enhance survival of
immature dopaminergic neurons via two pathways – enhan-
cing BDNF expression (via Nurr1) and repressing p75NTR

expression. Pro-death signaling from p75NTR suppresses
ERK1/2 activity and likely inhibits anti-apoptotic activity of
Bcl-2 family members,60 thus activating a classical apoptosis
pathway via Bax, caspase-3 and caspase-9.62 Caspase-3/-9
activation is inhibited by dual-specificity tyrosine-phosphor-
ylation regulated kinase 1A (Dyrk1a), a Down syndrome-
associated gene.63

Involvement of neuron type-specific signaling in survival of
dopaminergic neurons is highlighted by inhibition of develop-
mental apoptosis by TGFβ-Smad-Hipk2 pathway.64 Interest-
ingly, although transforming growth factor (TGF) β1 and β2 had
little effect onmodulation of survival of immature dopaminergic
neurons, stimulation by TGFβ3 led to activation of Smad2/3
that directly interacted with Hipk2 and inhibited caspase-3-
dependent apoptosis.

Adult neurogenesis: subventricular zone (SVZ). Survival
of postnatally born neurons in the olfactory bulb is regulated
by neuronal activity (Figure 4a). Ablation or enhancement of
olfactory activity onto maturing granule cells decreases or
increases their survival, respectively.65,66 However, similar
enhancement does not affect periglomerular neurons,9,66

which could be explained by neuron type-specific pro-survival
mechanisms. Furthermore, stimulation of periglomerular
neurons by a single odorant decreases their survival in the
region that is activated by the odorant.9 Apoptosis is
stimulated by connective tissue growth factor (CTGF) that,
in combination with TGFβ2, activate TGFβRs and Smads in
immature periglomerular neurons.9

Few neurotransmitter receptors on newborn SVZ neurons
mediate pro-survival effects of neuronal activation. Glutamate
NMDAR activity is required for survival of neuroblasts during
their migration from the SVZ through the RMS and when
maturing in the olfactory bulb.23,67 This pro-survival effect
likely depends on Ca2+ that enters into neuroblasts via
NMDAR. When already in the olfactory bulb, expression of
nicotinic acetylcholine receptor (nAChR) subunit β2 regulates
apoptosis in newborn granule cells.68 Knockout of the subunit
results in 50% increase in survival of immature neurons, and
stimulation of nAChR could be considered as another
'negative' regulator of immature neuronal survival in postnatal
neurogenesis, similar to CTGF.
Phosphorylation of CREB1 was shown to promote survival

of SVZ-derived neuroblasts,69,70 where CREB1 might be
activated by Ca2+ signaling via calmodulin and CaMKIV.71,72

As NMDAR are involved in survival of SVZ neuroblasts,23,67

and upon opening they allow Ca2+ entry into neuroblasts,67

it is likely that Ca2+ entry via NMDAR triggers
CREB1-dependent pro-survival cascade (although other
receptors on neuroblasts could also mediate Ca2+

entry).72,73 Knockout of Creb1 was shown to decrease
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expression of the polysialylated isoform of the neural cell
adhesion molecule (PSA-NCAM),70 which, in turn, could
promote survival of immature olfactory bulb neurons by
inhibiting p75NTR expression.74 Among p75NTR activating
neurotrophins only the role of BDNF in postnatal SVZ
neurogenesis has been studied, and Ntrk2 knockout
decreases the survival of dopaminergic periglomerular neu-
rons, but not any other cells.75,76

Mammalian target of rapamycin (mTOR) pathway promotes
the survival of SVZ neuroblasts via hypoxia-inducible factor 1a
(HIF1A).77 Tuberous sclerosis proteins 1 and 2 (TSC1/2)
inhibit mTOR, and HIF1A is strongly upregulated in Tsc1− /−
neuroblasts, thereby increasing their survival.77 mTOR is
most likely activated by PI3K/Akt1 signaling as many
components of this pathway were shown to be present in
SVZ neuroblasts.72,78

Finally, pro-survival signaling in newborn SVZ neurons
converges on Bcl-2 family members and caspase− 3/− 9.7,79

Adult neurogenesis: subgranular zone (SGZ). Less is
known regarding neuronal survival in the SGZ in comparison
with the SVZ. Activation of NMDAR on newborn SGZ neurons
enhances their survival,24 and it is likely that the pro-survival
effect depends on Bcl-2 stimulation (Figure 4b).80 Protection of
newborn dentate gyrus neurons by Bcl-2 signaling was also
shown in transgenic mice that overexpress Bcl-2.81 Bcl-2
activity might be stimulated by Akt1 signaling, which was
shown to enhance neuronal survival in the SGZ.82 Cyclin-
dependent kinase-like 5 (CDKL5) activates Akt1 and also
inhibits Gsk-3β thus activating CREB1-dependent gene
expression. Similar to the SVZ, apoptosis in newborn SGZ
neurons converges on Bcl-2/Bax activity.6

Figure 4 Neuron type-specific pro-survival signaling in adult-born neurons. (a) Signaling involved in survival and cell death of immature neurons that are born during adult
neurogenesis in the SVZ. (b) Signaling involved in survival and cell death of immature neurons that are born during adult neurogenesis in the SGZ. Green arrows: activation of
signaling; red blunt arrows: inhibition of signaling; black arrows: activation of receptors on immature neurons from the extracellular space; Pi: phosphorylation

Survival of immature neurons in the brain
U Pfisterer and K Khodosevich

7

Cell Death and Disease



Two growth factors promote survival of granule cells in the
SGZ – TGFβ1 and IGF1.83,84 Importantly, both factors have
little (if any) contribution to survival of adult-born neurons in the
olfactory bulb,9,85 indicating neuron type-specific role of
TGFβ1 and IGF1 in survival of adult-born neurons.

Common signaling that regulates neuronal survival in
the brain

Many neuron type-specific pro-survival pathways eventually
converge on pro-apoptotic and pro-survival members of Bcl-2
family and caspase-3/caspase-9 (Figure 2). Neuronal apop-
tosis in the brain is inhibited by Bcl-2 and Bcl-xL pro-survival
proteins,86–89 whereas pro-apoptotic proteins, mainly Bax and
Bak, promote neuronal death.87,88 Massive death of immature
neurons in the brain of Bcl2l1− /− (gene name for Bcl-xL)
mice suggests that Bcl-xL is the major neuronal pro-survival
protein of Bcl-2 family,86,87 and it becomes important for
survival only at the stage of postmitotic neurons, but not
before.88 Another anti-apoptotic member of the Bcl-2 family,
myeloid cell leukemia 1 (Mcl-1), was also shown to be critical
for survival of immature neurons during embryonic
development.90

Several transcription factors promote neuronal survival,
most likely by activating transcription of pro-survival genes
and/or inhibiting pro-apoptotic genes. A family of myocyte
enhancer factor 2 (MEF2) transcription factors, MEF2A, 2C
and 2D, are expressed in the mouse brain during development
and are critical for the survival of immature neurons.91

Widespread loss of neurons was also reported for knockout
of another transcription factor – p73 (a member of p53 family
proteins).92 The loss of neurons started to be visible during
second postnatal week, and was attributed to the anti-
apoptotic role of the truncated form of p73, ΔNp73, which
antagonizes p53 function and inhibits Bax and caspase-3/-9-
dependent apoptosis.93 Finally, members of the CREB family
of transcription factors, CREB1 and CREM, activate pro-
survival signaling in postmitotic neurons around the time of
perinatal development (E16.5-P0).94

Activity-dependent survival of immature neurons via action
of GABA and/or glutamate neurotransmitters was proposed
for many neuronal subtypes.95 For instance, deletion of
syntaxin-binding protein 1 (Stxbp1) that is required for
synaptogenesis and neurotransmission results in widespread
neuronal death during brain development.96 Furthermore,
pharmacological inhibition of NMDAR leads to a pronounced
decrease in survival of neurons during postnatal brain
development.97–99 However, as discussed above, knockouts
of genes coding for NMDAR subunits showmarked increase in
neuronal death only during adult neurogenesis.26–28,100

Neuronal activity also generates reactive oxygen species
(ROS) that could damage maturing neurons and trigger
apoptosis. Protection from ROS is particularly important for
immature neurons since they are often easier to excite than
mature ones.101,102 It was recently shown that knockout of the
gene coding for the antioxidant protein lanthionine synthetase
C-like protein 1 (LanCL1) causes massive neuronal death in
the brain due to reduced glutathione-mediated antioxidant
defense and via Bax activation.103

Survival of neurons in injured brain

Immature neurons are more vulnerable to stress factors than
mature neurons, as it is easier for external stimuli to trigger
neuronal death during development than in adult brain.11

Although the exact mechanisms of such vulnerability are
unknown, it is likely that neurons over maturation devise a
highly protective strategy against any external stress. Further-
more, expression of some pro-death molecules, for example,
dependence receptors,19,20 could be limited to immature
neurons. Therefore, similar stress factors might be more
potent enhancers of neuronal death during development than
in adult brain.
In addition to common stress factors that stimulate neuronal

death both during development and in adult, few factors are
specific for the developing brain – for instance, misplacement
of neurons could trigger their death due to impairment in
neuronal connectivity. Certain types of immature neurons are
more strongly affected by the stress than the others high-
lighting neuron type-specific mechanisms of survival. Below
we discuss factors that affect survival of neurons during
abnormal brain development.

Oxidative stress. Oxidative stress contributes to severe
neurodevelopmental deficits in the developing mammalian
brain caused by chronic exposure to either reduced
(hypoxia–ischemia) or elevated (hyperoxia) levels of oxygen
(Figure 5).
Perinatal hypoxia–ischemia or neonatal stroke is the main

cause of neurodevelopmental deficits in newborns. It is
accompanied by an overall decrease in cortical and hippo-
campal volumes due to neuronal death and atrophy. One of
the major causes of neuronal death is excitotoxicity due to
overactivation of NMDAR on immature neurons by the release
of glutamate.104,105 Pathological influx of Ca2+ via NMDAR is
followed by aberrant production of free radicals and mitochon-
drial dysfunction, which leads to the release of cytochrome C
and, consequently, neuronal death.106,107 Importantly, inter-
neurons were shown to be less susceptible to hypoxic cell
death – although neonatal hypoxia slows maturation of
interneurons, it does not affect their survival.108

A glutamate-independent mechanism contributing to
hypoxia–ischemia-induced neuronal death reveals transient
receptor potential melastatin 7 (TRPM7) as a key factor.109 As
early as 24 h after neonatal ischemic insult, TRPM7 protein
levels were upregulated, which might lead to increase in
caspase-3-dependent apoptosis by inhibiting Akt1 and pro-
moting Bax versus Bcl-2 expression.
Overexposure to oxygen could cause hyperoxia in the brain,

which was shown to affect preterm born neonates receiving
oxygen supplementation.110 Hyperoxia mainly affects cortical
areas and in mice the effect on neuronal survival is most
pronounced between P3 and P7.111 Apoptosis is caspase-3
dependent and could be enhanced because of decreased pro-
survival signaling from Akt1 and Erk1/2.112 Importantly, the
effect is limited to immature neurons, as hyperoxia at later
ages does not affect neuronal survival. Hyperoxia also triggers
an inflammatory response that could further promote neuronal
death via increased levels of several interleukins - IL-1β, IL-18
and IL-18 receptor α (IL-18Rα).113
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Fetal alcohol spectrum disorders (FASDs). FASDs are
triggered by gestational alcohol exposure and lead to
impaired brain development accompanied by deficits in
cognitive functions.114 Data from animal models of prenatal
alcohol exposure suggest that neuronal cell death is one of
the major effects contributing to the disease phenotype
(Figure 6).115

Early postnatal (P7) exposure of rats to EtOH induces
widespread apoptosis, indicated by increased activation of
caspase-3 as early as 8 h and neurodegeneration within less
than 24 h after EtOH treatment.116 Differential susceptibility of
immature neurons to alcohol-induced stress is underlined by
variability of the extent of neuronal death in different brain
regions. Thus, the retrosplenial cortex and hippocampus were
most affected, whereas the olfactory bulb and piriform cortex
exhibited much less apoptosis.116 In another study, the overall
architecture of mouse brains exposed to alcohol at P7
appeared to be unaltered, but the number of calretinin-
positive and parvalbumin-positive GABAergic neurons was
strongly reduced, indicating that they are more prone to
alcohol-induced cell death when immature.117 Misplacing
GABAergic neurons could contribute to their death since low

doses of prenatal alcohol increase ambient GABA levels in the
extracellular space and upregulate GABAA receptors on
neuroblasts that lead to aberrant neuroblast migration.118

Ethanol possesses NMDA antagonist and GABAA agonist
activities and both activities could induce apoptosis during
brain development.97,119 Thus, apoptotic effects of ethanol
exposure are closely related to those observed with either
disrupted NMDA or elevated GABA signaling. The former has
been extensively studied in immature neurons using NMDAR
inhibitors causing rapid neuronal death of both excitatory and
inhibitory neurons associated with decreased Bcl-2, Erk1/2
and CREB1 and increased activated caspase-3 levels.120–122

Embryonically administered EtOH was also shown to
decrease activation of pro-survival PI3K/Akt1 signaling and
increase activation of glycogen synthase kinase-3β
(GSK-3β).123 The latter could stimulate neuronal death by
activating Bax and, thus, caspase-3-dependent apoptosis.124

Neuronal cell loss as a consequence of alcohol exposure in
models of FASD can be attributed in part to oxidative stress.
Analysis of the cerebella of P1 rats chronically exposed to
ethanol from E6 shows a decrease in mRNA levels of
mitochondrial respiration complex genes in granule cells,

Figure 5 Cell signaling under hypoxic (purple arrows) and hyperoxic (blue arrows) conditions in immature neurons in vivo. Arrows: activation of signaling; blunt arrows:
inhibition of signaling; vertical small arrow: elevated expression level
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combined with increased expression of pro-apoptotic p53 and
oxidative stress markers.125 EtOH also inhibits nuclear
translocation of nuclear factor erythroid 2-related factor 2
(Nrf2), a transcription factor that is responsible for expression
of those genes that protect against oxidative stress and reduce
production of ROS.126 In the cerebellum, ROS can activate
c-jun N-terminal kinase (JNK) at P4, but not at P7 rats,
highlighting a time window in immature granule cells when
they are most vulnerable to the oxidative stress.127,128 JNK, in
turn, removes pro-survival 14-3-3 protein from its dimer with
Bax, thus making it possible for cytosolic Bax to translocate
into the mitochondria leading to mitochondrial dysfunction and
neuronal apoptosis via release of cytochrome C.

Traumatic brain injury (TBI). Although brain injury due to
physical trauma is common in both developing and adult
brains, the effect of such injury on the immature brain is much
more devastating.129 Strikingly, in a rat model of the disorder,
the extent of neuronal apoptosis is age-related, with the
P3–P7 brains being most vulnerable.130 Apoptosis of
immature neurons was associated with enhanced expression
of c-Jun and reduced expression of Bcl-2 and Bcl-xL leading

to the release of cytochrome C and neuronal cell death.130,131

Caspase-1 was shown to promote neuronal death by
activating two proinflammatory cytokines, IL-1β and IL-18,
acting via IL-18 R on neurons.113,132 Interestingly, immature
neurons are also the most affected by TBI population in the
regions of adult neurogenesis in mice.133,134

Other diseases. Neuronal death contributes to phenotypic
effects observed in several other neurodevelopmental dis-
orders. Defects in microtubules because of mutations in
tubulin alpha or beta genes are often associated with cortical
malformations (e.g., lissencephaly or polymicrogyria)
because of neuronal misplacement and subsequent death
of misplaced neurons.135 For instance, deletion of Tubb2
gene during brain development causes aberrant neuronal
migration and arrest of cells near the ventricles that
eventually leads to enhanced neuronal apoptosis.135,136

Although apoptosis was proposed to be augmented in a
variety of psychiatric disorders, including schizophrenia and
autism spectrum disorders (ASDs), the data were often
obtained by analyzing adult brains. Experimental evidence in
younger brains is rather limited to gene expression

Figure 6 Cell signaling upon alcohol exposure of immature neurons in vivo. Green arrows: activation of signaling; red blunt arrows: inhibition of signaling; vertical small arrow:
elevated expression level
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measurements using western blot or PCR.137 Furthermore, it
remains to be investigated whether a reduction in the number of
GABAergic neurons that was reported in postmortem brains of
patients with schizophrenia, bipolar disorder and ASDs138,139

occurs before neuronal maturation is finished. In addition, it
might be that the strength of marker expression rather than the
number of neurons is affected.140 Although knockout/knock-
down of genes that are associated with psychiatric disorders
has been reported to decrease the number of immature
neurons in mice,141 other studies showed that maturation
rather than survival of immature neurons is affected.142–144

Conclusions

Themammalian brain is the most complex tissue and includes
many more neuronal subtypes than other parts of the nervous
system. During perinatal development and in the regions of
adult neurogenesis, neurons in the brain are overproduced
and multitudes of immature neurons die before they reach
maturity. Although there are certain core components of
survival/apoptotic machinery in immature neurons, it seems
that various types of neurons also exploit pro-survival path-
ways that are specific only for one or few type(s) and not
utilized in others. Such neuron type-specific components of
pro-survival signaling could indicate adaptation toward an
optimal survival rate of overproduced neurons according to
type of neuron and brain region. The number, type and
position of neurons that survived should affect both local
neuronal circuits and higher brain activities, for example,
oscillations. As there is increasing evidence that some types of
neurons are more susceptible to certain injuries in the
developing brain, more targeted therapeutic strategies might
be needed to treat such brain disorders. The advantage of
targeting neuron type-specific pro-survival pathways is to
avoid side effects of the therapy on other neuron/cell types that
are not affected in the disorder. Future studies will determine
the extent to which neuron type-specific pro-survival signaling
is utilized in normal brain and in pathological conditions and
how it contributes to brain information processing.
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