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Desferrioxamine reduces ultrahigh-molecular-weight
polyethylene-induced osteolysis by restraining
inflammatory osteoclastogenesis via heme
oxygenase-1

Hui Kang1,3, Yufei Yan1,3, Peng Jia2,3, Kai Yang1, Changjun Guo1, Hao Chen1, Jin Qi1, Niandong Qian1, Xing Xu1, Fei Wang1,
Changwei Li*,1, Lei Guo*,1 and Lianfu Deng*,1

As wear particles-induced osteolysis still remains the leading cause of early implant loosening in endoprosthetic surgery, and
promotion of osteoclastogenesis by wear particles has been confirmed to be responsible for osteolysis. Therapeutic agents
targeting osteoclasts formation are considered for the treatment of wear particles-induced osteolysis. In the present study, we
demonstrated for the first time that desferrioxamine (DFO), a powerful iron chelator, could significantly alleviate osteolysis in an
ultrahigh-molecular-weight polyethylene (UHMWPE) particles-induced mice calvaria osteolysis model. Furthermore, DFO
attenuated calvaria osteolysis by restraining enhanced inflammatory osteoclastogenesis induced by UHMWPE particles.
Consistent with the in vivo results, we found DFO was also able to inhibit osteoclastogenesis in a dose-dependent manner in vitro,
as evidenced by reduction of osteoclasts formation and suppression of osteoclast specific genes expression. In addition, DFO
dampened osteoclasts differentiation and formation at early stage but not at late stage. Mechanistically, the reduction of
osteoclastogenesis by DFO was due to increased heme oxygenase-1 (HO-1) expression, as decreased osteoclasts formation
induced by DFO was significantly restored after HO-1 was silenced by siRNA, while HO-1 agonist COPP treatment enhanced
DFO-induced osteoclastogenesis inhibition. In addition, blocking of p38 mitogen-activated protein kinase (p38MAPK) signaling
pathway promoted DFO-induced HO-1 expression, implicating that p38 signaling pathway was involved in DFO-mediated HO-1
expression. Taken together, our results suggested that DFO inhibited UHMWPE particles-induced osteolysis by restraining
inflammatory osteoclastogenesis through upregulation of HO-1 via p38MAPK pathway. Thus, DFO might be used as an innovative
and safe therapeutic alternative for treating wear particles-induced aseptic loosening.
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Artificial joint replacement has emerged as an effective treatment
for severe joint degeneration.1 Although much effort has been
made to improve the efficacy of artificial joint replacement,
ultrahigh-molecular-weight polyethylene (UHMWPE) wear
particles-induced osteolysis still remains the leading cause of
early implant loosening in endoprosthetic surgery.2–4 Although
the underlying mechanisms by which UHMWPE wear particles
promoted-osteolysis are not fully elucidated, studies have
showed that osteolysis at the periprosthetic site is dominantly
due to the enhanced osteoclastic resorption activity.5,6

Normal bone remodeling maintains constant bone mass by
an orchestrated balance between the destruction of old bone

by osteoclasts and rebuilding by osteoblasts.7 Osteoclasts,
arising from hematopoietic stem cells, are the sole bone-
resorbing cells.8–10 Osteoclasts undergo differentiation and
fusion resulting in large multinucleated cells in the presence of
receptor activator of nuclear factor-κB ligand (RANKL) and
macrophage-colony stimulating factor (M-CSF).11 Wear par-
ticles can stimulate macrophages, phagocytes and T lympho-
cytes to produce high concentrations of chemokines and
cytokines, such as M-CSF, interleukin (IL)-1, IL-6, prostaglan-
din E2 (PGE2) and tumor necrosis factor-α (TNF-α), which
lead to increase of RANKL and/or have direct effects on
osteoclastogenesis and bone resorption.12–14 RANKL binds
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to its receptor RANK, resulting in a cascade of intracellular
events, such as the activation of nuclear factor-κB (NF-κB)
signaling pathway, the mitogen-activated protein kinases
(MAPKs) signaling pathways and the nuclear factor of
activated T-cells1 (NFATc1) signaling pathway, which are
essential for osteoclast formation.15–17 Furthermore, wear
particles also result in the production of reactive oxygen
species (ROS), which induces oxidative stress and has a
major role in regulating osteoclast function and bone
resorption.18 Heme oxygenase-1 (HO-1), the rate-limiting step
in heme catabolism, besides of working as a negative
regulator of inflammation and oxidative stress, which has also
been demonstrated as an osteoclastogenesis suppressor.19

Furthermore, HO-1 dampens early differentiation of osteo-
clast precursors into osteoclasts, but not acts on mature
osteoclasts.19,20 In addition to the cytokines and growth
factors, it is reported that iron homeostasis may contribute
to fine-turning of the RANKL-induced osteoclast
development.21,22 In general, inhibitions of osteoclasts forma-
tion and/or function by modulating microenvironmental
cytokines, growth factors, HO-1 and/or iron homeostasis
may be critical for preventing from wear particles-induced
osteolysis and pathological bone loss.
Desferrioxamine (DFO) is a trihidroxamate, natural

siderophore, capable of chelating iron, aluminum and other
trivalent metallic ions forming stable chemical complexes.23

DFO has been widely used as a therapeutic agent for treating
iron overload diseases.24 Growing evidences suggest that
DFO can regulate the osteoblasts proliferation and differentia-
tion and inhibit the osteoclasts formation.25–27 Therefore, DFO
may be used as a therapeutic agent for the treatment of bone
metabolic disease, such as osteoporosis. However, it remains
unclear whether DFO can prevent UHMWPE particles-
induced osteolytic diseases in vivo.
In the present study, we demonstrated for the first time that

DFO could significantly alleviate particles-induced osteolysis
in an UHMWPE particles-induced mouse calvaria osteolysis
model. Furthermore, UHMWPEwear particles-induced osteo-
clastogenesis in the eroded bone surface was significantly
attenuated by the treatment of DFO, which suggested DFO
prevented UHMWPE particles-induced osteolysis by inhibition
of osteoclast function and formation. Subsequently, we
accomplished a series of biochemical and morphological
studies to explore the effect of DFO on osteoclastogenesis.
We found that DFO was able to inhibit osteoclastogenesis in a
dose-dependent manner. Mechanistically, the reduction of
osteoclastogenesis by DFO was due to increasing of HO-1
expression. In addition, blocking of p38 signaling pathway
promoted DFO-induced HO-1 expression, implicating that p38
signaling pathway was involved in DFO-mediated HO-1
expression. Taken together, our results suggested that DFO
could potentially be served as an alternative therapeutic option
for UHMWPE particles-induced osteolysis.

Results

DFO alleviated UHMWPE particles-induced osteolysis
in vivo. A murine calvaria osteolysis model was used to
observe the effect of DFO on UHMWPE particles (Figure 1a)-

induced osteolysis. Micro-CT analysis showed that extensive
bone resorption was presented in the UHMWPE particles
group (Vehicle), which was significantly attenuated by DFO
treatment in a dose-dependent manner (Figure 1b). Further-
more, BMD, BV/TV and total volume of pore space in the
region of interest (ROI) were also measured. The results
showed that osteolysis was significantly increased in the
vehicle group compared with sham control, while DFO
injection with 10 mg/kg (low) or 30 mg/kg (high) daily could
significantly prevent from UHMWPE particles-induced osteo-
lysis (Figures 1c–e).
Subsequently, histological assessment and histomorpho-

metric analysis were accomplished to detect the effect of DFO
on UHMWPE particles-induced osteolysis. Hematoxylin and
eosin (H&E) staining showed that there were much more
inflammatory responses and prominent osteolysis in vehicle
group compared with sham group, while the DFO-treated
groups exhibited reduced inflammatory responses and osteo-
lysis (Figure 2a). Consistent with the histological results, the
calvarias culture results also confirmed that DFO significantly
dampened particles-induced inflammatory responses, as the
increased IL-1β (Figure 2b), IL-6 (Figure 2c) and TNF-α
(Figure 2d) expression in the particles group were all
abundantly decreased after DFO treatment. Furthermore,
TRAP staining showed that the number of osteoclasts lined
along the eroded bone surface was significantly increased in
vehicle group compared with sham group, but which was
obviously reduced in both low (10 mg/kg) and high (30 mg/kg)
concentrations of DFO-treated groups (Figures 2e and f).
Taken together, these results suggested that DFO treatment
could markedly protect from UHMWPE particles-induced
osteolysis via dampening inflammatory osteoclastogenesis
in vivo.

DFO inhibited osteoclastogenesis in vitro. Having
observed DFO attenuated UHMWPE particles-induced
osteolysis by suppression of osteoclastogenesis in vivo, we
next detected the effect of DFO on osteoclasts formation
in vitro. Bone marrow-derived macrophages (BMMs) were
induced with 30 ng/ml M-CSF and 50 ng/ml RANKL in the
presence of different concentrations of DFO for 5 days. The
results of TRAP staining showed that the number of mature
osteoclasts was significantly decreased by DFO in a dose-
dependent manner. Approximately 50% fewer of TRAP-
positive osteoclasts were observed in cells treated with 12 μM
DFO compared with the control group, and there were almost
no mature osteoclasts after 50μM DFO treatment (Figures 3a
and b). Consistent with the results of TRAP staining, DFO
also inhibited TRAP activity of osteoclasts in a dose-
dependent manner (Figure 3c). To determine whether DFO-
inhibited osteoclastogenesis was due to the cytotoxic effects
of DFO, we performed a CCK-8 assay to examine the effect
of DFO on cells viability. The results showed that no
significant cytotoxic effect was observed in BMMs treated
with DFO, even at concentration up to 50 μM (Figure 3d),
suggesting that DFO could inhibit osteoclasts formation
without any cytotoxic effects. To further examine at which
stage DFO inhibited osteoclastogenesis, 50 μM DFO was
added into culture medium at 0–4 days during osteoclasto-
genesis. The results showed that DFO could significantly
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inhibit osteoclasts formation at early stage (days 0–3),
whereas adding DFO to osteoclastic precursor cells at late
stage (day 4) could not affect osteoclasts formation, which
predicted that DFO inhibited osteoclasts differentiation at
early stage but not at late stage (Figures 3e and f).
A set of genes have been found to be associated with

osteoclasts differentiation and formation, such as TRAP,
c-Fos, Cathepsin K, DC-STAMP, V-ATPase a3 and V-ATPase
d2.28 Therefore, to further examine the inhibitory effect of
DFO on osteoclasts formation, we detected the effects of
DFO on these genes expression. Our results showed that
these genes expression were obviously upregulated during
RANKL-induced osteoclasts formation, whereas which were
all markedly suppressed by 50 μM DFO in a time-dependent
manner (Figures 4a–f). Furthermore, DFO also inhibited these
genes expression in a dose-dependent manner (Figures 4g–l).

Taken together, these results further strengthened our conclu-
sion that DFO could decrease osteoclasts formation.

DFO inhibited osteoclastic bone resorption and F-actin
ring formation. Even though DFO could impair osteoclasts
formation, it was unclear whether DFO could inhibit osteo-
clasts activity. Therefore, we performed pit formation assay to
estimate the effect of DFO on osteoclastic bone resorption.
BMMs were cultured on bone slices, and induced by M-CSF
and RANKL in the presence of different concentrations of
DFO for 10 days. We found a significant increase of pits
formation in the control group. However, the resorption area
was markedly decreased in DFO-treatment group. Further-
more, we found DFO inhibited osteoclastic bone resorption in
a dose-dependent manner, as the resorption area decreased
by 60% after 12 μM DFO treatment, and there was almost no

Figure 1 DFO alleviated UHMWPE particles-induced mouse calvaria osteolysis. (a) Scanning electron micrograph of UHMWPE particles. (b) Representative micro-CT
three-dimensional reconstructed images from each group. Scale bars, 3 mm. (c–e) BMD, BV/TVand total volume of pore space in the region of interest were measured. Low and
high represent 10 and 30 mg/kg DFO application, respectively. n= 6, *Po0.05, **Po0.01
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obvious pits formation when the concentration of DFO
reached to 25 μM DFO and 50 μM (Figures 5a and b). In
addition, a well-polarized F-actin ring was required for
efficient bone resorption. Therefore, we performed F-actin
ring staining to estimate the effect of DFO on osteoclastic
bone resorption. The clear F-actin ring structures were

observed in the untreated control group (Figures 5c and d).
However, the F-actin ring structures were significantly
disrupted when BMMs incubated with 12, 25 or 50 μM DFO
(Figures 5c and d). Taken together, all these results
demonstrated that DFO could inhibit osteoclastic bone
resorption.

Figure 2 The inhibitory effects of DFO on UHMWPE particles-induced mouse calvarial osteolysis were observed by histological and histomorphometric analysis. (a) H&E
staining showed much more inflammatory reaction and prominent osteolysis in vehicle group compared with sham group, while the DFO-treated groups exhibited reduced
inflammation and osteolysis. Scale bars, 500 μm. The rightmost pictures designate the larger magnification of the regions shown in inset. Scale bars, 300 μm. (b–d) The
concentration of IL-1β (Figure 2b), IL-6 (Figure 2c) and TNF-α (Figure 2d) in the supernatant after 72 h of calvaria culture detected by ELISA. (e,f) TRAP staining showed that the
number of osteoclasts lined along the eroded bone surface was significantly increased in UHMWPE particles group, which was obviously reduced in both low and high
concentrations of DFO-treated groups. Red arrows indicated TRAP-positive cells. Low and high represent 10 and 30 mg/kg DFO application, respectively. Scale bars, 300 μm.
n= 6, **Po0.01
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DFO mediated osteoclastogenesis by regulating
HO-1 expression. Since we have observed the anti-
osteoclastogenesis function of DFO in vivo and in vitro, we
next sought to explore the intrinsic mechanisms by which

DFO mediated osteoclastogenesis. HO-1, the rate-limiting
step in heme catabolism, which has been proved to be a
negative regulator in osteoclastogenesis, so we hypothesized
that DFO might regulate osteoclastogenesis by mediating

Figure 3 DFO inhibited osteoclastogenesis in vitro. (a) BMMs were induced with 30 ng/ml M-CSF and 50 ng/ml RANKL in the presence of different concentrations of DFO for
5 days, followed by staining with TRAP. Scale bars, 50 μm. (b) The number and area of TRAP-positive cells was counted. n= 4, **Po0.01. (c) TRAP activity assessment was
accomplished in BMMs treated with different concentrations of DFO during osteoclastogenesis. n= 4, **Po0.01. (d) CCK-8 assay was performed to examine the effect of
different concentrations of DFO on cells viability. n= 6, *Po0.05, **Po0.01. (e) TRAP staining was performed in BMMs treated with DFO at different stage during
osteoclastogenesis. Scale bars, 50 μm. (f) The number and area of TRAP-positive cells was counted. n= 4, **Po0.01
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HO-1 expression. To demonstrate our hypothesis, we first
detected the effect of DFO on HO-1 expression. Osteoclastic
precursor cells were treated with different concentrations of
DFO in the presence of RANKL for 3 days, western blot and
qRT-PCR analysis showed that DFO could induce HO-1
protein and mRNA expression in a dose-dependent manner
(Figures 6a and b). Furthermore, the immunofluoresent
analysis also demonstrated the stimulatory effect of DFO
on HO-1 expression (Figure 6c). Taken together, all these
results demonstrated DFO-induced HO-1 expression during
osteoclastogenesis.
Having observed DFO increased HO-1 expression, nextly

we detected whether HO-1 was essential for DFO-inhibited
osteoclastogenesis. Firstly, we performed gain-of-function
experiment, in which we incubated osteoclast precursors with
HO-1 inducer-cobaltprotoporphyrin (COPP). The TRAP stain-
ing and TRAPactivity assay showed that activation of HO-1 by

25 μM COPP significantly decreased osteoclasts formation.
Furthermore, the inhibitory effect of DFO on osteoclastogen-
esis was also enhanced by COPP (Figures 7a–c). In addition,
qRT-PCR analysis showed that the expression of TRAP and
c-Fos were significantly decreased by COPP, which was
further inhibited by DFO together with COPP (Figures 7d and
e). Secondly, we performed loss-of-function experiment, in
which we decreased the expression of HO-1 with si-HO-1. As
evidenced by TRAP staining and TRAP activity assay, we
found depletion of HO-1 could alleviate the inhibitory effect
of DFO on osteoclasts formation, although the si-RNA
against HO-1 did not completely reverse the effects of DFO
(Figures 7f–i). Furthermore, inhibition of HO-1 could markedly
attenuate DFO-decreased TRAP and c-Fos expression
(Figures 7j and k). Taken together, all these results demon-
strated that that HO-1 was an intermediator of DFO-inhibited
osteoclastogenesis.

Figure 4 DFO inhibits RANKL-induced osteoclast-specific gene expression. (a–f) qRT-PCR analysis of osteoclasts formation specific genes, TRAP, c-Fos, Cathepsin K,
DC-STAMP, V-ATPase a3 and V-ATPase d2, in BMMs treated with 50 μM DFO at different stage during osteoclastogenesis. n= 4, **Po0.01. (g–l) qRT-PCR analysis of
osteoclasts formation specific genes, TRAP, c-Fos, Cathepsin K, DC-STAMP, V-ATPase a3 and V-ATPase d2, in BMMs treated with different concentrations of DFO during
osteoclastogenesis. n= 4, **Po0.01
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DFO increased HO-1 expression by dampening
p38MAPK pathway in osteoclast. Having identified HO-1
was required for DFO-inhibited osteoclastogenesis, we next
sought to explore the molecular mechanisms involved in the
induction of HO-1 by DFO. As it has been reported that
mitogen-activated protein kinases (MAPKs) and nucleur
factor-κB (NF-κB) are the key downstream pathways of
RANKL in the process of osteoclastogenesis,29–31 we first
explore the effects of DFO on RANKL-induced these
intracellular signalings during the osteoclast differentiation.
BMMs were preincubated with 50 μM DFO, followed by
stimulating with RANKL for the indicated time points. The
results showed that phosphorylation of signal pathways,
including p65, p38, ERK and JNK, were significantly
activated by RANKL, whereas all of them were blocked by
DFO in RANKL-stimulated osteoclasts (Figure 8a). To
determine which signaling pathway was involved in DFO-
induced HO-1 expression, we tested the effects of blocking
these signaling pathways on DFO-induced HO-1 expression.
The results showed that p38 inhibitor SB203580 significantly
enhanced DFO-induced HO-1 expression. However, JNK

inhibitor SP600125, NF-κB inhibitor BAY 11-7082, and
mitogen-activated protein/extracellular signal-regulated
kinase (MEK) inhibitor PD98059 did not promote DFO-
induced HO-1 expression (Figures 8b and c). Furthermore,
we found that SB203580 promoted DFO-induced HO-1
expression in a dose-dependent manner (Figures 8d and
e). Taken together, all these data suggested that inhibition of
p38MAPK signaling pathway was involved in the induction of
HO-1 by DFO.

Discussion

Artificial joint replacement is widely used to treat severe joint
degeneration. However, UHMWPE wear particles-induced
osteolysis is a leading cause of early implant loosening in
endoprosthetic surgery. Studies have showed that UHMWPE
particles-induced osteolysis is due to enhanced osteoclasts
differentiation and activity.32 Thus, therapeutic agents target-
ing osteoclasts formation are considered for treating wear
particles-induced osteolysis. In the present study, we demon-
strated for the first time that DFO, a powerful iron chelator,

Figure 5 DFO inhibited osteoclastic bone resorption and F-actin ring formation. (a) Resorption pit formation in BMMs treated with different concentrations of DFO during
osteoclastogenesis. Scale bars, 20 μm. (b) Summarized data showed that DFO significantly decreased osteoclasts bone resorption in a dose-dependent manner. n= 4,
**Po0.01. (c) F-actin ring staining was performed to estimate the effect of different concentrations of DFO on osteoclastic bone resorption. Scale bars, 50 μm. (d) Summarized
data showed DFO significantly decreased number of F-actin ring in a dose-dependent manner. n= 4, **Po0.01
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could significantly alleviate osteolysis in UHMWPE particles-
induced mouse calvaria model by restraining inflammatory
osteoclastogenesis. Furthermore, DFO was able to inhibit
osteoclastogenesis in a dose-dependent manner. Mechan-
istically, DFO reduced osteoclasts formation by increasing
HO-1 expression via p38MAPK signaling pathway. Taken
together, we concluded that DFO might have great potential
and value in treating wear particles-induced aseptic loosening.
With understanding of the pathogenesis of periprosthetic

osteolysis, some effective preventative and nonsurgical
interventions have been introduced. One large recent study
indicates that early postoperative systemic administration of
bisphosphonates can decrease the risk of aseptic loosening in
total knee arthroplasty.33,34 However, bisphosphonates have
been proven unsuccessful in inflammatory conditions.35

Furthermore, it is reported that long-term administration of
bisphosphonates could be associated with bone necrosis and
atypical fractures in long bones.36 Therefore, the current
appraisal of bisphosphonates to prevent loosening still needs
for further study. Recently, TNF-α and IL-1 antagonists have
variably been demonstrated efficacy in alleviating aseptic
loosening, but come with unwanted immunosuppression.35

Denosumab (Amgen; Thousand Oaks, CA, USA), a mono-
clonal antibody against RANKL, has emerged as a potential
therapeutic avenue for osteolysis, but the clinical trials show
that it impacts immunocompetence less than originally
thought.35 Thus, despite extensive research on drugs that
target the inflammatory, osteoclastic and osteogenic
responses to wear debris, it still needs for further studies to
identify the more suitable treatment for wear particles-induced
osteolysis.
DFO, an FDA-approved medication and a powerful iron

chelator with 'hypoxia-mimetic' activity, was widely used as a

therapeutic agent for treating iron overloaded-related
diseases.37 Besides of exerting the anti-osteolysis function
like bisphosphonates, IL-1 antagonists and Denosumab by
inhibiting the process of osteoclastogenesis,38 DFO has been
shown to increase angiogenesis via the hypoxia inducible
factor (HIF) pathway. The HIF pathway activates angiogenesis
as a regulator of response to hypoxia whose activation is also
seen in skeletal repair.39,40 In addition to promoting angiogen-
esis, DFO is also able to increase bone formation by
enhancing osteoblasts activity.24,26 Therefore, DFO has been
emerged as a potential agent for treating bone regeneration
and osteoporosis.41,42 In this study, mouse calvaria osteolysis
model was used to examine the effect of DFO on particles-
induced aseptic loosening in vivo. Both micro-CT and
histological assessments demonstrated that DFO significantly
protected from UHMWPE particles-induced osteolysis. Mean-
while, DFO treatment could alleviate particles-induced bone
destruction and osteolysis, which were confirmed to associate
with particles-promoted osteoclastogenesis. Our results for
the first time demonstrated that DFO could be effectively used
for the treatment of wear particles-induced osteolysis in vivo.
Thus, DFO might be used as a therapeutic agent for treating
wear particles-induced aseptic loosening.
In the present study, we confirmed that DFO obviously

inhibited osteoclasts formation at early stage (days 0–3),
whereas adding DFO to osteoclastic precursor cells at late
stage did not affect osteoclasts formation. Indeed, Leger
et al.43 also found that DFO was not shown to decrease
osteoclasts numbers, which might be caused by adding DFO
for the last day of the human osteoclast assays. Furthermore,
Philipp et al.44 added DFO in the beginning of the osteoclas-
togenesis assay with cells of rodent origin, resulting in a
significant suppression of osteoclasts differentiation.

Figure 6 DFO-induced HO-1 expression during osteoclastogenesis. (a) Western blot analysis showed that DFO could induce HO-1 protein expression in a dose-dependent
manner. (b) qRT-PCR analysis showed that DFO could induce HO-1mRNA expression in a dose-dependent manner. n= 4, **Po0.01. (c) The stimulatory effect of DFO on HO-1
expression was demonstrated by immunofluorescence. Scale bars, 20 μm
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Consistent with these findings, our studies further demon-
strated that the inhibition of osteoclast formation by DFO was
due to dampen osteoclast progenitor cells differentiation.
RANKL-induced osteoclast differentiation is associated with

the upregulation of specific genes, including TRAP, c-Fos,
Cathepsin K, DC-STAMP, V-ATPase a3 and V-ATPase d2.28

Data from this study showed that these RANKL-induced
specific genes expression were obviously attenuated by DFO
in a time-dependent manner. Of note, c-Fos as a critical
transcript factor for osteoclastogenesis was markedly
increased at early stage (day 1), whereas the induction of
c-Fos expression by RANKL was alleviated from days 1 to 5,
indicated that c-Fos might be an early marker gene for
osteoclast formation. Indeed, c-Fos as a major regulator of
osteoclastogenesis conducts the expression of osteoclast

specific genes, such as TRAP, Cathepsin K, DC-STAMP, V-
ATPase a3 and V-ATPase d2. In the current study, inhibition of
these specific genes expressions by DFO further provided
evidence of DFO-inhibited osteoclast formation.
Previous studies suggest that overproduction or inadequate

removal of ROS may be involved in the formation of fibrotic
pseudocapsular tissues around revised total hip replacement
components,45 suggesting that ROS-induced oxidative stress
has an important role in wear particles-induced osteolysis.
HO-1, as an inducible enzyme, which is involved in oxidative
stress processes. In bone tissue, HO-1 mRNA is expressed in
osteoblasts, osteocytes and osteoclasts.46 Several studies
have elucidated the role of HO-1 in osteoclastogenesis. Ke
et al.46 found that HO-1-deficiency synergized with RANKL
signaling to increase the number and activity of osteoclasts.

Figure 7 HO-1 was involved in DFO-inhibited osteoclastogenesis. (a) TRAP staining was performed to observe the effect of HO-1 activation on DFO-inhibited osteoclast
formation. Scale bars, 50 μm. (b) The number and area of TRAP-positive cells was counted. n= 4, **Po0.01. (c) TRAP activity assessment was accomplished to observe the
effect of HO-1 activation on DFO-inhibited osteoclast formation. n= 4, **Po0.01. (d,e) qRT-PCR analysis of osteoclasts formation-specific genes TRAP and c-Fos in BMMs
treated with DFO or/and COPP during osteoclastogenesis. n= 4, **Po0.01. (f) Quantitative expression of HO-1 in the presence or absence of HO-1 siRNA treation. (g) TRAP
staining was performed to observe depletion of HO-1 on DFO-inhibited osteoclast formation. (h) The number and area of TRAP-positive cells was counted. Scale bars, 50 μm.
n= 4, **Po0.01. # versus NC, #Po0.01. (i) TRAP activity assessment was accomplished to observe depletion of HO-1 on DFO-inhibited osteoclast formation. n= 4, **Po0.01.
# versus NC, #Po0.01. (j–k) qRT-PCR analysis of osteoclasts formation-specific genes TRAP and c-Fos in BMMs treated with DFO or/and si-HO-1 during osteoclastogenesis.
n= 4, **Po0.01. # versus NC, #Po0.01
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Induction of HO-1 could inhibit osteoclast differentiation via
MAP kinase.19 Furthermore, Eiko et al.47 demonstrated that
RANKL induced osteoclasts differentiation by inhibiting HO-1
expression via activation of p38 MAPK signaling pathway. In
the present study, we confirmed for the first time that HO-1 was
involved in DFO-inhibited osteoclasts formation.
Even though many studies have confirmed that DFO could

inhibit osteoclast differentiation and activity.24 However, little is
known regarding how DFO regulates osteoclastogenesis. In
the process of osteoclast differentiation, RANKL binding to its
receptor RANK leads to the activation of downstream
signaling molecules, such as MAPKs (ERK1/2, p38 and
JNK1/2) and NF-κB.48,49 Previous studies have showed that
the formation of osteoclasts can be reduced by inhibition of
JNK, ERK and p38, suggesting these molecules are critical for
RANKL-induced osteoclastogenesis.50 Furthermore, RANKL
stimulation triggers the induction of the NF-κB heterodimer
p65 (RelA)/p50 (NF-κB1), which induces the expression of
NFATc1, a transcription factor that regulates the terminal
RANKL-induced differentiation of osteoclasts.51 In our study,
we found that DFO could downregulate ERK, JNK, p38 and
p65 activation in osteoclast differentiation, evidenced by little
ERK, JNK, p38 and p65 phosphorylation after DFO treatment.
Further studies found that inhibition of p38 signaling pathway
could promote DFO-induced HO-1 expression, indicating that
p38 was involved in DFO-induced HO-1 expression. Our study
delineated a previously unknown mechanism that DFO
inhibited UHMWPEparticles-induced osteolysis by restraining
inflammatory osteoclastogenesis through upregulation of

HO-1 via p38MAPK pathway. However, as the results showed
in Figure 7, HO-1 depletion by siRNA did not completely
reverse the effects of DFO, which revealed that DFO
restrained the inflammatory osteoclastogenesis might through
the other alternative pathway. As studies have revealed that
MAPKs (including p38MAPK, JNK and ERK) and NF-κB are
critical for RANKL-induced osteoclastogenesis,50 and our
results in Figure 7 have demonstrated that DFO significantly
dampens the activation of MAPKs and NF-κB induced by
RANKL. In addition, it has been reported that clinoquinol,
another iron chelator, impairs RANKL-driven AKT phosphor-
ylation and NFATC1 activation in the process of
osteoclastogenesis,38 both AKT and NFATC1 are required
for efficient osteoclastogenesis and osteoclast activation.52–54

Except of p38MAPK, we predict that DFO inhibits osteoclas-
togenesis may also by regulating RANKL-induced ERK, JNK,
AKTor NFATC1 activation.
The mouse calvaria osteolysis model is widely used to

explore the mechanisms of UHMWPE particles-induced
osteolysis. However, some deficiencies exist in this model.
First, mechanical loading may affect UHMWPE particles-
induced osteolysis in patients with endoprosthetic surgery,
whereas which is not considered in the mouse calvaria
osteolysis. Second, the size of UHMWPE particles used to
generate mouse model was uniform, whereas UHMWPE
particles from artificial joint are not identical. Thus, future
studies are needed to further explore the most suitable mouse
model for UHMWPE particles-induced osteolysis.

Figure 8 DFO increased HO-1 expression by dampening p38MAPK pathway. (a) Western blot analysis was performed to evaluate the effect of DFO on RANKL-induced the
phosphorylation of p65, p38, ERK and JNK. (b) Western blot analysis was performed to evaluate the effect of blocking p38, JNK, NF-κB and MEK on DFO-induced HO-1
expression. (c) qRT-PCR analysis was performed to evaluate the effect of blocking p38, JNK, NF-κB and MEK on DFO-induced HO-1 expression. **Po0.01. # versus control,
#Po0.01. (d,e) Western blot analysis showed that SB203580 promoted DFO-induced HO-1 expression in a dose-dependent manner
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In conclusion, in the present study, we demonstrated that
UHMWPE particles-induced osteolysis could be alleviated by
DFO via restraining of inflammatory osteoclasts formation and
activity. Furthermore, the inhibitory effects of DFO on
osteoclastogenesis, which were achieved mainly through
induction of HO-1 expression. Further study confirmed that
DFO induced HO-1 expression via inhibition of p38 signaling
pathway, resulting in the reduction of osteoclasts formation.
Taken together, we concluded that DFO might be used as an
innovative and safe therapeutic alternative for treating wear
particles-induced aseptic loosening.

Materials and Methods
Materials. Alpha modification of Eagle medium (α-MEM), penicillin/streptomycin
and fetal bovine serum (FBS) were purchased from Gibco-BRL (Sydney, NSW,
Australia). Recombinant soluble mouse M-CSF (Catalog#315-02) and mouse
RANKL (Catalog#315-11) were purchased from Peprotech (Rocky Hill, USA). The
cell counting kit (CCK-8) was obtained from Do jin do Molecular Technology
(Kumamoto, Japan). Specific antibodies against β-actin, extracellular signal
regulated kinase (ERK), phospho-ERK (Thr202/Tyr204), c-Jun N-terminal kinase
(JNK), phospho-JNK(Thr183/Tyr185), p38, phospho-p38 (Thr180/Tyr182), NF-κB
p65, phospho-NF-κB p65 (Ser536) were purchased from Cell Signaling Technology
(Cambridge, MA, USA). HMOX1 (HO-1) polyclonal antibody (Catalog#10701-1-AP)
was provided by Proteintech (Rosemont, USA). PD98059, SB203580, SP600125,
BAY11-7082 were purchased from Selleck Chemicals (USA). Cobalt protoporphyrin
(COPP) IX was purchased from Frontier Scientific (Logan, UT, USA).
Desferrioxamine (DFO), the tartrate-resistant acid phosphatase (TRAP) staining
kit and all other reagents were purchased from Sigma Aldrich (St Louis, MO, USA)
unless stated otherwise.

Methods
Preparation of UHMWPE particles: UHMWPE particles were provided by
the manufacturer (Zimmer Inc., Warsaw, IN, USA). The characteristics of the
particle’s morphology have been published previously.55 The mean diameter of
these particles was 2.6 μm (range from o0.7 to 21 μm). To avoid contamination
with endotoxins, the particles were washed three times with 70% ethanol and
sterilized for 72 h to remove endotoxin and heat sterilized, then dispersed in PBS at
2 × 108 particles per ml. Endotoxin levels of the particle suspension were
determined by a Limulus assay according to the manufacturer's instructions.

UHMWPE-induced calvarial osteolysis model: A wear particle-induced
mouse calvarial osteolysis model was generated as previously described.1 Animal
studies were performed in accordance with the principles and procedures approved
by the Animal Care Committee of Shanghai Jiao Tong University. Briefly, 24 healthy
male 8-week-old C57BL/6J mice were randomly divided into to four groups: sham
PBS control (Sham), UHMWPE particles with PBS (Vehicle), and UHMWPE
particles with 10 mg/kg (low) and 30 mg/kg (high) concentrations of DFO. The mice
were anesthetized, and the cranial periosteum was separated from the calvarium by
sharp dissection. Then, 100 ul of particle suspension was uniformly spread over the
periosteum at the middle suture of the calvaria in vehicle, low and high group,
whereas sham group not. Two days after implantation of UHMWPE particles, PBS
or DFO was injected every day intraperitoneally, respectively for 14 days. The
animals were housed 5 per cage and were maintained under a strict 12 h light: 12 h
darkness cycle at 22 °C with standard mice food pellets and had free access to tap
water. At the end of the experiment, the mice were sacrificed, and the calvaria were
excised and fixed in 4% paraformaldehyde for micro-computed tomography (CT)
and histological analysis. No adverse events were found during the generation of
mouse calvarial osteolysis model.

Bone resorption assay and F-actin ring formation assay: The bone
resorption assay was conducted as previously described.28 Briefly, BMM cells were
plated onto bovine bone slices in 96-well plates at a density of 1 × 104cells/well. The
BMM cells were cultured with complete α-MEM medium supplemented with M-CSF
(30 ng/ml), RANKL (50 ng/ml) and different concentrations of DFO. Cell culture
media were replaced every 2 days until mature osteoclasts had formed. On 10 days,
the osteoclasts were removed from the bone slices by mechanical agitation and

sonication. Resorption pits stained with toluidine blue were photographed under a
high-quality microscope. Three view fields were randomly selected for each bone
slice for further analysis. The percentage of resorbed bone surface area was
counted using the Image J software. Experiments were repeated independently at
least three times.

To perform F-actin ring formation assay, osteoclasts treated with various
concentrations of DFO were fixed with 4% paraformaldehyde for 15 min,
permeabilized for 5 min with 0.1% Triton X-100, and incubated with rhodamine-
conjugated phalloidin (Invitrogen Life Technologies, Grand Island, NY, USA) for
30 min at room temperature and then washed extensively with PBS three times. The
F-actin ring distribution was visualized using a fluorescence microscope (ZEISS,
Jena, Germany), and the average number of F-actin ring was calculated.

Organ culture and cytokines detection: The murine calvarias culture is
according to the report before.56 The dissected calvarial tissue samples were
weighted and cultured in serumless medium (10 ml/g weight) (Dulbecco’s Modified
Eagles Media, Life Technologies, Gaithersburg, MD, USA) containing 1% Penicillin/
Streptomycin for 72 h at 37 °C with 5% CO2. The release of IL-1β, IL-6 and TNF-α
from dissected murine calvaria into the medium was measured with the enzyme-
linked immunoassay (ELISA) kit specific for mice IL-1b; IL-6 and TNF-a (Duoset
R&D Systems, Abingdon, UK).

Micro-CT imaging analysis: The fixed calvarias were analyzed using a high-
resolution micro-CT scanner (Skyscan 1172; Skyscan; Aartselaar, Belgium). All
calvarias were scanned according to the same parameters (pixel size, 9 μm; X-ray
voltage, 50 kV; electric current, 500 μA; rotation step, 0.7°). After reconstruction, a
spherical volume of interest (VOI) of 3 mm in diameter around the midline suture
was selected for further qualitative and quantitative analysis. Bone mineral density
(BMD), bone volume against tissue volume (BV/TV) and total volume of pore space
of each sample were measured.

Histological analysis: After micro-CT scanning, the samples were decalcified in
10% EDTA for 3 weeks and then dehydrated, embedded in paraffin. Histological
sections (5 μm thick) were prepared for H&E and TRAP staining. The specimens
were then examined and photographed under a high-quality microscope. The
numbers of TRAP-positive multinucleated osteoclasts were counted in each sample.

Cell viability assay: The cytotoxic effects of DFO on BMMs viability were
determined using a CCK-8 assay according to the manufacturer’s instructions. The
BMM cells were plated in 96-well plates at a density of 5 × 103 cells/well, and
cultured in complete α-MEM medium supplemented with 30 ng/ml M-CSF, and
treated with different concentrations of DFO (0, 6.25, 12.5, 25, 50, 100, 200
and 400 μM) for 48 h. Next, changed the medium of each well with 10 μl CCK-8
and 100 μl α-MEM medium, then incubated at 37 °C for an additional 1.5 h. The
optical density (OD) was then measured at a wavelength of 450 nm with an ELX680
absorbance microplate reader (Bio-Tek, Winooski, USA).

Bone marrow-derived macrophage isolation and osteoclast culture:
Primary BMMs were isolated from the long bones of 8-week-old C57BL/6J mice.
cells were isolated from the femur and tibiae bone marrow and cultured in a 100mm
dish with complete α-MEM medium in the presences of 10 ng/ml M-CSF for 24 h.
Non-adherent cells were harvested and cultured with fresh medium containing
50 ng/ml M-CSF. Three days later, the adherent cells were harvested as osteoclasts
precursors (pre-osteoclasts). These cells were then seeded and further cultured
with complete α-MEM medium containing M-CSF (30 ng/ml) and RANKL (50 ng/ml)
for 3–5 days with various concentrations of DFO (0, 12, 25, 50 μM). Cell culture
media were replaced every two days until mature osteoclasts had formed. Next,
cells were washed twice by PBS and fixed with 4% paraformaldehyde for 15 min
and then stained for TRAP activity. TRAP-positive cells with three or more nuclei
were counted under a microscope.

Immunofluorescence staining: BMM cells were seeded onto the sterile cover
slips at a density of 5 × 104 cells/well in 24-well plates, and cultured with complete
α-MEM medium supplemented with M-CSF (30 ng/ml), RANKL (50 ng/ml), and
50 μM DFO. After incubation, cells were fixed in 4% paraformaldehyde for 10 min,
treated with 0.1% Triton X-100 for 15 min and then incubated in 3% bovine serum
albumin (BSA)/ PBS for 30 min at room temperature. Next, cells were incubated
with mouse anti-HO-1 antibody (1:100 dilution) at 4 °C overnight. Cell nuclei were
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counterstained with Hoechst 33258 at room temperature for 15 min in the dark.
Images were acquired using a fluorescence microscope (ZEISS Axio Imager A2,
Carl Zeiss microscopy GmbH).

RNA interference: The small interfering RNA (siRNA) oligonucleotide for HO-1
was designed and synthesized by GenePharma (Shanghai, China). The targeting
sequences of murine HO-1 siRNA (si-HO-1) were as follows: forward
5′-CCACACAGCACUAUGUAAATT-3′ and reverse 5′-UUUACAUAGUGCUGUGU
GGTT-3′. BMM cells cultured with or without DFO in the presence of RANKL in
antibiotic-free media were transfected with 100 nM si-HO-1 using lipofectamine
3000 (Invitrogen) according to the manufacturer’s instructions. The sequences of
negative control (NC) were as follows: forward 5′-UUCUCCGAACGUGUCACGUTT
-3′ and reverse 5′-ACGUGACACGUUCGGAGAATT-3′. After incubation for 48 h,
the cells were harvested to extract total RNA for RT-PCR. For TRAP staining, we
incubated the cells for another 5 days.

RNA extraction and quantitative real-time PCR (qRT-PCR): To
measure specific gene expression during osteoclast formation, we performed
quantitative PCR assay. Briefly, cells were seeded in six-well plates at a density of
1 × 105 cells per well and cultured in complete α-MEM medium supplemented with
30 ng/ml M-CSF and 50 ng/ml RANKL. After treatments with various concentrations
of DFO, COPP or siRNA, total RNA was isolated from BMM cells using Trizol
reagent (Invitrogen) according to the manufacturer’s instruction. Next, cDNA was
synthesized from 1 μg of total RNA using reverse transcriptase (TakaRa, Shiga,
Japan). qRT-PCR was performed to amplify the cDNA using the SYBR Premix Ex
Tag kit (TaKaRa) and an ABI 7500 Sequencing Detection System (Applied
Biosystems, Foster City, CA, USA). The following cycling conditions were used: 40
cycles of denaturation at 95 °C for 5 s and amplification at 60 °C for 24 s. β-actin
was used as the house keeping gene, and all reactions were run in triplicate. The
mouse primer sequences for TRAP (Accession Numbers: NM_011611), c-Fos
(Accession Numbers: NM_010234), Cathepsin K (Accession Numbers:
NM_ 007802), DC-STAMP (Accession Numbers: NM_001289513), V-ATPase α3
(Accession Numbers: NM_016921), V-ATPase d2 (Accession Numbers:
NM_175406), HO-1 (Accession Numbers: NM_010442) and β-actin (Accession
Numbers: NM_007393) were described in Supplementary Table 1.

Western blot analysis: BMM cells were seeded in six-well plates at a density
of 1 × 105 cells per well. After various treatments in the presence of M-CSF and
RANKL, cells were washed with PBS and lysed in ice-cold lysis buffer
(Cell Signaling Technology) supplemented with cocktail for 30 min. Next, the
lysates were centrifuged at 12 000 × g for 15 min, and the supernatants that
contained the proteins were harvested. Protein concentrations were determined by
a BCA protein assay kit (Pierce Biotechnology, Rockford, IL, USA). Equal amounts
of protein lysates were resolved using SDS-PAGE on 10% gels, and transferred to
PVDF membranes (Millipore, Bedford, MA, USA). Afterwards, the membranes were
blocked with 5% skimmed milk solution for 1 h, and then incubated with
primary antibodies diluted in 1% BSA powder in TBS-Tween (TBST) overnight at
4 °C. The membranes were then washed three times with TBST solution and
incubated with the appropriate secondary antibodies. The antibody reactivity was
visualized using the enhanced chemiluminescence detection system as recom-
mended by the manufacturer. Signal intensities were quantified using Image-J
software (Bethesda, MD, USA).

Statistical analysis. Data were collected from three or more independent
experiments and expressed as mean±S.D. A two-sided Student’s t-test was used
to analyze the difference between groups. One-way analysis of variance was
performed to show the difference between groups. Po0.05 was considered
significantly different.
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