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Ets-1 as an early response gene against
hypoxia-induced apoptosis in pancreatic β-cells

N Qiao1, C Xu1, Y-X Zhu1, Y Cao1, D-C Liu1 and X Han*,1

Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic
β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period
are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1
(v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in
pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate
hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-
proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation
effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6
and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a
sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression
may be a useful strategy for islet graft protection during the immediate post-transplantation period.
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Hypoxia is a common challenge for living organisms that
depend on oxygen.1 Pancreatic β-cells are particularly
susceptible to hypoxia owing to their high demand for oxygen
to support the mitochondrial respiration and ATP generation
required for subsequent insulin secretion.2,3 Moderate hypoxia
can be induced in islets in type 2 diabetic models by the
increasing demand for insulin secretion,2,4 whereas severe
hypoxia occurs in islet grafts during the immediate post-
transplantation period 5–7 and leads to β-cell apoptosis.8–10

Cells and organisms are able to trigger adaptive responses
to help them to cope with hypoxic conditions and cellular
reprogramming mediated by transcription factors has a vital
role in these responses.11,12 The transcription factor v-ets
erythroblastosis virus E26 oncogene homolog 1 (Ets-1) is a
member of the Ets family that contains a unique DNA binding
domain, the Ets domain.13 It is widely expressed in numerous
cell types and is involved in a diverse array of biologic
functions.14 Oikawa et al.15 first reported that hypoxia induces
Ets-1 gene expression via hypoxia-inducible factor 1 (HIF-1)
activity. Since then, much research has been focused on the
role of Ets-1 in cellular hypoxic responses. Previous studies
have indicated that Ets-1 is transcriptionally upregulated and
promotes the expression of downstream hypoxia-inducible
genes, in both HIF dependent and independent ways.16,17

These Ets-1 target genes participate in a wide range of
hypoxic responses, including angiogenesis,18,19 energy meta-
bolism remodeling 20 and tumor invasion.21,22

The role of Ets-1 in pancreatic β-cells has rarely been
studied. In the present study, we reported that hypoxia

regulates Ets-1 at multiple levels in pancreatic β-cells
according to the degree of oxygen deprivation; that is,
moderate hypoxia promotes Ets-1 gene transcription,
whereas severe hypoxia enhances its transactivation activity.
We detected a rapid decrease in the protein level of Ets-1
because of the ubiquitin-proteasome mediated degradation in
MIN6 cells or primary cultured islets exposed to severe
hypoxia, and all our evidence indicates that this degradation is
transcription dependent. The enhanced degradation leads to
an insufficiency of Ets-1 protein and limits its transactivation
ability and the anti-hypoxic effect. Overexpression of ectopic
Ets-1 in MIN6 and INS-1 cells protected them from severe
hypoxia-induced apoptosis in a mitochondria-dependent
manner, suggesting that Ets-1 insufficiency is a defect in the
adaptive responses against hypoxia-induced pancreatic β-cell
apoptosis.

Results

Severe hypoxia causes increased Ets-1 gene expression
and decreased protein level in MIN6 cells and primary
cultured islets. The Ets-1 mRNA level in MIN6 cells
increased following the exposure to 2% O2 (Figure 1a), but
a reverse trend was noted in the Ets-1 protein level; that is, it
decreased as early as 1 h following the hypoxia exposure and
stayed at a very low level for the rest of the experiment
(Figure 1b). Primary cultured mouse (Figures 1c and d) and
rat (Figures 1e and f) islets showed a similar response, but
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the pancreatic α-cell line—α-TC6 (Figure 1g) showed no
decrease in the Ets-1 protein level.

Ubiquitin-proteasome mediated protein degradation con-
tributes to a severe hypoxia-induced decrease in Ets-1
protein level. When we used pEGFP as the expression
vector and ectopically expressed GPF or the GFP-Ets-1
fusion protein in MIN6 cells, we found that the expression
profile of the GFP protein did not change following a 12 h
exposure to 2% O2 (Figure 2a). This finding confirmed that
the gene expression controlled by the CMV (Cytomegalo-
virus) promoter would not be influenced by our experimental
conditions. By contrast, we saw a rapid and persistent
decrease in GFP-Ets-1 protein level (Figure 2a), suggesting
enhanced Ets-1 protein degradation. Furthermore, the
transcription inhibitor—actinomycin D—dose-dependently
enhanced this hypoxia-induced decrease in Ets-1 protein
level (Figure 2b).

We then investigated the potential degradation pathway for
Ets-1 protein following hypoxia. Addition of MG132 (Carbo-
benzoxy-Leu-Leu-leucinal), used as a proteasome inhibitor,
dose-dependently reversed the severe hypoxia-induced ecto-
pic GFP-Ets-1 protein degradation in MIN6 cells (Figure 2c),
suggesting that the Ets-1 protein was degraded via the
ubiquitin-proteasome pathway. Similar result was obtained
on endogenous Ets-1 protein (Figure 2d). We also detected an
accumulation of the polyubiquitinated form of the Ets-1 protein
in MIN6 cells following severe hypoxia (Figure 2e). This
observation indicated that hypoxia promoted Ets-1 protein
ubiquitination and subsequent degradation by the proteasome
in MIN6 cells.

Severe hypoxia enhances the transactivation activity of
Ets-1 in MIN6 cells. We assessed the transactivation effect
of Ets-1 on vascular endothelial growth factors (VEGFRs),
which are the direct target genes of Ets-1.18,23–26 As shown in
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Figure 1 Effects of hypoxia on Ets-1 mRNA and protein levels in MIN6 cells, primary cultured mouse/rat islets and α-TC6 cells. MIN6 cells (a and b), primary cultured mouse
(c and d)/rat (e and f) islets and α-TC6 cells (g) were exposed to 2% O2 for 1–24 h. (a, c and e) Relative mRNA levels of Ets-1 were quantified by qRT-PCR analysis using β-actin
as an internal control. The average values and standard deviations (n= 3) are shown. *and **indicate Po0.05 and Po0.01, respectively, compared with the normoxic group.
(b, d, f and g) Total proteins were extracted and analyzed by western blotting analysis. The upper panels (b, d and f) and left panel (g) show representative western blots.
The lower panels (b, d and f) and right panel (g) show the relative quantification of normalized Ets-1 level to β-tubulin. The average values and standard deviations (n= 3) are
shown. ** indicate Po0.01 compared with the normoxic group
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Figure 2 Severe hypoxia promotes ubiquitin-proteasome-mediated degradation of Ets-1 protein in MIN6 cells. AMD, actinomycin D; H, hypoxia; N, normoxia. (a) Effect of
severe hypoxia on pEGFP vector-mediated ectopic protein expression in MIN6 cells. MIN6 cells were transiently transfected with pEGFP (as a control) or pEGFP-Ets-1. Twenty-
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Figures 3b–d, overexpression of wild-type Ets-1 in MIN6 cells
caused a marked increase in the mRNA level of VEGFR2 and
VEGFR3, but not of VEGFR1. By contrast, overexpression of
Ets-1ΔTAD (transactivation domain) and Ets-1ΔETS, two dele-
tion mutants of Ets-1 that cause a loss in transactivation
activity and DNA binding activity, respectively,14 did not show
any transactivation effect on the VEGFR2 or VEGFR3 genes,
indicating a regulatory effect of Ets-1 on VEGFR gene
transcription in MIN6 cells.
When the cells transfected with wild-type Ets-1 were

exposed to 2% O2 for 1 h and the relative mRNA levels of
VEGFRs were compared between the normoxic and hypoxic
group, cells subjected to hypoxia showed significantly reduced
protein level of ectopic Ets-1 (by 57%; Figure 3a), but
increased transcription of the VEGFR2 (Figure 3c) and
VEGFR3 (Figure 3d) genes, indicating an enhancement of
the transactivation activity of Ets-1.
We next performed luciferase reporter assay using a

luciferase reporter construction driven by the VEGFR3
promoter, to further confirm the change of the transactivation
activity of Ets-1 during hypoxia. As expected, Ets-1WT but not

Ets-1ΔTAD and Ets-1ΔETS upregulated VEGFR3 luciferase
reporter activity in MIN6 cells (Figure 3e). When we exposed
the cells to 2% O2 for 1 h, the luciferase reporter activity was
further upregulated in Ets-1WT overexpression group
(Figure 3e). Together, the quantitative real-time polymerase
chain reaction (qRT-PCR) assays and the luciferase reporter
assays demonstrated that the transactivation activity of Ets-1
was promoted by hypoxia.

Hypoxia-induced Ets-1 degradation is transcription
dependent. We investigated whether severe hypoxia-
induced degradation of Ets-1 protein is transcription depen-
dent, by first screening for the degree of oxygen deprivation
that would lead to activation and degradation of Ets-1. As
shown in Figures 4a and b, an oxygen concentration below
10% was required to observe a decrease in the protein level
of Ets-1 and an increase in the transactivation activity of it;
both responses occurred in an oxygen concentration
dependent manner. These results suggested a correlation
between the transactivation activity of Ets-1 and its
degradation.
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We confirmed this correlation in our array of
plasmids expressing different deletion mutants of Ets-1
according to its functional domains (Figure 4c),14,27 as
we found that only transcriptionally inactive mutants
(i.e., Ets-1ΔTAD, Ets-1ΔETS, Ets-11–138 and Ets-1301–400)
were resistant to severe hypoxia-induced Ets-1 degrada-
tion (Figures 3d, 4d and e). Together, these results
indicated a transcription dependency for hypoxia-induced
Ets-1 degradation.

Ets-1 overexpression protects MIN6 cells from severe
hypoxia-induced apoptosis in a mitochondria-dependent
manner. Exposure to 2% O2 induced apoptosis in MIN6
cells after 12 h (Supplementary Figures 1a–c). When we
examined the hypoxia-induced apoptotic phenotypes in MIN6
cells with or without Ets-1 overexpression, we found that the
annexin V-FITC/PI (Propidium Iodide) staining (Figures 5a
and b) indicated that Ets-1 overexpression partially reversed
the apoptosis of MIN6 cells induced by severe hypoxia
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Figure 5 Protective effect of Ets-1 on severe hypoxia-induced pancreatic β-cell apoptosis. (a) MIN6 cells were transiently transfected with pCMV5 (as a control) and pCMV5-
Ets-1. At 24 h following transfection, the cells were exposed to 2% O2 for 24 h, followed by annexin V-FITC/PI staining and flow cytometry analysis to determine the percentage of
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Po0.01 compared with the normoxic group. #indicates Po0.05 compared with the pCMV5 group
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(represented by ‘annexin V+/PI−’ dots plus ‘annexin V+/PI+’
dots). Consistent with the annexin V-FITC/PI staining results,
Ets-1 overexpression in MIN6 cells mediated by the pCMV5
(Figure 5c) and by recombinant adenovirus in INS-1 cells
(Figure 5d) partially reversed caspase-3 cleavage induced by
severe hypoxia in these cells. These results indicated that a
threshold amount of Ets-1 is needed for survival of pancreatic
β-cells against hypoxia-induced apoptosis.
The JC-1 staining and flow cytometry analysis revealed an

obvious disruption of the mitochondrial membrane potential in
MIN6 cells exposed to 2% O2 for 12 h. Ets-1 overexpression
partially reversed the hypoxia-induced mitochondrial mem-
brane potential disruption (Figures 5e and f).

Hypoxia regulates Ets-1 at multi-levels according to the
degree of oxygen deprivation. Figure 4a shows that only
severe hypoxia (O2%o10) led to a rapid decrease (within 1 h)
in Ets-1 protein level. In fact, prolonged exposure of MIN6
cells to moderate hypoxia (10% O2) resulted in an accumula-
tion of Ets-1 protein (Figure 6b) owing to the enhanced Ets-1
gene transcription (Figure 6a) in MIN6 cells, indicating a
multi-level regulation of Ets-1 according to the degree of
oxygen deprivation. As shown in Figure 6c, moderate hypoxia
(10% O2) promoted Ets-1 gene transcription, whereas severe
hypoxia (O2%o10) resulted in a further enhancement in its
transactivation activity. Severe hypoxia also led to Ets-1
protein degradation via the ubiquitin-proteasome pathway.

Discussion

We demonstrated here that Ets-1 is an early response gene
against hypoxia-induced apoptosis in pancreatic β-cells.
Severe hypoxia promotes the transcription and the transacti-
vation activity of Ets-1 quickly, but also enhances its
concomitant transcription-dependent degradation by the
ubiquitin-proteasome system. The net effect of these two
processes is a relative insufficiency of Ets-1 activity in β-cell
hypoxic response. Overexpression of Ets-1 reverses hypoxia-
induced β-cell apoptosis, and confirms the importance of a
threshold amount of Ets-1 activity as a cellular defense against
apoptosis.
Pancreatic β-cells are known to be highly susceptible to

hypoxia. Severe hypoxia occurs in islet grafts during the
immediate post-transplantation period 5–7 and is a main non-
immune factor contributing to islet graft failure.28,29 The
present study identified that a relative insufficiency of Ets-1
in β-cells during hypoxia can act as a defect in the cellular
defense against apoptosis. Ets-1 is strongly induced in many
types of cells during hypoxia.15,30–32 However, contrary to
previous studies, we detected a rapid decrease in the protein
level of Ets-1 in MIN6 cells and primary cultured mouse/rat
islets exposed to severe hypoxia. Moreover, overexpression of
Ets-1 in MIN6 and INS-1 cells could protect them from
hypoxia-induced apoptosis, confirming the importance of a
threshold amount of Ets-1 activity as a cellular defense against
apoptosis.
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The present study showed that severe hypoxia induced a
decrease in Ets-1 protein level but this was not caused by
attenuated transcription of Ets-1 gene, but rather by enhanced
transcription-dependent degradation of the Ets-1 protein via
the ubiquitin-proteasome pathway. Severe hypoxia, in fact,
induced a rapid increase in Ets-1 at both the transcription and
transactivation activity levels within 1 h. This pattern defines
Ets-1 as an early response gene in pancreatic β-cell hypoxic
responses. Previous studies ignored changes in the transac-
tivation activity of Ets-1 during hypoxia in favor of its obviously
enhanced expression. Hypoxia-induced increases in the
transactivation activity of Ets-1 may also occur in other cell
lines besides pancreatic β-cells and this should be studied
further.
Many transcription factors, particularly those involved in

cell cycle control and stress defense, are unstable
proteins targeted by the ubiquitin-proteasome system.33,34

Rapid turnover of these factors is usually transcription
dependent.35,36 In the present study, we have demonstrated
that Ets-1 is also controlled in this manner (i.e., its degradation
induced by severe hypoxia is transcription dependent). We
first observed that the decrease in Ets-1 protein level and
increase in its transactivation activity happened simulta-
neously when the oxygen concentration was below 10%. We
then observed that only transcriptionally inactive mutants of
Ets-1 (i.e., the mutants that had lost the TAD domain and/or
ETS domain) were resistant to severe hypoxia-induced
degradation. The link between a transcription factor’s enhanced
degradation to its higher transactivation activity is not yet fully
understood, but the ubiquitin-proteasome system always takes
part in this process.37–39 In some cases, ubiquitination serves
as a dual signal for the activation and the degradation of
transcription factors; that is, while ubiquitination of these factors
is required for their transactivation activity, it simultaneously
promotes their degradation.40–42 Someother studies reveal that
the signal-induced phosphorylation of transcription factors
modulates their transactivation activity and ubiquitin-
proteasome mediated degradation.37,38,43,44 In many cases,
these phosphorylation sites are located in the overlap between
the TADs and the degron sequences.44,45 The resulting
phosphoamino acids promote gene transcription and are then
recognized by E3 ubiquitin ligase, causing transcription factors
to be degraded by the proteasomes. Our research showed that
the ubiquitination and the transactivation activity of Ets-1 were
both enhanced following hypoxia exposure. However, we did
not determine whether inhibition of ubiquitination could block
hypoxia-induced activation of Ets-1 or if hypoxia could induce a
site-specific phophorylation leading to the activation and
degradation of Ets-1. It is interesting that the regulatory
sequence responsible for the activation and degradation of
Ets-1 during hypoxia can be located in the TAD domain, for
deletion of this domain blocked both processes. Further study is
required to better understand how the enhanced degradation of
Ets-1 during hypoxia is coupled with its elevated activity. An
important component of our research will be to map the
potential phosphorylation sites and ubiquitination sites regu-
lated by hypoxia signal.
According to the research by Nishida et al.,46 protein

inhibitor of activated STAT Y (PIASy) may serve as a link
between the transactivation activity and the protein stability of

Ets-1. They report that although PIASy prevents Ets-1 protein
from ubiquitin-dependent proteasomal degradation,46 it also
represses its transactivation activity.47 In agreement with our
results, they identified the TAD domain and the C-terminal
region, which contains the Ets domain, as requirements for
Ets-1 protein degradation;46 but unlike our study, which
focused on the effects of hypoxia, they investigated Ets-1
protein stability under normal culture conditions. Our findings
show that the protein instability and the transactivation activity
of Ets-1 are further elevated upon stimulation by severe
hypoxia. Whether PIASy is responsible for transcription-
dependent degradation of Ets-1 induced by hypoxia needs
to be further explored.
A hypoxia-induced decrease in Ets-1 protein level has never

been reported before, and we have not observed the decrease
in many other cell lines (data not shown), including pancreatic
α-cell line—α-TC6. This decrease seems to be specific to
pancreatic β-cells. Research by Zhang et al.48 shows that
Ets-1 inhibits glucose-stimulated insulin secretion in INS-1
cells and rat primary cultured islets. Similar results have been
obtained in our laboratory (submitted for publication) and
suggest that the degradation of Ets-1 may be an evolutionary
mechanism preventing its over-activation and subsequent
β-cell dysfunction. According to our research, β-cell dysfunc-
tion caused by constitutive high expression of Ets-1 can be
reversed by knocking it down (submitted for publication).
Therefore, the transient impairment of β-cell function would not
be a barrier to the application of Ets-1 in islet graft protection.
Hypoxia induces cell apoptosis via the mitochondrial

apoptotic pathway,49,50 in which the disruption of the
mitochondrial membrane potential is considered to be the
initial event.51–53 In the present study, we have demonstrated
that Ets-1 overexpression partially reversed hypoxia-induced
mitochondrial membrane potential disruption. The way in
which Ets-1 participates in apoptosis regulation is supported
by its quick mobilization following hypoxia exposure. It is likely
that Ets-1 regulates a diverse set of genes during hypoxia
judging from its early responsive character, and a gene
microarray is necessary to make a global gene expression
analysis and to gain insight into its role in anti-apoptotic
defense.
In conclusion, we have identified Ets-1 as an early response

gene that regulates hypoxia-induced apoptosis in pancreatic
β-cells. The relative insufficiency of active Ets-1 caused by its
transcription-dependent degradation contributes to the
susceptibility of β-cells to hypoxic injury. Controlled over-
expression of Ets-1 in pancreatic β-cells during the immediate
post-transplantation period may be a useful strategy for islet
graft protection.

Materials and Methods
Reagents and antibodies. Actinomycin D, carbobenzoxy-Leu-Leu-leucinal
(MG132), β-mercaptoethanol and mouse anti-β-tubulin antibody were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Rabbit anti-Ets-1, mouse anti-GFP and
rabbit anti-ubiquitin antibodies were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Rabbit anti-caspase-3, rabbit anti-cleaved caspase-3 and
horseradish peroxidase-conjugated anti-mouse or rabbit secondary antibodies were
purchased from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-HIF-1α
antibody was purchased from Novus Biologicals (Cambridge, UK). Anti-rabbit light
chain secondary antibody was purchased from Chemicon (Temecula, CA, USA).
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Plasmid constructions. The mouse Ets-1 expression plasmids pCMV5-Ets-1WT

and pEGFP-Ets-1WT were constructed by inserting the full-length coding region of
Ets-1 (transcript variant 1) into the pCMV5 vector (at Bgl II/SalI sites) and the
pEGFP vector (at Bg lII/KpnI sites), respectively. pEGFP-Ets-11–138, pEGFP-
Ets-155–440, pEGFP-Ets-1136–440, pEGFP-Ets-1301–440 and pEGFP-Ets-1ΔETS were
constructed by inserting the truncated sequences of the Ets-1 coding region into the
pEGFP vector at Bgl II/KpnI sites. These truncated sequences were generated by
PCR using pCMV5-Ets-1WT as the template. The ΔPNT (pointed) and ΔTAD
deletion mutations of the Ets-1 coding sequence were generated by overlap
extension PCR (SOE PCR)54,55 using pCMV5-Ets-1WT as the template, and they
were inserted into the pEGFP vector at Bgl II/KpnI sites to generate pEGFP-
Ets-1ΔPNT and pEGFP-Ets-1ΔTAD. The pEGFP-Ets-1ΔExon VIII plasmid was constructed
by inserting the full-length coding region of Ets-1 (transcript variant 2) into the
pEGFP vector at Bgl II/KpnI sites.
To generate the VEGFR3 luciferase reporter construction VEGFR3-Luc, a 814-bp

sequence within the 5ʹ-regulatory region of the VEGFR3 gene that harbors Ets-1-
binding motifs25 was amplified by PCR from mouse genomic DNA and was inserted
into the pGL3-Basic vector (Promega, Madison, WI, USA) at KpnI/XhoI sites.
All constructions used in this study were sequenced and confirmed to be correct.

The primer sequences used for cloning are presented in Supplementary Table 1.

Luciferase reporter assay. To assess the transactivation activity of Ets-1,
MIN6 cells were co-transfected with VEGFR3-Luc, pEGFP/pEGFP-Ets-1WT/pEGFP-
ETS-1ΔTAD/pEGFP-ETS-1ΔETS and a β-galactosidase expressing plasmid driven by
the CMV promoter (Clontech Laboratories, Palo Alto, CA, USA).56 At 24 h following
transfection, cells were maintained in normoxic condition or exposed to 2% O2 for
1 h, immediately washed with ice-cold PBS, and then lysed with Reporter lysis
buffer (Promega). Cell debris was removed by centrifugation (12 000 g at 4 °C for
20 min) and the whole-cell lysate was then subjected to luciferase reporter assay.
Luciferase activity was measured with a luminometer (TD-20/20; Turner Designs,

Sunnyvale, CA, USA) using a luciferase assay system (Promega). The Firefly
luciferase activity was normalized with the β-galactosidase activity. Each experiment
was performed in triplicate and repeated three times.

Cell culture, gene transfer and hypoxia treatment. The mouse
pancreatic β-cell line MIN6 (passage 16–30) was cultured in Dulbecco’s modified
Eagles medium (Invitrogen, Carlsbad, CA, USA) containing 25 mM glucose and
supplemented with 15% fetal bovine serum (Invitrogen). The rat pancreatic β-cell
line INS-1 (passage 60–80) was cultured in PRIM 1640 medium (Invitrogen)
containing 11.1 mM glucose and supplemented with 10% fetal bovine serum. Both
media were supplemented with 100 μg/ml streptomycin, 100 U/ml penicillin and
50 μmol/l β-mercaptoethanol. The pancreatic α-cell line—α-TC6—was cultured in
Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum,
100 μg/ml streptomycin and 100 U/ml penicillin. Cells were maintained at 37 °C in a
humidified incubator under 5% CO2/95% air.
For gene transfer, MIN6 cells were transiently transfected with plasmids using

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol, and INS-1
cells were infected with AdV (Adenovirus) -GFP or AdV-Ets-1 adenovirus (MOI= 5),
followed by further treatment.
For hypoxia treatments, cells or islets were transferred to a humidified incubator

(Heracell 150i CO2 Incubator, Thermo Scientific, Waltham, MA, USA) supplied with
the desired gas mixture (1–10% oxygen/94-85% N2/5% CO2).

Pancreatic islets isolation. All animal studies were performed according to
guidelines established by the Research Animal Care Committee of Nanjing Medical
University. Animals used for islet isolation (8-week-old C57BL/6 mice and Sprague–
Dawley rats) were purchased from the National Resource Center for Mutant Mice
Model Animal Research Center of Nanjing University. Islets were isolated and
cultured as described previously.57 At 6 h following isolation, islets were maintained
under normoxic conditions or were subjected to hypoxic conditions. Total RNA and
protein were then extracted after 1–4 h of hypoxia.

Flow cytometry analysis of apoptosis and mitochondrial mem-
brane potential (Δψm). Apoptosis was analyzed by annexin V/PI staining.
The mitochondrial membrane potential was analyzed by JC-1 staining. After
exposure to 2% O2, MIN6 cells were immediately washed with ice-cold PBS,
collected and stained with annexin V-FITC/PI (annexin V-FITC apoptosis detection
kit I, BD Biosciences, San Diego, CA, USA) and JC-1 (MitoProbe JC-1 Assay Kit,
Life Technologies, Carlsbad, CA, USA) according to the manufacturers’ protocols.

A total of 2 × 104 cells in each sample were analyzed using a FACSCalibur flow
cytometer and Cellquest Pro software (Becton Dickinson Immunocytometry
Systems, San Jose, CA, USA).

RNA extraction, reverse transcription and qRT-PCR. Total RNA was
extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s
directions. Reverse transcription using ReverTra Ace-α-reagent (TOYOBO, Osaka,
Japan) was performed to quantify relative amounts of mRNA using Oligo (dT) 20
primers. The SYBR Green Realtime PCR Master Mix (TOYOBO) and Light Cycler
480 II Sequence Detection System (Roche, Basel, Switzerland) were used for qRT-
PCR. mRNA levels were normalized to β-actin. The sequences of the primers used
in qRT-PCR are presented in Supplementary Table 2.

Western blotting. After hypoxia exposure, cells or islets were immediately
washed with ice-cold PBS and lysed with buffer containing 50 mM Tris-HCl (pH 8.0),
150 mM NaCl, 0.02% sodium azide, 0.1% SDS, 1 μg/ml aprotinin, 1% NP-40,
1% deoxycholic acid sodium salt and 100 μg/ml PMSF. Cell debris was removed by
centrifugation (12 000 g at 4 °C for 20 min). The protein concentration was
determined and samples of the protein were separated by SDS-PAGE, transferred
to Immun-Blot PVDF membranes (Bio-Rad, Hercules, CA, USA), and incubated at
4 °C overnight with primary antibodies. The membranes were then incubated at
room temperature with horseradish peroxidase-conjugated anti-mouse or anti-rabbit
secondary antibodies for 1 h and analyzed using the ECL method.

Immunoprecipitation. The MIN6 cells were transfected with pCMV5 or
pCMV5-Ets-1. Twenty-four hours after transfection, the cells were exposed to 2% O2

for 1 h or 2 h, immediately washed with ice-cold PBS and then lysed with RIPA
buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,
1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerolphosphate, 1 mM
sodium orthovanadate, 100 μg/ml PMSF and a complete protease inhibitor (Roche
Molecular Biochemicals, Indianapolis, IN, USA). Cell debris was removed by
centrifugation (12 000 g at 4 °C for 20 min). The lysates were pre-cleared with
protein A/G Plus agarose beads and then incubated with anti-Ets-1 antibody and
protein A/G Plus agarose beads for 9 h. The precipitates were separated from the
beads by heating in 1 × sample buffer in a boiling water bath for 5 min. The
extracted proteins were then analyzed by western blotting. The anti-rabbit light chain
secondary antibody was used following incubating with anti-Ets-1 primary antibody
for immunoblotting of Ets-1 protein.

Statistical analysis. Comparisons were performed using Student’s t-test
between pairs of groups. Results are presented as means± S.D. Po0.05 was
considered to be statistically significant.
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