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DED or alive: assembly and regulation of the death
effector domain complexes

JS Riley1, A Malik1, C Holohan1 and DB Longley*,1

Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and
caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating
other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and
inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic
development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our
understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED
complex formation in diseases such as cancer.
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Facts

� FADD, FLIP, procaspase-8 and procaspase-10 all contain
death effector domains (DEDs).

� The DED is a conserved protein sub-domain that mediates
important protein–protein interactions.

� DED-containing proteins form a variety of complexes that
regulate key cellular processes, most notably apoptosis,
necroptosis and autophagy.

� Recent reports also highlight the critical role of DED
proteins in other key processes linked to development
and inflammation.

Open Questions

� Does caspase-10 (absent in mice) have overlapping
functions with caspase-8, or is it functionally distinct?

� Under what physiologically relevant conditions does
necroptosis occur rather than apoptosis?

� In which cellular contexts are FADD, FLIP, (pro)caspase-8
and (pro)caspase-10 critical for regulating autophagy?

� What are the best ways of targeting DED-containing proteins
to therapeutically activate cell death (e.g., in cancers) or
prevent cell death (e.g., in neurodegenerative diseases)?

� Are DED-containing proteins potential therapeutic targets
for inflammatory diseases?

Cell death is critical for maintaining homeostasis in multi-
cellular organisms; too much can result in pathologies such as
neurodegeneration, whereas too little can lead to the
accumulation of malignant cancerous cells. Cell death can
be either active, where the cell participates in its own
destruction or passive, for example, when a cell undergoes
irreparable physical damage.1 The most biochemically well-
characterised form of cell death is apoptosis, an active
process in which cysteine-dependent aspartate-directed
proteases (caspases) are activated in response to extracel-
lular stimuli or internal damage culminating in a form of cell
death defined by distinct molecular events and characteristic
changes in the morphology of the dying cell. Recently, a
number of actively regulated non-apoptotic mechanisms of
cell death have emerged, including necroptosis, pyroptosis
and ferroptosis, which have been comprehensively reviewed
elsewhere.2,3 Here, we focus on those mechanisms of cell
death arising following stimulation of death receptors, broadly
termed the ‘extrinsic pathway’. For authoritative reviews on
mitochondrial-mediated ‘intrinsic’ cell death, we direct the
Reader elsewhere.4,5 Central to receptor-mediated cell death
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pathways are proteins containing ‘death–fold superfamily’
interaction motifs such as the death domain (DD), caspase
activation and recruitment domain (CARD), pyrin domain and
the death effector domain (DED).
The DED-containing proteins, which are key decision

makers in determining the life and death of cells, are the
primary focus of this review. We will first introduce the main
members of the DED protein family and discuss advances in
the understanding of the assembly and stoichiometry of death
receptor complexes. We will then summarise the recent
literature surrounding the regulation of these complexes and
consider the role of these proteins in disease.

The DED Proteins

The death-fold motif is characterised by its globular structure
containing six amphipathic α-helices that run anti-parallel in
α-helical bundles.6 When folded, a conserved hydrophobic
core forms, although differences in helical length and residue
distribution give rise to significant variations between the
different sub-families.6–9 The DED death-fold sub-family
consists of procaspases-8 and -10, FLIP, FADD, DEDD,
DEDD2, and PEA-15 (Figure 1). FADD, DEDD, DEDD2 and
PEA-15 contain a single DED, whereas FLIP, procaspase-8
and procaspase-10 each have tandem DEDs. Procaspases-8
and -10 have catalytically active domains in the regions
C-terminal to their tandemDEDs; whereas the long splice form
of FLIP, FLIPL, has a pseudo-caspase domain C- terminal to
its tandem DEDs, in which the cysteine residue critical for

enzymatic activity is absent. Shorter splice forms of FLIP
(FLIP short, FLIPS, and FLIP Raji, FLIPR) arising through
alternative mRNA splicing lack the pseudo-caspase domain,
but contain the tandem DEDs.10

Procaspase-8 is a highly conserved protease, displaying
~20% sequence similarity to its Caenorhabditis elegans
homolog CED-3.11 Eight splice forms of procaspase-8 have
been identified at the mRNA level, although only two of these,
procaspases-8A and 8B are expressed as functional
proteases.12 Additionally, a long splice form (procaspase-
8L), which contains a 136-bp insert between exons 8 and 9
encoding an early stop codon, contains both DEDs but lacks a
functional catalytic domain; it is found in undifferentiated cells
and neoplasms and has been reported to act in a dominant
negative manner to inhibit apoptosis.13–15

Procaspase-10 is also expressed as multiple splice forms:
procaspases-10A, B, D and G. All contain tandem DEDs and
proteolytic domains except G, which is truncated and only
consists of the DEDs.16–18 In vitro studies have shown that
procaspase-10 is activated by induced proximity in a manner
similar to procaspase-8.19 Despite the similarity between
procaspase-10 and procaspase-8, whether procaspase-10
can initiate death receptor-mediated apoptosis in the absence
of procaspase-8 remains controversial,20–22 although they
share common substrates, notably BID and RIPK1.23,24

However, no ortholog of the gene encoding procaspase-10
(Casp10) is present in the mouse genome,25 suggesting
that procaspase-10 is not required for activation of the
extrinsic apoptotic pathway. Despite this, expression of both
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Figure 1 Schematic representations of the structures of DED proteins (ribbon format with transparent solvent-accessible surface area) along with their complete linear
domain organisation. Protein structures: (a) Homology model of human FLIP DEDs48 (b) NMR solution structure of FADD DED (PDB ID: 2GF5) 7 (c) NMR solution structure of
PEA-15 DED (PDB ID: 2LS7)191 (d) Homology model of procaspase-8 DEDs48 (e) Homology model of procaspase-10 DEDs generated using the I-TASSER web server192
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procaspase-8 and procaspase-10 is frequently downregu-
lated in cancer.26–28 Interestingly, the genes encoding
procaspase-8 (Casp8), procaspase-10 and FLIP (CFLAR)
are present at the same loci (2q33-q34) and clearly evolved via
gene duplication events. Evolutionary studies have identified
the predecessors of Casp8, Casp10 and CFLAR in fish.29

FADD is an adaptor protein containing a DD which allows it
to associate with the DDs of TRAIL- R1, TRAIL-R2, CD95 and
TRADD, and a DED, which enables it to recruit other DED-
containing proteins, namely procaspase-8, procaspase-10 or
FLIP. As with most other components of the extracellular
apoptosis signalling pathways, FADD is highly evolutionarily
conserved.30 As a protein linking death receptors to death
initiators, it is not only a key player in cell death, but also has
reported roles in non-apoptotic processes. For example,
FADD has been identified in the nucleus and has been
postulated to have functions in regulating cell cycle
progression,31,32 NF-κB activity,33 autophagy,34 cytokine
signalling35,36 and T-cell activation.37 Indeed, roles beyond
core apoptosis signalling have also been identified for FLIP,
procaspase-8 and procaspase-10, and frequently these roles
involve complex interactions between these proteins
and FADD.

Assembly of the Death-inducing Signalling Complex
(DISC)

The death receptors TRAIL-R1 (DR4), TRAIL-R2 (DR5) and
CD95 (Fas) are specialised members of the TNF receptor
superfamily and are key mediators of apoptosis triggered by
ligands expressed by cells of the immune system, namely
TRAIL (TNF-related apoptosis-inducing ligand), which acti-
vates TRAIL-R1 and TRAIL-R2, and CD95L (FasL), which
activates CD95. Following extracellular ligand binding, pre-
associated TRAIL-R1, TRAIL-R2 and CD95 trimers, cluster
through interactions between their intracellular DDs.38,39 The
DD of FADD can then interact with the cytoplasmic DDs of the

death receptors, after which its DED becomes available for
protein–protein interactions with other DED proteins, thereby
creating a platform for assembly of the DISC.

Death domain interactions. The interactions between the
CD95 and FADD DDs have been described (Figure 2). Scott
et al.40 reported a 2.7 Å resolution co-crystal structure, which
suggests that CD95 and FADD bind in dimeric units, that is
2 ×FADD-DD interacting with 2 ×CD95-DD. These units are
then proposed to further associate into tetrameric structures
(4 ×FADD-DD to 4×CD95-DD), although in vivo, the dimeric
form is favoured. They report that, following CD95 receptor
activation, CD95 undergoes a conformational change,
exposing its hydrophobic core and revealing a multitude of
interaction surfaces capable of binding the DD of FADD. This
represents a possible safety mechanism whereby the
apoptotic cascade only proceeds when sufficient CD95
DDs cluster. However, the FADD interaction sites in the
CD95 DD predicted by this model do not correlate with
mutations observed in patients with autoimmune lymphopro-
liferative syndrome, a disease defined by mutations in CD95
which prevent DISC formation.41 In a different study,
Wang et al.42 used electron microscopy to visualise CD95
DD–FADD DD interactions and observed that they bore a
striking resemblance to the PIDD DD–RAIDD DD complex,
being principally composed of 5 ×CD95 DDs and 5×FADD
DDs layered together. This stoichiometry is in agreement with
data by Esposito et al.,43 who also reported a ratio of
5 ×CD95:5 ×FADD together with some 6×CD95:5 ×FADD
and 7×CD95:5 ×FADD ratios, but not the 4 ×CD95:4 ×FADD
suggested by Scott et al. Disparities between these models
could be explained by the different conditions used for protein
crystallisation; however, the models proposed by Wang et al.
and Esposito et al. are supported by the fact that they
account for mutations frequently seen in autoimmune
lymphoproliferative syndrome. Most disease-causing muta-
tions present in autoimmune lymphoproliferative syndrome
patients reside in the DD of CD95,41 resulting in an inability to
bind FADD and form a DISC. Mapping these mutated
residues onto the structure proposed by Wang et al. reveals
that they reside on the exposed surface of the DD and would
be likely to prevent the binding of FADD.42

DED interactions. In addition to death receptor:FADD DD
interactions, FADD has been reported to self-associate
through its DED, which stabilises its association with the
death receptor. Sandu et al.44 identified a ‘hydrophobic patch’
(F25, L28 and K33) as the critical surface for FADD-FADD
interactions and not an RxDL motif as had previously been
reported. Such interactions between FADD molecules gen-
erates higher order complexes of FADD and death receptors
that may be the basis of the SPOTS (signaling protein
oligomerisation transduction structures), which have been
reported to form soon after CD95 receptor activation.45 The
RxDL motif is found in both DEDs of viral FLIP MC159 and is
critical for its ability to be recruited to the DISC and inhibit
apoptosis.9,46,47 However, this appears not to be the case for
murine FLIP, for which the hydrophobic patch was instead
found to be indispensable for DISC recruitment and apoptosis
inhibition.47 MC159 was also reported to interact with the

FADD DD CD95 DD

Figure 2 Crystal structure of the human CD95–FADD DD heterodimer. CD95 DD
(blue ribbon) binds to FADD DD (green ribbon) via several key interacting residues
(highlighted as grey sticks) (PDB ID: 3EZQ).40 Hydrogen bonds are depicted as black
dotted lines. These heterodimers oligomerise into higher order structures
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RxDL motif of FADD, blocking FADD self-association and
preventing the formation of a competent caspase-recruiting
platform.8 The role of the RxDL motif may differ for cellular
and viral forms of FLIP. Our recent data suggest that this motif
is important for human FLIP’s anti-apoptotic function; how-
ever, not because of its direct involvement in mediating inter-
and intra-molecular interactions, but rather because it
controls the spatial orientation of the hydrophobic patch
defined by the a2 and a5 helices of FLIP’s DEDs (Figure 3);
our data and those of others indicate that it is this
hydrophobic patch that mediates intra-molecular interactions
between FLIP’s tandem DEDs and inter-molecular interactions
between FLIP and FADD and procaspase-8 (Figure 4).48

Emerging models of DISC assembly at the level of
DED interactions. Two independent studies proposed a
novel model of DISC assembly after finding that FADD is
sub-stoichiometric at the DISC compared with death recep-
tors and caspase-8, with three to five receptors and as many
as nine caspase-8 molecules for every FADD molecule
recruited to the complex.49,50 DED-containing proteins inter-
act with themselves and one another in a homotypic manner
through their DEDs, so both groups proposed that one

FADD molecule could recruit multiple DED-only proteins
(procaspase-8, procaspase-10 or FLIP) as ‘chains’. In
support of this model, formation of caspase-8 chains was
observed in single cell studies using fluorescently tagged
caspase-8. Such DED ‘filaments’ have been described before
for caspase-8 and FADD;46,51 however, their physiological
relevance is questionable as they are generated in cells
expressing supra-physiological levels of each DED protein.
By creating models of FLIP and procaspase-8 DEDs based

on the published structure of vFLIP MC159,8 we used the
NMR structure of FADD7 to perform docking experiments
between the DEDs of the three proteins. These modelling
experiments suggested that each protein pair could potentially
interact in two distinct orientations, which involved mainly
hydrophobic interactions between the a2/a5 surface (the
aforementioned hydrophobic patch) in one DED and a1/a4
surface of the adjacent DED.48 Subsequent mutagenesis
studies revealed that FLIP and procaspase-8 have differential
affinities for the two available interaction surfaces of the FADD
DED. FLIP preferentially binds to the α1/α4 surface of FADD’s
DED, whereas procaspase-8 binds to FADD’s α2/α5 surface
(Figure 4). Our analysis of the stoichiometry of the TRAIL-R2
DISC was not in agreement with the caspase chain models
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described above: in our study, sub-apoptotic DISC stimulation
resulted in an approximate 1:1:1 ratio of FADD:caspase-8:
FLIP; while at higher levels of DISC stimulation, there was
more caspase-8 than FADD or FLIP, although there remained
approximately one FADD molecule for every two molecules of
FLIP/caspase-8.

Activation of caspase-8. The current model of procaspase-
8 activation is that 53/55 kDa procaspase-8 zymogens are
recruited to FADD as monomers via their DEDs leading to
dimerisation of the procaspases, initially via their DEDs
(Figure 5).52–56 Dimerisation of the caspase domains then
occurs and results in conformational changes that reveal the
enzymatic activity necessary for intra-molecular cleavage of
the C-terminal portion of the caspase, liberating a p12 subunit
(subsequently processed to the small p10 catalytic subunit)
and simultaneously stabilising the dimer. Next, the 41/43 kDa
caspase-8 intermediates in the dimer cleave one another in a
trans-catalytic manner in the region between their DEDs and
the large p18 catalytic subunit. The two molecules of p18-
caspase-8 that are subsequently released associate with the
two p10 subunits to form the active protease.57 These two
steps are critical, as cleavage in the absence of dimerisation
does not result in an active protease.58

Procaspase-8 can also heterodimerise with FLIP at the
DISC. In the case of FLIPS/R, heterodimerisation fails to
activate procaspase-8 as the initial conformational change
cannot take place in procaspase-8’s caspase domain;59 thus,
FLIPS/R effectively acts in a dominant negative manner
(Figure 5). For FLIPL, heterodimerisation results in an active
enzyme, as the pseudo-catalytic domain of FLIPL is able to
induce the conformational change in procaspase-8’s caspase
domain that is necessary to create the active site (Figure 5).59

Indeed, it appears that FLIPL’s pseudo-caspase domain is
more efficient at inducing the conformational change in the
dimer than the caspase domain of another molecule of
procaspase-8.60 The FLIP:caspase-8 heterodimer remains
tethered to the DISC because the second step of activation,
cleavage between the DEDs and p18-subunits cannot occur
because of FLIPL’s lack of enzymatic activity, and the
heterodimer is unable to activate the apoptotic cascade.
However, the FLIPL:caspase-8 heterodimer’s enzymatic

activity can cleave local substrates, most notably RIPK1, an
important regulator of necroptosis (see below).61

Procaspase-8 dimerisation is required for formation of the
active site.55,56 However, as well as intra-dimer cleavage,
procaspase-8 can be cleaved in an inter-dimeric manner
(i.e., dimers acting in a trans manner).54,62 To define the
relative contributions of each of these modes of caspase-8
activation, Kallenberger et al.63 used single cell analysis and
mathematical modelling. They suggest a model in which the
cleavage of procaspase-8 between the enzymatic p18 and
p10 domains occurs in an inter-dimeric manner, while
cleavage between the pro-domain and p18 domains occurs
in an intra-dimer manner.63 This model implies that only
formation of adjacent procaspase-8 dimers will result in full
procaspase-8 processing in each dimer; thus, a FLIP:
caspase-8 heterodimer may also inhibit full activation of an
adjacent caspase-8:caspase-8 homodimer.

TNFR1 complexes I and II. Seminal work by Micheau and
Tschopp64 showed that following TNFα engagement, TNF
receptor 1 (TNFR1) trimerises and recruits the adaptor
protein TRADD in a DD-dependent manner. TRAF2, a RING
domain-containing E3 ligase, is recruited to TRADD and
forms a platform for the recruitment of cIAP1 and cIAP2.65,66

RIPK1 is also recruited to form TNFR1 Complex I, and the
cIAP proteins then conjugate K11- and K63-linked polyubi-
quitin chains to RIPK1 enabling its interaction with the IKK
complex and activation of the NFκB signalling pathway; this in
turn results in transcription of genes, which predominantly
encode pro-survival (including FLIP and cIAP1) and pro-
inflammatory proteins (Figure 6).67–73 In 2009, Tokunaga
et al.74 found that mice deficient in components of the linear
ubiquitin chain assembly complex (LUBAC), specifically
HOIL-1, are defective in TNFα-induced NFκB activation.75

Utilising a modified tandem affinity purification technique,
Haas et al.75 showed that the LUBAC is recruited to the
TNFR1 signalling complex through cIAP-generated ubiquitin
chains. Subsequent studies identified NEMO and RIPK1 as
substrates of linear ubiquitination by LUBAC.76 The LUBAC
appears to stabilise the TNFR1 signalling complex, prolong-
ing recruitment and retention of cIAP1, cIAP2, TRAF2, RIPK1
and TAK1.75 The central importance of cIAP1/2 in preventing
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TNFα-induced NF-κB activation is supported by evidence
from cIAP1/2-null genetic models which die following
exposure to TNFα to a much greater extent than loss of
RIPK1 or LUBAC alone.77–80 Deubiquitination of RIPK1 by
CYLD81 stimulates the dissociation of Complex I into a
secondary cytoplasmic Complex IIa where RIPK1 and/or
TRADD recruit FADD via their DDs. FADD in turn recruits
procaspase-8 and FLIP into this complex in a manner
analogous to that described above for the DISC.64,82 As
FLIP is an NF-κB target gene, prior activation of Complex I
upregulates its expression, resulting in its recruitment to
Complex II and regulation of procaspase-8 processing in the
manner described above. Importantly, the formation of a
caspase-8/FLIPL heterodimeric enzyme at Complex IIa
cleaves RIPK1, which otherwise auto-phosphorylates and
interacts with RIPK3 to form the necrosome. The necrosome
in turn initiates programmed necrosis (termed necroptosis) by
triggering oligomerisation of MLKL (mixed lineage kinase

domain-like), which then localises to the plasma membrane
and disrupts its integrity.83,84 Thus, formation of the caspase-
8/FLIPL heterodimer in Complex IIa blocks both apoptosis by
preventing procaspase-8 homodimerisation and necroptosis
by blocking RIPK1/RIPK3-mediated necroptosis.85 As is the
case for other DED protein-containing complexes, caspase-8/
FLIPS heterodimers in Complex IIa lack catalytic activity,
and although their formation inhibits caspase-8-mediated
apoptosis, they have been reported to actually promote
RIPK-mediated necroptosis by inhibiting caspase-8-mediated
cleavage of RIPK1.86 A general view is that compared with
apoptosis, necroptosis is highly pro-inflammatory owing to
the release of pro-inflammatory cytokines87 and damage-
associated molecular patterns.88,89 However, recent findings
show that necroptosis can actually reduce certain pro-
inflammatory responses, while CD95-mediated apoptosis
has been shown to stimulate release of immuno-stimulatory
cytokines.90,91
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The 41/43 kDa caspase-8 intermediates cleave one another in a trans-catalytic manner in the region between their DEDs and the large p18 catalytic subunit. The two molecules
of pro-caspase-8 that are subsequently released associate with the two p10 subunits to form the active protease.57 At lower levels of DISC stimulation or when FLIP is highly
expressed, FLIP/caspase-8 heterodimers assemble at the DISC via interactions between their DEDs and those of FADD.48 The pseudo-caspase domain of FLIPL is able to induce
the conformational change in procaspase-8’s caspase domain that is necessary to create its active site.59 The FLIPL:caspase-8 heterodimer is processed between the p18 and
p12 subunits of both proteins, but is unable to be further processed owing to FLIPL’s lack of enzymatic activity, and this heterodimer is unable to activate apoptosis. In the case of
FLIPS, heterodimerisation fails to activate procaspase-8 as the initial conformational change cannot take place in procaspase-8’s caspase domain
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The Ripoptosome. In the last few years, a new cytosolic
DED-containing complex has been described, termed
the ‘Ripoptosome’ (Figure 6). During normal cellular home-
ostasis, RIPK1 exists in a closed configuration and cannot
bind FADD via its DDs.86,92 In its open configuration, RIPK1
is usually ubiquitinated by cIAP1/2 and degraded in a
proteasome-dependent manner. However, cIAPs can them-
selves be degraded in response to genotoxic stress (e.g., in
response to DNA-damaging chemotherapeutics) or more
specifically in response to IAP antagonists (also known as
SMAC mimetics as they mimic the activity of the endogenous
IAP inhibitor, SMAC). In the absence of cIAPs, RIPK1 is
phosphorylated and transitions into an open configuration,
allowing it to more readily bind FADD, procaspase-8, FLIP
and potentially RIPK3.93 This complex has been termed the
Ripoptosome, and it can initiate apoptosis or necroptosis in a

manner similar to that described above for TNFR1 Complex
IIa depending on its composition.86,92

DED proteins in embryonic development. This pro-
survival role of caspase-8 in suppressing necroptosis
explains the results of several genetic experiments that
stemmed from older observations that caspase-8-null,
FADD-null and FLIP-null mice die at E10.5 with similar
phenotypes.94–96 This has now been attributed to the loss of
FADD or caspase-8 leading to unrestrained RIPK1/3-
mediated necroptosis during mid-gestation, whereas loss of
FLIP results in unrestrained caspase-8-mediated apoptosis
at this time. Thus, combined deletion of FADD or caspase-8
with RIPK3 can prevent necroptosis and rescue the
embryonic lethal phenotype of the FADD-null and caspase-
8-null genotypes.85,97 However, to rescue the embryonic
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stabilisation of LUBAC.69,70 NEMO and IKK associate with LUBAC, and IKK is phosphorylated by TAK1, resulting in its proteasomal degradation and allowing subsequent
translocation of the NF-kB subunits p65/p50 to the nucleus. However, in conditions of cIAP inhibition (e.g., SMAC mimetics) or deubiquitination of RIPK1 by the DUB CYLD,
Complex I can dissociate from the membrane and recruit FADD, FLIP and procaspase-8 to form Complex IIa.193,194 Depending on the composition of Complex IIa, RIPK1
is cleaved and apoptosis ensues. If FADD or procaspase-8 are deleted, caspase-8 activity is inhibited (e.g., by caspase inhibitor-encoding viruses) or RIPK3 is induced
(e.g., following RIPK1 autophosphorylation), Complex IIb (or the necrosome) is formed which facilitates the phosphorylation of the pseudokinase MLKL by RIPK3.83,195 MLKL
then oligomerises and translocates to the plasma membrane, binds to phosphatidylinositol phosphates, disturbing membrane integrity and leading to necrotic cell
death.83,84,196–199 Under normal physiological conditions, RIPK1 is ubiquitinated by cIAP1/2 and degraded;70 however, under conditions where IAPs are depleted, such as SMAC
mimetic treatment or genotoxic stress, RIPK1 is available to bind FADD, procaspase-8, FLIP and RIPK3. This complex termed the ‘Ripoptosome’ can result in either apoptosis or
necroptosis depending on the levels of FLIPL, FLIPS and procaspase-8 recruited.

86,92
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lethality of FLIP-null animals, loss of FADD and RIPK1 or
RIPK3 is required, as in this case, both FADD-mediated
apoptosis and RIPK3-mediated necroptosis must be blocked.
In related observations, tissue-specific deletion of caspase-8
in skin98 or the gut99,100 (but not in liver,101 myeloid cells101 or
the heart102) resulted in severe inflammation owing to
unrestrained inflammatory signalling. RIPK3 ablation in
Casp8−/− gut safeguards these tissues from the inflammation
observed with Casp8 deletion alone, but FLIP deletion cannot
be rescued by simultaneous RIPK3 deletion, implying that the
cell death in FLIP−/− gut is most likely apoptotic, not
necroptotic.100 Interestingly, in both Casp8-deleted and
FLIP-deleted skin, elevated levels of TNFα were produced,
and co-administration of a TNFα-neutralising antibody pre-
vented inflammation and death, implying that this phenotype
is TNFα-driven.100

Role for DED protein complexes in autophagy. Evidence
is now emerging that DED proteins can also regulate
autophagy. Young and colleagues103 provide compelling
evidence that FADD co-localises with LC3-positive autop-
hagosomes capable of recruiting procaspase-8 and forming
an intracellular DISC.104 Depending on the cellular context,
autophagy can promote survival or death (reviewed by
White105). There is strong evidence that autophagy can
promote caspase-dependent and -independent cell
death;106 the intracellular DISC provides one potential
complex through which this can occur. Proteasome inhibi-
tion has been shown to activate caspase-8 in a manner
that requires the induction of autophagy and the presence
of Atg5 and FADD.107 Another study reported that a
FADD/caspase-8/Atg5:12/RIPK1 complex forms on auto-
phagosomal membranes in T cells and cleaves RIPK1,
limiting autophagy and necroptosis and ultimately initiating
apoptosis.108–110

Cellular and viral forms of FLIP can also attenuate
autophagy through inhibitory binding to Atg3, a key
component of the LC3 conjugation system.111 Inhibition of
Atg3 by FLIP can be relieved by peptides from either its
DED1 α2-helix or the DED2 α4-helix, suggestive of a more
promiscuous, non-discriminatory mode of binding than that
between FLIP and FADD.48 Through an RNAi library
screening approach, Lamy et al.112 identified caspase-10
as critical for survival of multiple myeloma cells; the authors
found that caspase-10 forms a proteolytically active complex
with FLIPL, which constitutively cleaves and inactivates
BCLAF1. As BCLAF1 displaces Beclin-1 from BCL-2 to
promote autophagic cell death,113 this caspase-10/FLIPL

complex blocks this mode of cell death. These results
suggest that pharmacological inhibition of caspase-10 may
afford therapeutic benefit to multiple myeloma patients by
inducing autophagic cell death. Interestingly, despite their
similarities, this effect was not observed when caspase-8
was depleted.112 The upstream mechanism that triggers
formation of this caspase-10/FLIPL heterodimer and the
identities of other members and substrates of this complex
are currently unknown.

Posttranslational Regulation of DED Proteins

Ubiquitination events at the DISC. Given the swiftness of a
cell’s response to apoptotic stimuli, it is unsurprising that cells
have numerous mechanisms to tightly regulate the expres-
sion and function of the key decision makers. In a series of
studies, work from the Ashkenazi laboratory has revealed the
critical role of ubiquitination in the activation of caspase-8 at
the DISC. Firstly, they showed that caspase-8 is polyubiqui-
tinated with K63-linked chains by cullin 3 (CUL3) at the DISC
in response to either TRAIL-R1 or TRAIL-R2 stimulation.114

Moreover, silencing CUL3 inhibited caspase-8 processing at
the DISC, suggesting a role for CUL3-mediated ubiquitination
in regulating caspase-8 activation. In mapping studies, the
C-terminus of caspase-8 was identified as the region of
ubiquitination. Furthermore, aggregation and activation of
polyubiquitinated caspase-8 is facilitated by p62,115 a protein
known to bind to ubiquitin, that moves caspase-8 into
ubiquitin-rich foci.114 However, it is unknown whether
translocation into these foci is necessary for caspase-8′s
activation, and the implications this has for the observation
that caspase-8 and p62 are both found in intracellular DISCs
and autophagosomal membranes is unclear.103,104 In sub-
sequent work, the same group found that cytosolic p43 and
p18 fragments of caspase-8 are degraded in a proteasome-
dependent manner. In this latter study, caspase-8 was
reported to be conjugated by degradative K48-linked ubiquitin
chains on its p18 fragment by another E3 ligase, TRAF2.116

Rather than increasing its activation as is the case for CUL3-
mediated K63-ubiquitination, TRAF2 acts to degrade the pool
of activated caspase-8, decreasing the propensity of the cell
to commit to apoptosis. Caspase-8-processed FLIPL has also
been reported to interact with TRAF2, promoting activation of
the NF-κB transcriptional pathway, but it is not yet clear
whether these observations are related.117

Regulation of FLIP by the UPS. An additional layer of
control of death receptor-mediated apoptosis is achieved by
the ubiquitination of FLIP. Similar to the anti-apoptotic BCL-2
family member MCL-1, FLIPS is an extremely short-lived
protein that is rapidly turned over through the ubiquitin-
proteasome system.118 FLIPS is ubiquitinated on K192 and
K195 in DED2 and, between these two lysine residues at
position 193 is a serine residue which, when phosphorylated,
inhibits the ubiquitination of the adjacent lysines.118,119

Notably, mutational studies showed that ubiquitin-deficient
mutants of FLIPS had increased half-lives (as expected) but
were still recruited to the DISC, retaining their anti-apoptotic
ability. In further work, the same lab identified PKCα/β
as the key mediators of FLIPS phosphorylation on S193.119

FLIPL is less labile than FLIPS, although it too is turned over
relatively rapidly, with a typical half-life of 2–3 h.118 A similar
interplay between phosphorylation and ubiquitination is true
for FLIPL, where ROS production induces the phosphoryla-
tion and subsequent ubiquitination and degradation of
FLIPL.

120 Moreover, K195 is a site of ubiquitin conjugation
on FLIPL in response to hyperthermia.121 Our group has
identified a role for the DNA repair protein Ku70 in regulation
of FLIP ubiquitination. Ku70 forms a complex with FLIP
protecting it from ubiquitination and subsequent degradation.
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This complex is regulated by the acetylation of Ku70 and thus
can be manipulated pharmacologically by histone deacety-
lase inhibitors leading to rapid degradation of FLIP.122 Chang
et al.123 reported that following TNFα stimulation, JNK is
activated which in turn activates the E3 Ubiquitin ligase Itch,
resulting in FLIPL ubiquitination and subsequent proteasomal
degradation. This apparent link between FLIP and Itch was
partly confirmed by other studies, including Panner
et al.,124,125 who identified a PTEN-Akt-Itch pathway control-
ling FLIPS stability and degradation.

DED Complexes in Mammalian Host Defence

Antiviral immunity. DED-containing protein complexes are
critical for innate immune reactions and can assemble to
induce apoptosis in response to viral infection, generally in a
mitochondrial antiviral signalling adaptor (MAVS)-dependent

manner. Typically, cytosolic viral RNA is recognised by one of
the three RIG-1-like receptors (RLRs) retinoic acid-inducible
gene I (RIG-1), melanoma differentiation-associated gene 5
(MDA5) or laboratory of genetics and physiology 2 (LGP2).
RIG-1 and MDA5 undergo conformational changes upon
binding to viral RNA, exposing an N-terminal CARD that
interacts with and activates MAVS,126,127 which in turn
activates a type I interferon response.126

FADD and RIPK1 can interact with MAVS (Figure 7),128 and
FADD- and RIPK1-deficient cells are hypersensitive to viral
infection owing to an inability to induce the transcription of key
antiviral genes.35 Tschopp and co-workers elucidated the
mechanistic basis of these findings and found that the antiviral
RIG-1 signalling pathway bears a striking resemblance to the
TNFR1 pathway.64,129 They propose that following viral
infection, a complex termed the ‘TRADDosome’ (composed
of TRADD, RIPK1 and FADD) forms on the mitochondrial
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Figure 7 DED proteins in MAVS signaling. Following viral infection of cells, viral RNA is detected by CARD-containing RIG-1-like receptors, for example, RIG-1 and MDA5.
RIG-1 binds the dsRNA, exposing its normally hidden CARD domains. K63 ubiquitin chains are conjugated to the CARDs, facilitating the assembly of a complex composed of four
polyubiquitin chains and four RIG-1 molecules (not shown).200,201 This in turn induces the formation of prion-like aggregates of MAVS, which strongly activate IRF3.202,203 These
MAVS aggregates form a platform which can recruit TRAF2, TRAF3 and TRAF6.203 TRADD also binds MAVS followed by TANK and TBK2, activating antiviral IRF3.129,203

However, TRADD can also recruit RIPK1, FADD and caspase-8, a complex dubbed the ‘TRADDosome’. Caspase-8 cleaves RIPK1 and the resulting RIPK1 fragment can inhibit
IRF3, ceasing the antiviral response.204 RIPK1 is conjugated by K63 ubiquitin chains inducing two distinct signaling pathways from the TRADDosome: firstly, NF-κB signaling
through NEMO, IKKα and IKKβ, and secondly NEMO can interact with NAP1, TBK1 and IKKε to activate IRF3 or IRF7.205–208 In addition to caspase-8, the TRADDosome can
also recruit FLIP (not shown) and may under certain conditions, trigger cell death
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membrane via MAVS. In this MAVS-located TRADDosome,
RIPK1 can be K63 ubiquitinated by TRAF2/3 and recruit
NEMO resulting in activation of IKKα and IKKβ and
subsequent phosphorylation and degradation of IκB leading
to NF-κB activation. Finally, via FADD, the TRADDosome can
recruit procaspases-8 and -10 and FLIP, potentially inducing
cell death.129

DED proteins and the inflammasome. The inflammasome
is a multi-protein oligomeric structure formed in macro-
phages and monocytes in response to inflammatory stimuli
(Figure 8).130 Inflammasomes are comprised of a stimulus-
specific sensor protein belonging to either the NLR, AIM2 or
ALR family, the adaptor protein ASC and the inactive
zymogen procaspase-1.131 Formation of the inflammasome

leads to activation of caspase-1, which processes pro-IL-1β
(and IL-18) to its mature form.132,133 Different inflammasomes
assemble in response to distinct stimuli, for example, the
NLRP3 inflammasome forms in response to a plethora of
pathogens, including influenza A,134,135 Klebsiella pneumo-
niae and Staphylococcus aureus, in addition to endogenous
danger signals such as ATP, uric acid crystals, nigericin and
hyaluronan.131 The NLRC4 inflammasome reacts to bacterial
flagellin and PrgJ, and the AIM2 inflammasome detects
foreign dsDNA.136,137 RIG-1 senses RNA viruses and forms a
signaling complex with ASC, activating an inflammasome.138

Toll-like receptors (TLRs) detect pathogens by recognising
pathogen membrane proteins (TLR4) or cytoplasmic nucleo-
tides (TLR3). Full activation of inflammasomes requires two
distinct stages: a ‘priming’ signal 1, for example, from either a
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Figure 8 Involvement of DED proteins in the inflammasome. (a) Full activation of the inflammasomes requires a two-step process. Firstly, a priming signal is induced by a
PAMP (such as LPS) activating a transcriptional cascade resulting in the de novo synthesis of inflammasome components such as NLRP3 and pro-IL-1β.139 Of note, subsequent
work has shown that this is not always the case, as TLR-mediated priming of the NLRP3 inflammasome does not always require transcriptional upregulation of NLRP3.209,210

(b) Assembly of the inflammasome components NLRP3, ASC and pro-caspase-1 occurs following a second signal. This can be any one of numerous different stimuli, for
example, ATP activation of the P2X7 receptor, bacterial toxins, nigericin and silica.211–213 A subsequent efflux of potassium from the cell permits the components to form a
functional canonical NLRP3 inflammasome where pro-caspase-1 is cleaved into its active form.214 Catalytically active caspase-1 cleaves pro-IL-1β and pro-IL-18 into their mature
forms, which are then released from the cell.211 (c) Fungi and mycobacterium activate the β-glucan receptor dectin-1 resulting in the phosphorylation of cytoplasmic domain
allowing the recruitment of SYK kinase.215 This elicits the formation of the non-canonical caspase-8 inflammasome, consisting of CARD9, BCL-10, MALT1, ASC and caspase-8.
In this complex, active caspase-8 cleaves pro-IL-1β into its mature form which is released from the cell.216 (d) IL-1β and IL-18 can be processed directly by caspase-8 in an
ASC-independent manner following ligation of members of the TNF receptor family, such as CD95, although the mechanism for this remains unclear.146 (e) The Ripoptosome
forms upon loss of IAPs and can lead to activation of caspase-8, which can potentially cleave IL-1β directly or indirectly via caspase-1.150,217
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TLR agonist or a pro-inflammatory cytokine, that activates
NF-κB and upregulates pro-IL-1β expression,139,140 followed
by stimulus-specific inflammasome activation and processing
of pro-IL-1β.141,142

DED-containing proteins are emerging as players
in inflammasome signalling. Caspase-8-dependent TLR4
signalling is critical for inflammasome assembly and IL-1β
processing in glaucoma,143 and engagement of TLR3 or TLR4
can result in processing of IL-1β by caspase-8, independent of
NLRP3 and caspase-1.144 Studies by Kanneganti and
colleagues145 revealed that FADD and caspase-8 are obliga-
tory for the correct priming and activation of both the canonical
and non-canonical NLRP3 inflammasome, and that CD95 can
induce IL-1β and IL-18 maturation in a caspase-8-dependent,
but RIPK3-independent manner.146 However, work from other
groups contest this: Allam et al.147 and Weng et al.148 show
that caspase-8 is required only for TLR-induced inflamma-
some priming. A number of other studies show normal
canonical NLRP3 inflammasome activation in caspase-8-
deficient cells, refuting an essential role for caspase-8 in
NLRP3 inflammasome activation.149–151 Together, these data
suggest that caspase-8may promote caspase-1 activity under
certain conditions, but is not absolutely required for NLRP3
inflammasome activation.
FLIPL has been shown to be involved in activation of the

NLRP3 and AIM2 inflammasome and directly interacts
with NLRP3, AIM2 and procaspase-1.152 In contrast, FLIP
decreased IL-1β generation in response to SMAC mimetics
and CD95 receptor activation, indicating that its role in
regulating the inflammasome is context-dependent.152

DED proteins and the adaptive immune system. It has
long been known that caspase-8- or FADD-deficient T cells
do not proliferate in response to T-cell receptor activa-
tion;37,153 it had previously been thought that this was due
to a defective ability to activate NF-κB, but recent work
has shown that it is due to induction of necroptosis.154,155

Rescue of T cells deficient in either caspase-8 or FADD can
be achieved by simultaneously deleting RIPK1156 or by
inhibiting RIPK1 pharmacologically with necrostatin-1108;
furthermore, FADD−/−RIPK1−/− and Casp8−/−RIPK3−/−

T cells undergo normal rates of clonal expansion following
viral stimulation.97,156,157 Stimulation of the T-cell receptor by
antigens induces the formation of the CARMA1-BCL-10-
MALT1 complex which activates NF-κB.158–161 Downstream
of this, a complex composed of FADD, caspase-8 and FLIPL

forms, which presumably prevents aberrant activation of
RIPK1, blocking necroptosis and promoting cell survival and
proliferation.162 TIPE2 (tumor necrosis factor-α-induced
protein-8, TNFAIP8) is the newest member of the DED-
containing protein family, identified as highly expressed in a
murine model of spine inflammation.163–165 TIPE2−/− mice
develop spontaneous fatal inflammatory disease with
concomitant elevated production of pro-inflammatory cyto-
kines, suggesting a role for TIPE2 in the immune system and,
more specifically, T cells.164 Upon infection or immunisation,
TIPE2−/− mice exhibit increased levels of CD8+ T cells and
inflammatory cytokine production, implying that TIPE2 is a
negative regulator of T-cell-mediated immunity by impeding
the NF-κB and AP1 transcriptional pathways and TLR

signalling in macrophages.164 Interestingly, Sun et al.165 also
found that TIPE2 interacts with caspase-8, but not FLIP,
in macrophages, and blockade of caspase-8 function in
TIPE2−/− cells rescues the hypersensitive phenotype;
however, subsequent papers have disputed this.

Therapeutically Exploiting DED Complexes

Evasion of apoptosis is a hallmark of cancer,166 but aberrant
cell death is also a feature of other human pathologies such as
inflammation and neurodegenerative diseases. The DED
family of proteins constitute key decision makers in these
processes, with the ability to switch outcomes from life to
death, or to different modes of death. As such, they represent
an attractive set of proteins to target therapeutically.
Death receptors such as TRAIL-R1 and TRAIL-R2 are

overexpressed inmany types of cancer,167 and there has been
much effort to develop agents (recombinant forms of TRAIL
and antibodies) that activate these receptors, particularly as
they appear to selectively target malignant tissue while
sparing normal cells.168 Although pre-clinical data for TRAIL
receptor-targeted therapeutics were promising and these
agents were well tolerated in phase I trials, they showed
limited anti-cancer effects in patients when used alone or in
combination with chemotherapy or proteasome inhibition
(reviewed in Lemke et al.169). However, a major shortcoming
of these clinical studies was that they failed to learn from the
experiences with other molecularly targeted agents and were
conducted in unselected patient populations.170,171 Another
limitation of first generation TRAIL receptor agonists may have
been insufficient levels of receptor super-clustering; a number
of second generation TRAIL agonists are now in development
with novel mechanisms of action that overcome this limitation,
for example, MedImmune’s multivalent ‘superagonist’, which
efficiently engages and clusters TRAIL-R2.172 However,
increased valency may increase the toxicity of second
generation TRAIL-R agonists, and a recent phase I clinical
trial with a tetravalent agonistic Nanobody targeting TRAIL-
R2, TAS266, had to be halted at the lowest dose owing to
hepatotoxicity. 173 The opposite approach is required for the
TNFα pathway, where biologics have been developed to block
TNFα itself or TNFR1, preventing downstream activation of the
NF-κB pathway and/or apoptosis induction and providing
effective treatment for a number of inflammatory diseases,
including SLE, rheumatoid arthritis and septic shock.174–176

TNFα-induced necroptosis has been implicated in a number of
pathophysiological conditions such as Crohn’s disease99

(reviewed by Linkermann andGreen177); thus, TNFα blockade
may prove to be therapeutically beneficial in these situations.
A number of IAPantagonists (SMACmimetics) are currently

in clinical development and have shown potential as anti-
cancer agents (reviewed by Fulda178). They promote caspase
activation and elicit an apoptotic response by binding to and
inhibiting IAPs, which are overexpressed in many types of
cancer.70,71,179,180 Additionally, they activate the non-
canonical NF-κB pathway through the accumulation of NIK,
which is normally degraded by cIAP1.181,182 This results in an
upregulation of NF-κB target genes, including TNFα. TNFα
can signal in an autocrine or paracrine manner, stimulating the
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assembly of TNFR1Complex II (Figure 6) and activation of cell
death via apoptosis and/or necroptosis.86,92

As it is a potent anti-apoptotic molecule, lowering FLIP
expression in malignancies could lower the threshold for cell
death. We and others have reported that histone deacetylase
inhibitors such as vorinostat trigger the rapid ubiquitination
and degradation of FLIP, thus sensitising cells to TRAIL or
chemotherapy.122,170 Additionally, a number of chemother-
apeutics and other anti-cancer agents downregulate FLIP
expression viamultiple mechanisms (reviewed by Safa183). As
previously mentioned, the gene encoding procaspase-8
(Casp8) is silenced by methylation in several cancers, such
as small cell lung cancer and neuroblastomas;184 treatment
with another class of epigenetic drugs, the demethylating
agents such as 5-azacytidine can reverse this effect, thereby
enhancing the potential for caspase-8-mediated apoptosis.27

Conclusion and Perspective

As a result of their key roles in determining life and death
outcomes, much work has focussed on the complexes formed
by DED proteins. From this work, FLIP in particular has
emerged as a master regulator of the signalling outputs from
DED-containing complexes. It is probably for this reason that
FLIP expression is regulated at multiple levels: by numerous
transcription factors (such as NF-kB,185 NFAT,186 AP-1187 and
c-Myc188); alternative splicing;189 mRNA translation190 and by
posttranslational modifications, including its rapid turnover via
the ubiquitin-proteasome system.118,119 This exquisite level of
regulation may have evolved to allow swift responses to
various cellular stresses, for example, to safeguard against
inappropriate activation of cell death or enhance cell death,
depending on the cellular context. Biochemical and structural
studies have demonstrated that DED-containing complexes
are highly intricate with ubiqutination playing a key role. These
complexes are also more numerous than previously appre-
ciated, with the discovery of complexes such as the
intracellular DISC and Ripoptosome and involvement of
DED proteins in complexes such as the inflammasome. It is
anticipated that future studies will reveal novel ways of
therapeutically targeting DED protein complexes that could
find clinical applications in cancers, inflammatory diseases
and neurodegenerative diseases.
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