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Angelman syndrome-associated ubiquitin ligase
UBE3A/E6AP mutants interfere with the proteolytic
activity of the proteasome

V Tomaic*́,1 and L Banks1

Angelman syndrome, a severe neurodevelopmental disease, occurs primarily due to genetic defects, which cause lack of expression or
mutations in the wild-type E6AP/UBE3A protein. A proportion of the Angelman syndrome patients bear UBE3A point mutations, which
do not interfere with the expression of the full-length protein, however, these individuals still develop physiological conditions of the
disease. Interestingly, most of these mutations are catalytically defective, thereby indicating the importance of UBE3A enzymatic
activity role in the Angelman syndrome pathology. In this study, we show that Angelman syndrome-associated mutants interact
strongly with the proteasome via the S5a proteasomal subunit, resulting in an overall inhibitory effect on the proteolytic activity of the
proteasome. Our results suggest that mutated catalytically inactive forms of UBE3A may cause defects in overall proteasome function,
which could have an important role in the Angelman syndrome pathology.
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Ubiquitination is a highly specific process that involves a group
of proteins responsible for adding ubiquitin molecules to
cellular substrates, thereby resulting in the modulation of
numerous cellular pathways.1 The deregulation of compo-
nents of the ubiquitin conjugation system causes defects in
many cellular functions and these have been associated
with human pathogenesis.2 Of the components involved in
the ubiquitin cascade, the E3 ubiquitin ligases provide the
substrate specificity. By attaching ubiquitin molecules to their
substrates, E3 ligases have direct control over the functions
and, in many cases, protein turnover of these substrates. In
addition, loss of function in a number of E3 enzymes has been
shown to have an important role in the development of severe
physiological conditions such as certain cancers and neuro-
logical disorders.3 A representative instance of the latter is
Angelman syndrome (AS), a severe neurodevelopmental
disorder, with clinical features of mental retardation, develop-
mental delay, ataxia and epilepsy.4,5 The principal protein
affected in AS is the E3 ubiquitin ligase E6-associated
protein (E6AP/UBE3A), the gene being found on chromosome
15q11-13. UBE3A was initially identified as an interacting
partner of high-risk HPV-16 and -18 E6 oncoproteins,6,7 but
was subsequently found to be linked to the development of AS.
AS develops mainly due to genetic defects that lead to the loss
of expression of the maternal allele of the UBE3A gene in the
hypothalamus.8,9 Between 65 and 75% of AS patients have
been diagnosed with the deletions of 15q11-13, 3–7% of
patients show uniparental disomy and ~ 3% of cases have

been found with imprinting defects, such that the functionally
defective maternal copy of the gene is expressed in the brain.5

In addition, there are also 5–11% of individuals with AS whose
sequence analyses show UBE3A mutations. Most of these
have in-frame deletions that would be predicted to result
in protein truncations,10,11 but a number of those patients
have milder mutations, such as point mutations, that do not
affect the expression of the full-length protein.12,13 The
majority of these mutations however are defective in ubiquitin
ligase activity, indicating that the loss of enzymatic activity of
UBE3A is important in promoting the development of AS.14

Studies have demonstrated that ubiquitin ligase activity of
UBE3A has a role in the proteasome-dependent degradation
of several cellular substrates, and it can be reasoned that
defects in the regulation of some of these substrates can
contribute to AS development. However, although a number of
UBE3A target proteins have been identified, including Sox9,
C/EBPα, α-Synuclein, p27, promyelocytic leukemia (PML)
tumor suppressor, annexin A1, amplified in breast cancer 1
(AIB1) and HHR23A,15–22 characterization of their interactions
with UBE3A have only partially contributed to an under-
standing of the molecular mechanisms behind the develop-
ment of AS pathology. In addition, UBE3A has also been
shown to interact with other components of the proteasome
degradatory pathway, including the ubiquitin ligases HERC2,
Ring1B and EDD,23–25 and recent studies demonstrated a
direct interaction between UBE3A and the proteasome
itself.26,27 Whether any of these interactions might
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also be involved in AS development is an open question. Thus,
although many proteins are known to be targeted by UBE3A
for proteasomal degradation, much less is known about
UBE3A interactions with the proteasome itself, or
how these interactions might affect substrate turnover,
or whether perturbations in this association can contribute to
AS development.
The 26S proteasome is a complex cellular machine that

contains a 20S central core, a hollow tube composed of
multiple proteasome subunits, which contain proteolytic
sites. On each end of the 20S proteolytic core, there is an
ATP-dependent 19S regulatory particle, which is involved in
capturing the ubiquitinated proteins.28 Among several
subunits that are part of the 19S regulatory particle complex,
there are two major ubiquitin receptors, Rpn10/S5a and
Rpn13.29–31 The S5a subunit mediates the targeting of
ubiquitin substrates to the proteasome by binding ubiquitin
conjugates through a ubiquitin-interacting motif (UIM)32 and
loss of this activity of S5a results in decreased proteolytic
activity of the proteasome.33–35 It has also been shown that
S5a is regulated by mono-ubiquitination, which inhibits its
ability to interact with ubiquitin-conjugated substrates, and
also leads to decreased proteasome activity.31 Recent studies
have shown that UBE3A can directly ubiquitinate the S5a
subunit, and that its Drosophila ortholog, Ube3a, mediates
ubiquitination of the Drosophila S5a homolog, resulting
in its subsequent degradation.26,27 Structural studies have
indicated that a number of AS-associated UBE3A point
mutations occur in the HECT domain, which most likely lead
to the expression of catalytically defective proteins.13,14 We
were therefore interested in investigating whether catalytically
defective AS-associated point mutants can still interact with
the S5a subunit and, furthermore, in determining whether they
can exert any inhibitory effects on the proteasomal turnover of
ubiquitinated substrates. We show here that AS-associated
UBE3A mutants interact more strongly with S5a, with one of
the consequences being a general inhibitory effect on the
overall proteolytic activity of the proteasome. These results
suggest that perturbation of overall proteasome function may
be an important element in the development of AS, which thus
shows many similarities with other proteasomal neurogical
defects.

Results

Angelman syndrome-associated UBE3A mutants retain
interaction with the proteasomal S5a subunit. Recent
studies have shown that UBE3A can directly interact with
the S5a proteasomal subunit or can mediate between this
subunit and other molecules,26,36 indicating that S5a is a
potential proteolytic target of UBE3A.27 As mass spectro-
metric analyses identified multiple 19S regulatory subunits
(data not shown)37 as potential interacting partners of
UBE3A, we were first interested in investigating if any of
those other subunits, along with S5a, could also directly
interact with UBE3A. To do this, we performed a series of
GST pull-down assays using a panel of GST-tagged 19S
regulatory subunits. HEK293 cells were transfected with the
wild-type FLAG-tagged UBE3A and pull-down assays were
performed on the cell extracts 24 h post transfection.
Interaction assays were performed using GST fusion proteins
of the S2, S4, S5a, S6a, S6b, S8, S9 and S10b subunits, or
GST alone for control. The results obtained are shown in
Figure 1, where it can be seen that UBE3A only interacts
directly with the S5a subunit. This indicates that the capacity
of UBE3A to interact with the proteasome is exclusively
via the S5a subunit and that the other subunits that were
identified in mass spectrometric analyses were most likely
detected as a part of the entire proteasomal complex.

UBE3A catalytically defective mutants interfere with the
proteolytic activity of the proteasome. Since UBE3A is an
E3 ubiquitin ligase, it was of interest to determine whether its
catalytic activity had a role in the interaction with S5a. To do
this we analyzed three catalytically inactive mutants of
UBE3A. One mutant, C833A, was artificially generated and
is defective in forming a thio-ester bond with ubiquitin
in vitro38 and two are AS-associated point mutants, L502P
and E550L, which are defective in ubquitination of
HHR23A.14 We transfected wild-type and mutant UBE3A
expression plasmids into HEK293 cells, and, 24 h post
transfection, the cells were extracted and interaction assays
performed using the GST–S5a fusion protein. Bound UBE3A
was detected by Western blotting and the results in Figure 2
demonstrate that the wild-type UBE3A and the C833A mutant
bind S5a to similar degrees, whilst the two AS-associated

Figure 1 UBE3A interacts with the S5a proteasome subunit. HEK293 cells were transfected with FLAG-tagged wild-type UBE3A expression plasmid and after 24 h cells were
collected and extracts incubated with the indicated purified GST fusion proteins. After extensive washing, bound UBE3A was detected by western blotting using the anti-UBE3A
antibody and is compared with UBE3A present in 10% of the input. The lower panels show the Ponceau stains of the nitrocellulose membranes showing the levels of GST proteins
used in the pull downs with the arrows indicating the position of the GST and GST fusion proteins
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mutants display a greatly enhanced capacity to interact with
the S5a subunit.
On the basis of these results, we were next interested in

investigating whether the increased interaction between the
AS-associated mutants and S5a might have any effects on
the overall activity of the proteasome. To do this, HEK293 cells
were transfected with UBE3A expression plasmids or the
empty vector alone as control. After 24 h, cells were extracted
in 0.5% NP40 and homogenized, and the levels of UBE3A
expression were verified by western blotting (Figure 3d).
The proteasome proteolytic activity was assessed by the
Proteasome Activity Assay Kit using a fluorescent microplate
reader. The results in Figure 3a show the effects of UBE3A
and the two mutants on proteasomal proteolytic activity, while
Figure 3b shows their effects upon proteasome activity in
the presence of a proteasome inhibitor used as control
in monitoring proteasome activity. The combined data from
three independent assays, with quantification, are shown in
Figure 3c with Free AMC Counts followed over a 60-min
period. The data used to calculate the plot in Figure 3c are
provided in Supplementary Table 1. These results demon-
strate that the AS-associated mutant L502P has a marked
inhibitory effect on the overall proteolytic activity of the
proteasome. Surprisingly, the C883A mutant also showed a
similar inhibitory effect on the proteasome. In contrast, the
wild-type UBE3A protein demonstrated an opposite effect
from the mutants, and its presence stimulated overall
proteasomal proteolytic activity.
We then performed a similar analysis where we assessed

the effects of E6AP and the two AS-associated catalytically

defective point mutants, L502P and E550L, on proteasome
activity. The assayswere performed as above, but this time the
inputs in the analysis were based on the equal protein
concentrations from each transfection, rather than being
based on equalizing the levels of E6AP expression. The
results in Figure 3e show the effects of wt UBE3A and the
AS-associated mutants on proteasomal proteolytic activity
where free AMC counts were followed over a 60-min period.
The results from three independent experiments are shown in
Supplementary Table 2. These results demonstrate, in two
different experimental settings, that the AS-associated
mutants L502P and E550L have a marked inhibitory effect
on the overall proteolytic activity of the proteasome.

UBE3A affects the proteolytic activity of the proteasome
through the S5a subunit. The above results suggest that
UBE3A can exert a direct effect on the overall proteolytic
activity of the proteasome, probably via its interaction with the
S5a subunit. To investigate this in more detail, we decided to
analyze the effects of UBE3A upon specific ubiquitin/
substrate combinations: first, we used p53 and Mdm2.
To do this, p53 null H1299 cells were transfected with p53
in the presence or absence of Mdm2 and exogenously added
UBE3A wild type or mutants, and total cell extracts analyzed
by western blotting. The results in Figure 4a demonstrate that
neither UBE3A nor the mutants affect the levels of p53 in the
absence of exogenous Mdm2. However, when Mdm2 was
coexpressed with p53 (Figure 4b), UBE3A wild type slightly
increased the ability of Mdm2 to induce the degradation of
p53, consistent with the increase in overall proteasome
activity, as seen above. Similarly, in the presence of the
AS-associated UBE3A mutants, the ability of Mdm2 to
degrade p53 was significantly reduced, consistent with their
overall negative effect upon proteasome activity. To ascertain
whether this was due to inhibition of S5a function, we
repeated the experiment in the presence of ectopically
expressed S5a. As can be seen (Figure 4c), this reversed
the inhibiting effects of the AS-mutants, suggesting that
the effects of these mutants on proteasomal activity is via
inhibition of S5a.
We then performed a similar analysis on a different set of

substrates in a different cell type. It has been previously shown
that high-risk HPV-16 E7 oncoprotein mediates proteasome
degradation of the pocket proteins p107, p130 and pRb.39

We were therefore interested in investigating if the UBE3A
mutants have the same inhibitory effect on HPV-16
E7-induced degradation of these proteins. HEK293 cells were
transfected with p130 or p107 in the presence or absence of
HPV-16 E7, and the wild-type and mutant UBE3A, and total
cell extracts analyzed by western blotting. As can be seen
in Figure 5, HPV-16 E7 induced the degradation of p130
(Figure 5a) and p107 (Figure 5b) in the presence and absence
of wild-type UBE3A. In contrast, when the catalytically inactive
UBE3A mutants are present, the levels of p130 and p107 are
restored.
The above results suggest that UBE3A can affect the overall

activity of the proteasome. However, we also wanted to
determine whether depleting endogenous UBE3A would
affect the ability of Mdm2 to degrade p53. H1299 cells were
transfected with siRNA directed against UBE3A or luciferase

Figure 2 Angelman syndromemutants strongly interact with the S5a proteasome
subunit. HEK293 were transfected with plasmids expressing the wild-type UBE3A
and the C833A, L502P, and E550L mutants. After 24 h the cells were harvested and
extracts incubated with the S5a GST fusion protein. After extensive washing, bound
UBE3A proteins were detected by Western blotting using the anti-UBE3A antibody
and are compared with the amount of UBE3A proteins present in 10% of the inputs.
The lower panel shows a low exposure of the binding assay and in the bottom panel,
Ponceau stain of the nitrocellulose membranes shows the levels of GST proteins
used in the pull downs, with the arrows indicating the position of the GST–S5a fusion
protein
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as a control, and, 48 h later, the cells were further transfected
with p53 with or without Mdm2. After a further 24 h, the levels
of p53 and UBE3A were then analyzed by western blotting.
The results in Figure 6 show that siRNA ablation of UBE3A
does not affect p53 levels in the absence of Mdm2, whereas
loss of UBE3A in the presence of Mdm2 results in a significant
increase in p53 levels. These results are in accordance with
the results shown above and demonstrate that UBE3Amay be
a rate-determining factor in the proteolytic capacity of the
proteasome.

Catalytically inactive UBE3A mutants enhance the S5a
subunit ubiquitination. To identify a potential mechanism

by which the catalytically inactive mutants of UBE3A inhibit
S5a function, we monitored their effects on the levels
of S5a ubiquitination. HEK293 cells were cotransfected
with plasmids expressing HA-ubiquitin and S5a, together
with plasmids expressing either UBE3A wild-type, C883A, or
L502P. Twenty-four hours post transfection, cells were
collected in E1A lysis buffer, and complexes were immuno-
precipitated using anti-HA-conjugated agarose beads. HA-
ubiquitin-bound S5a was then detected by western blotting
with anti-S5a antibodies. The results in Figure 7 show clear
coimmunoprecipitation of S5a with ubiquitin, which does
not increase significantly in the presence of ectopically
expressed wild type UBE3A. However, in the presence of
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Figure 3 UBE3Awild-type, C-4A, L502P and E550L mutants affect the proteolytic activity of the proteasome. HEK293 cells were transfected with UBE3A, C833A, L502P or
empty vector as a control (a, b and c) or with UBE3A, L502P, E550L or empty vector as a control (e). Twenty-four hours post transfection, cells were collected and homogenized
with 0.5% NP40 in dH20, and the proteolytic activity of the proteasome was assessed using the Proteasome Activity Assay Kit and a fluorescent microplate reader in the absence
(a and e) or presence (b) of a proteasomal inhibitor. The collated results from three independent experiments to measure UBE3A effects on catalytic activity of the proteasome are
shown in c at 10-min time point intervals. Standard deviations are also shown. (d) Shows the western blot of the wild-type and mutant UBE3A expression levels in HEK293 cells
used in the assay shown in a. Also shown is the γ-tubulin loading control
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the C883A and L502P mutants, the levels of S5a ubiquitina-
tion are dramatically increased, suggesting that these
catalytically inactive mutants can enhance the accumulation
of ubiquitin bound to the S5a, most likely through a
perturbation of normal ubiquitin recycling and substrate
degradation by the proteasome.

Discussion

Loss of functional UBE3A expression is associated with the
development of AS.8 Although most AS cases display a
complete loss of UBE3A, there are a number of cases having
only point mutations that yet still develop AS pathology.12,13

However, all of these mutations render UBE3A catalytically
inactive.14 Being an E3 ubiquitin ligase, UBE3A has an
important role in the regulation of a number of cellular
substrates, and it is reasonable to expect that some of these
may be relevant for the development of AS.15,21,22 However,
UBE3A interacts with other components of the proteasome
degradatory pathway including other ubiquitin ligases and

elements of the proteasome machinery itself, indicating that
there may be other means by which UBE3A loss might
contribute to the development of AS.23–26 Of particular
relevance is the overall functional integrity of the proteasome,
loss of which is a common feature in many neurogical
disorders. Here, we show that AS-associated catalytically
inactive mutants of UBE3A have an increased capacity to
interact with the proteasomal subunit S5a. Furthermore, we
show that one potential consequence of this increased
association is an overall reduction in proteasome
activity. These results suggest that loss of functional UBE3A
expression, in addition to perturbing the turnover of its known
cellular substrates, can also have more far reaching effects on
general proteasome function and hence on the normal cellular
homeostasis.
A number of studies have shown that UBE3A can interact

with the S5a proteasome subunit leading to its
polyubiquitination.26,27 Proteomic analyses indicated that
UBE3A might associate with other proteasomal components,
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Figure 4 Ectopic expression of S5a rescues UBE3A mutant inhibition of proteasome activity. p53 null H1299 cells were transfected with UBE3A, C833A, L502P, E550L and p53
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suggesting a potentially more complex pattern of association.
To investigate this, we performed interaction assays between
UBE3A and a panel of purified proteasome regulatory
subunits. In contrast to the proteomic analyses, we found that
UBE3A exclusively interacts with the S5a subunit, and
no interaction with the other subunits was observed. This
supports previous studies showing a direct interaction
between UBE3A and S5a, and suggests that the other
potential proteasome component interacting partners of
UBE3A identified in proteomic screens are indirect interac-
tions. When we compared wild-type UBE3A with catalytically
inactive mutants, a number of interesting features were
observed. First, the synthetic catalytic mutant, C833A bound
to S5a in a manner similar to the wild-type UBE3A. This alone
suggests that the interaction between UBE3A and S5a does
not require UBE3A catalytic activity. Most interestingly, the two
AS-associatedmutants E550L and L502P, which are also both
defective in catalytic activity, interacted much more strongly
than the wild-type protein with the S5a subunit. One potential
explanation for this comes from the crystal structure of the
Hect domain of E6AP, which happens to be an L-shaped
molecule made of two lobes.13 Both of the Angelman-
associated mutations, L502P and E550L, are located in the
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amino-terminal lobe of the HECT domain and their mutations
could affect the overall structure of the HECT domain which
might lead to defects in HECT domain activities. One
consequence of this could be a locking of the HECT domain
into a fixed conformation, such that the UBE3A/S5a turnover is
blocked, resulting in an apparent increase in association,
and thereby blocking access of other substrates to the
proteasome.
Indeed, using proteasome activity assays, we showed that

ectopically expressed UBE3A upregulates overall protea-
somal proteolytic activity, whereas the catalytically inactive
mutants of UBE3A have an inhibitory effect on the protea-
some. The inhibitory effects on proteasome function were also
confirmed using a series of specific ubiquitin ligase/substrate
in vivo degradation assays. In three cases, p53 degradation by
Mdm2, and p130 and p107 degradation induced by HPV-16
E7, all were found to be increased in the presence of wild-type
UBE3A. This was further confirmed by siRNA ablation
of UBE3A, which also resulted in decrease in the degradation
of p53 by Mdm2. In contrast, in each case, the catalytically
inactive mutants of UBE3A all had an inhibitory effect on
proteasomal activity. Interestingly, this inhibition was reversed
by the addition of ectopically expressed S5a, suggesting that
the block in the proteasome function was at the level of S5a. As
UBE3A appears very closely linked to S5a function, it seems
likely that catalytically active UBE3A might be able to promote
ubiquitin recycling at the proteasome, and thereby provide a
general stimulatory effect on overall proteasome function.
Loss of UBE3A or acquisition of mutations inhibiting protea-
some activity may occur through different mechanisms.
Previous studies have demonstrated that UBE3A increases
the degradation of chaperone-bound substrates, and UBE3A
expression is increased under various stress conditions, with
its overexpression protecting against endoplasmic reticulum
stress-induced cell death.40 Therefore, it has been suggested
that UBE3A also functions as a cellular quality control ubiquitin
ligase. On the basis of this, our results suggest that under
conditions where expression of UBE3A is lost or where there
is simple catalytic inactivation of the UBE3A, such as with
the C833A mutation, there could be an accumulation of
chaperone-bound substrates, resulting in protein aggregation
and inhibition of proteasome function. In contrast, with the
AS-associated catalytically inactive mutants that we have
analyzed, which have a greatly increased capacity to
associate with S5a, this might be expected to directly block
the functioning of the S5a subunit. In either case, the net result
is an increase in the levels of S5a polyubiquitination.
Interestingly, the inhibition of proteasome activity with
MG-132 results in a pattern of S5a ubiquitination very similar
to that seen with the catalytically inactive UBE3A mutants
(data not shown), further supporting the idea that proteasome
function can be blocked by decreased ubiquitin turnover on the
S5a subunit. Ultimately, this suggests the importance of a
functional UBE3A for optimal proteasome function, and
therefore implies one way in which lack of either the protein
(ablated expression) or its function (catalytically inactive
mutation) can contribute not only to AS pathogenesis, but
possibly also to the pathogenesis of other neurological
diseases which occur due to protein aggregation.

Materials and methods
Cells and transfections. HEK293 cells and H1299 cells were grown in
Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine
serum (FBS). Transfections were done using calcium phosphate precipitations.41

Plasmids. The pCDNA-3 UBE3A (isoform I) and C833A (isoform I), His-tagged
pCDNA-4 L502 (isoform III) and E550L (isoform III), pCDNA-3 Mdm2, Flag-tagged
pCDNA-3 p53, Flag-tagged and HA-tagged CMV HPV-16 E7 and pCDNA-3 pS5a
plasmids have been described previously,14,25,42–45 as have the GST fusion proteins
(pGEX-4T-2) of S2, S4, S5a, S6a, S6b, S8, S9 and S10b proteasome subunits.46

HA-tagged pCDNA-3 p130 and p107 expression plasmids were kindly provided by
James DeCaprio.

Antibodies. The following antibodies were used: anti-Flag mouse monoclonal
antibody M2 (Sigma, St. Louis, MO, USA), mouse anti-UBE3A (BD Transduction
Labs, San Jose, CA, USA), anti-HA monoclonal antibody 12CA5 (Roche, Basel,
Switzerland), mouse anti-p53 DO-1 (Santa Cruz, Dallas, TX, USA), mouse anti-γ-
tubulin (Sigma), rabbit anti-α-actinin (Santa Cruz), anti-β-galactosidase (Promega,
Madison, WI, USA) and appropriate secondary antibodies conjugated to
horseradish peroxidase (HRP; Dako, Glostrup, Denmark).

GST pull-down assays. Using cellular extracts, pull-down assays were
performed by incubating GST fusion proteins immobilized on glutathione agarose
beads with cells extracted in E1A buffer (25 mM HEPES pH 7.0, 0.1% NP-40, 150 mM
NaCl) plus protease inhibitor cocktail set I (Calbiochem, San Diego, CA, USA) for 1 h at
4 °C on a rotating wheel. After the incubation the beads were washed once briefly,
followed by three additional washes with E1A buffer for 10 min on a rotating wheel at 4 °C,
as described previously.47 After the final wash, the bound proteins were detected
using SDS-PAGE and western blotting. The purity and intensity of all fusion proteins
was determined by Coomassie Brilliant Blue R (Sigma) staining.

Western blotting. Total cellular extracts were prepared by directly lysing cells
from 6-cm2 or 10-cm2 dishes in SDS lysis buffer, and protein detections were done
as described previously (Tomaić et al.42).

siRNA experiments. For transient small interfering RNA (siRNA) experiments,
H1299 cells were seeded in 6-cm2 dishes and transfected using Lipofectamine
RNAiMax (Invitrogen, Carlsbad, CA, USA) with siRNA against luciferase (Dharmacon,
Lafayette, CO, USA) as a control and siRNA against E6AP (Dharmacon).

Proteasome activity assays. Twenty-four hours post transfection, cells
were homogenized with 0.5% NP40 in dH20 and cell lysates were processed
according to the manufacturer’s instructions (Abcam – Proteasome Activity Assay
Kit, Cambridge, UK). Equal protein amounts of each lysate were added in
duplicates to a pair of wells of an opaque white microwell plate. The volume of each
plate was brought to 100 μl with assay buffer. In addition, 10 μl of the positive
control was added to paired wells. The volume of these wells was also brought to a
total of 100 μl by addition of assay buffer. At the same time, the standard curve was
prepared by adding 0, 2, 4, 6, 8 and 10 μl of AMC standard to a series of microplate
wells. The volume was adjusted to 100 μl/well with assay buffer to generate a
standard range of 0, 20, 40, 60, 80 and 100 pmol per well of AMC. Then 1 μl of the
proteasome inhibitor was added to one of the paired wells (samples and positive
control only) and 1 μl of assay buffer to the other well, followed by mixing. In the
next step, 1 μl of proteasome substrate was added to all the wells except the
standard curve wells, followed by mixing. The microwell plate was then protected
from light. The samples were then incubated at 37 °C and the proteasome activity
was assessed using a fluorescent microplate reader (PerkinElmer – EnVision, 2104
Multilabel Reader, Waltham, MA, USA) measuring the chymotrypsin-like activity of
cell lysates releasing free AMC for 60 min at Ex/Em= 350/340.

Ubiquitination assays. HEK293 cells were transfected with the appropriate
plasmids. After 24 h, cellular extracts were prepared by lysing 10 cm2 dishes in E1A buffer
(25 mM HEPES pH 7.0, 0.1% NP40, 150 mM NaCl), followed by immunoprecipitation
using anti-HA-conjugated agarose beads for 2 h. The beads were then washed and poly-
ubiquitinated proteins detected by SDS-PAGE and western blotting.
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