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Background: Most studies of environmental risk factors and breast cancer are conducted using average risk cohorts.

Methods: We examined the association between polycyclic aromatic hydrocarbon (PAH)-albumin adducts in bloods from
baseline and breast cancer risk in a prospective nested case–control study (New York site of the BCFR, 80 cases and 156 controls).
We estimated the 10-year absolute breast cancer risk by a risk model that uses pedigree information (BOADICEA) and evaluated
whether the increased risk from PAH differed by absolute risk.

Results: Women with detectable levels of PAH had a twofold association with breast cancer risk (odds ratio (OR)¼ 2.04; 95%
CI¼ 1.06–3.93) relative to women with non-detectable levels. The association increased with higher levels of PAH (Xmedian) and
by a higher level of absolute breast cancer risk (10-year risk X3.4%: OR¼ 4.09, 95% CI¼ 1.38–12.13).

Conclusions: These results support that family-based cohorts can be an efficient way to examine gene–environment interactions.

Many epidemiological studies, particularly those using population-
based ascertainment, do not include a substantial proportion of
subjects with a cancer family history, and are therefore not
enriched for underlying genetic susceptibility (Terry et al, 2016).
This can have an impact on both the precision and ability to
identify associations if the risk gradient depends on underlying
genetic susceptibility (i.e., gene–environment interactions). Improving
precision can be readily accomplished through sampling more
individuals. However, increasing the sample size without ensuring

adequate individuals at greater disease susceptibility are included
will limit the ability to detect gene–environment interactions. Thus,
the role of a given environmental factor may be under-recognised
if gene–environment interactions exist. Using a family-based
cohort enriched with individuals across the risk spectrum, we
illustrate the importance of having sufficient numbers of
individuals across the risk spectrum to properly test the role of
environmental factors on cancer risk. We illustrate this concept
by estimating the association between polycyclic aromatic
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hydrocarbons (PAHs) and breast cancer risk as a function of a
woman’s underlying genetic risk inferred from her cancer family
history.

Polycyclic aromatic hydrocarbons, a group of compounds with
two or more fused benzene rings, are environmental contaminants
that play an important carcinogenic role due to widespread
population exposure (Phillips, 1983; IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans, 2010). Polycyclic
aromatic hydrocarbons can be bio-transformed into reactive
intermediates that form covalent PAH-DNA adducts that have
mutagenic properties to initiate and/or promote tumorigenesis
(Phillips, 1983). Polycyclic aromatic hydrocarbons are lipophilic,
are stored in the fat tissue of the breast and have shown endocrine-
disrupting and obesogenic capabilities to cause mammary cancer
in rodents (Morris and Seifter, 1992). The potential carcinogenic
mechanisms of metabolised PAHs may be partially due to their
structural similarities with oestrogenic compounds that affect
hormone signalling pathways or increase the bioaccumulation
capacity in adipose tissue and increase breast cancer risk (Macon
and Fenton, 2013; Zhang et al, 2016). Therefore, the International
Agency for Research on Cancer has classified selected PAHs, such
as benzo[a]pyrene, as human carcinogens (IARC Working Group
on the Evaluation of Carcinogenic Risks to Humans, 2010); the US
Environmental Protection Agency (EPA) also lists PAHs as
possible carcinogens (Mumtaz et al, 1996).

Several large studies have examined the role of PAHs on
breast cancer risk. The Long Island Breast Cancer Study Project
(LIBCSP), a population-based case–control study, found a statisti-
cally significant increased risk for women with detectable levels of
PAH-DNA adducts in blood (Gammon et al, 2002, 2004), and
estimated a 50% greater risk of breast cancer for women in the
highest vs lowest quintile of PAH-DNA adducts. Breast cancer was
increased by 40% for women reporting ever burning synthetic logs
(associated with bulky PAH-DNA adducts) in their homes (White
et al, 2014), and 44% for women exposed to the highest level (vs
below the median) of vehicular traffic (Mordukhovich et al, 2016b).
Polycyclic aromatic hydrocarbon exposures from other sources,
including tobacco smoking (Gaudet et al, 2013), dietary intake
(White et al, 2016), grilled and smoked meats(Fu et al, 2011; Di
Maso et al, 2013), also contribute to increased breast cancer risk.
However, two cohort studies have not observed any associations
with PAHs and breast cancer risk that may be due to use of the
postlabelling assay that is not specific for PAH adducts or measuring
non-carcinogenic PAH markers in urine where urinary measures
only reflect short-term exposure (Lee et al, 2010; Saieva et al, 2011).
A growing number of studies found that exposure to PAHs may
further enhance breast cancer risk for women carrying higher
susceptibility genetic variants involved in carcinogen metabolism,
DNA repair and cell cycle control pathways (Terry et al, 2004;
Gaudet et al, 2008; Mordukhovich et al, 2016a). These stronger
associations in subgroups defined by genetic variants suggests that
women with higher breast cancer risk based on family history would
also have higher risk but detecting interactions between environ-
mental carcinogens and underlying risk requires a sufficient number
of women at higher risk for cancer. We hypothesised that the
women at greater risk of breast cancer from PAH exposure are the
women who have higher underlying absolute risk of breast cancer
predicted from their cancer family history.

MATERIALS AND METHODS

Study design. We conducted a prospective study within the
women unaffected with breast cancer at enrolment in the New
York site of the Breast Cancer Family Registry (BCFR), a registry of
individuals within families with breast and/or ovarian cancer (for

details, see John et al, 2004; Quante et al, 2012). At recruitment,
each eligible subject completed a questionnaire that included
information on demographics, lifestyle and environmental factors,
past surgeries and family history of cancer (John et al, 2004). We
actively followed participants for subsequent information on
cancer incidence and vital status and attempted to verify cancers
through pathology reviews and reports and medical records. In the
current nested case–control study, we analysed data for 80
prospectively ascertained breast cancer cases and 156 age- and
ethnicity-matched controls. All cohort participants provided
written informed consent, and the study was approved by the
relevant local ethics committees.

PAH-albumin adducts. We measured plasma PAH-albumin
adducts by competitive enzyme linked immunosorbent assay using
monoclonal antibody 8E11 that recognises benzo(a)pyrene diolep-
oxide tetrols and related PAH metabolites. A pooled quality
control sample was run within each batch (Santella et al, 1995),
and the value was expressed as fmol of PAH per mg albumin.

Absolute risk of breast cancer. We calculated 10-year risk of
breast cancer using available family pedigree and vital status data
from all family members on cancer diagnoses and age at diagnoses
and information on BRCA1 and BRCA2 mutations using the risk
model BOADICEA (Breast and Ovarian Analysis of Disease
Incidence and Carrier Estimation Algorithm) (Antoniou et al,
2004, 2008; Lee et al, 2014). We used this probability as a
continuous risk score in the regression analyses.

Statistical analysis. After descriptive analyses, we used conditional
logistic regression based on the matched sets (1 : 2 age and race/
ethnicity matched) to estimate breast cancer risk for women with
detectable PAH-albumin adducts compared with women with
non-detectable adducts (referent). We further categorised detect-
able adducts based on the median for matched control women with
detectable adducts to examine high vs low levels of detectable
adducts. We considered the potential confounding effects of age at
blood draw and body mass index. We further stratified by
menopausal status, smoking status, BOADICEA 10-year risk score
(X3.4 vs o3.4%) and examined interactions across the continuous
BOADICEA score by centring PAH at the mean and including an
indicator variable for non-detectable levels. We selected 3.4 as a
categorical cutoff for absolute 10-year risk because a commonly
used clinical cutoff to indicate high risk for 5-year risk is 1.67%.
We also compared interactions using a continuous level of PAH-
albumin adducts for those with detectable levels and a continuous
10-year BOADICEA score (Figure 1). We formally tested for
statistical significance of interactions through a cross-product term
for multiplicative interactions and used the relative excess risk due
to interaction (RERI) for additive interactions.

RESULTS

Table 1 summarises the overall association with categorised PAH.
The highest category of PAHs was associated with breast cancer
risk (OR¼ 2.89, 95% CI: 1.25–6.69). The associations were higher
for women with 10-year BOADICEA score X3.4 (OR¼ 4.09, 95%
CI: 1.38–12.13) compared with women with a 10-year BOADICEA
score o3.4. The RERI was positive but not statistically significant
(RERI¼ 1.75, 95% CI¼ � 1.90, 5.40). Figure 1 shows the
association between PAHs and BOADICEA with BOADICEA
considered on a continuous scale and PAH levels on a continuous
scale for the mean level, the 75th and the 90th percentiles (test for
multiplicative interaction P¼ 0.09). The higher the absolute risk of
breast cancer, the stronger the association with PAHs. There was
no interaction with BOADICEA scores for women with non-
detectable levels of PAHs.
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DISCUSSION

Women with higher PAH albumin adducts had 2–3 times greater
breast cancer risk in our cohort. The associations were even
stronger for women with higher absolute risk of breast cancer

(OR¼ 4.09, 95% CI¼ 1.28–12.13). Our results provide further
evidence that PAHs are breast carcinogens and support the
stronger associations seen in other studies once subgroups were
divided based on risk. For example, in the LIBCSP, traffic-related
PAH exposures were positively associated with increased breast
cancer risk by interactions with specific polymorphisms in DNA
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Figure 1. Increase in breast cancer risk from PAH exposure by absolute risk of breast cancer as estimated by the BOADICEA, New York site of
the BCFR. Results from a multivariable conditional logistic regression of breast cancer risk with the following covariates: centred PAH-albumin
adducts, indicator variable for women with non-detectable levels, continuous BOADICEA score, interactions between BOADICEA and centred
PAH-albumin adducts and indicator variable for women with non-detectable values, and further adjusted for age at blood draw, body mass index
and smoking status. P-value for multiplicative interaction¼0.09.

Table 1. Plasma PAH-albumin adducts and breast cancer risk categorised by menopausal status and absolute risk score, New
York site of the BCFR

Cases Controls

PAH-albumin adducts (fmolmg�1) N¼80 % N¼156 % ORa (95% CI) ORb (95% CI)

All women
Non-detectable 27 36.0 72 49.3 Reference Reference
Detectable 48 64.0 74 50.7 1.90 1.00 3.63 2.04 1.06 3.93
oMedianc 20 26.7 37 25.3 1.49 0.71 3.15 1.59 0.75 3.39
XMedian 28 37.3 37 25.3 2.66 1.17 6.05 2.89 1.25 6.69

Premenopausal women only
Non-detectable 18 36.0 52 50.0 Reference Reference
Detectable 32 64.0 52 50.0 2.19 0.99 4.83 2.30 1.00 5.27
oMedianc 15 30.0 27 26.0 1.81 0.73 4.49 1.93 0.73 5.06
XMedian 17 34.0 25 24.0 2.91 1.03 8.21 2.87 1.01 8.17

Interaction with BOADICEA Risk Scored

Non-detect or Detect omedian, o3.4% 12 16.0 38 27.0 Reference Reference
DetectXMedian, o3.4% 7 9.3 15 10.6 1.75 0.54 5.68 1.81 0.55 5.94
Non-detect or detect omedian, X3.4% 35 46.7 68 48.2 1.65 0.72 3.77 1.54 0.66 4.04
DetectXMedian, X3.4% 21 28.0 20 14.2 4.01 1.39 11.58 4.09 1.38 12.13
aConditional logistic regression, unadjusted.
bConditional logistic regression, adjusted for age at blood draw, body mass index and smoking status.
cMedian¼ 73.0 fmolmg� 1 among controls.
dAdditive interaction tested using RERI (1.75, 95% CI¼ � 1.90, 5.40).
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repair genes of ERCC2, XRCC1 and OGG1 (ORs from 2.32 to 2.96)
(Mordukhovich et al, 2016a). Associations (B2-fold and higher)
were observed for women with greater inherited genetic suscept-
ibility to the effects of PAH due to variants in carcinogen
metabolism, DNA repair, response to oxidative stress and cellular
apoptosis genes, as well as the tumour suppressor gene p53 (Terry
et al, 2004; Gaudet et al, 2008). In addition, constitutional DNA
methylation in several breast cancer susceptibility genes (BRCA1,
PALB2 and MLH1) has been associated with increased risk of
early-onset breast cancers with genetic mutations (both germline
and somatic mutations) (Wong et al, 2011; Scott et al, 2016).
Changes in DNA methylation in RARb and APC suggest a stronger
aetiologic effect of PAH exposure on breast cancer risk for higher
susceptibility women (White et al, 2015). These results are
biologically plausible because genetic mutation can disrupt DNA
methylation patterns, and hence, impact gene expression and
function. Meanwhile, epigenetic changes precede downstream
genetic mutation in tumorigenesis that can disable DNA repair
functions (You and Jones, 2012).

These findings also illustrate the benefit of using high-risk
cohorts to examine gene–environment interactions as we covered
the full range of underlying breast cancer risk unlike many
cohorts that predominantly have only a small proportion of
women at high risk. Thus, family-based cohorts can be useful not
only for gene discovery but as a very effective way to examine
environmental exposures. If replicated in larger cohorts, these
results support the hypothesis that PAH may be a strong breast
carcinogen for women with greater underlying breast cancer
susceptibility.
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