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Background: Hypoxia is negatively associated with glioblastoma (GBM) patient survival and contributes to tumour resistance.
Anti-angiogenic therapy in GBM further increases hypoxia and activates survival pathways. The aim of this study was to determine
the role of hypoxia-induced autophagy in GBM.

Methods: Pharmacological inhibition of autophagy was applied in combination with bevacizumab in GBM patient-derived
xenografts (PDXs). Sensitivity towards inhibitors was further tested in vitro under normoxia and hypoxia, followed by transcriptomic
analysis. Genetic interference was done using ATG9A-depleted cells.

Results: We find that GBM cells activate autophagy as a survival mechanism to hypoxia, although basic autophagy appears active
under normoxic conditions. Although single agent chloroquine treatment in vivo significantly increased survival of PDXs, the
combination with bevacizumab resulted in a synergistic effect at low non-effective chloroquine dose. ATG9A was consistently
induced by hypoxia, and silencing of ATG9A led to decreased proliferation in vitro and delayed tumour growth in vivo. Hypoxia-
induced activation of autophagy was compromised upon ATG9A depletion.

Conclusions: This work shows that inhibition of autophagy is a promising strategy against GBM and identifies ATG9 as a novel
target in hypoxia-induced autophagy. Combination with hypoxia-inducing agents may provide benefit by allowing to decrease
the effective dose of autophagy inhibitors.

Despite considerable advancement in the molecular characterisa-
tion of glioblastoma (GBM), survival of patients under current
treatment regimen remains disappointing. Treatment failure is
partially due to the capacity of tumour cells to activate pro-survival
pathways in an unfavourable microenvironment. The GBM
vasculature is poorly functional, leading to insufficient oxygen
supply and necrotic areas (Evans et al, 2004). Hypoxia and
angiogenic factors are correlated with tumour grade and poor
patient prognosis in brain tumours (Yang et al, 2012) and are

linked to radiation- and chemotherapy resistance (Vaupel and
Mayer, 2007). Although targeting angiogenesis has long been
regarded as an attractive therapeutic approach, anti-angiogenic
agents are incapable to halt tumour progression and improve
patient survival (Gilbert, 2016). We have previously shown that
administration of bevacizumab, an antibody against vascular
endothelial growth factor (VEGF), resulted in an adaptive
metabolic switch leading to an increased hypoxia and induction
of glycolysis (Keunen et al, 2011; Fack et al, 2015). However, the
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exact mechanism of GBM cell survival and adaptation under
hypoxia are still incompletely understood.

Solid tumours use autophagy as one of the survival mechanisms
upon various stressors including metabolic stress and starvation
(Yang et al, 2011), hypoxia (Rabinowitz and White, 2010;
Rouschop et al, 2010), chemotherapy (Kanzawa et al, 2004;
Ciechomska et al, 2013) and radiotherapy (Firat et al, 2012). In
physiological situations, autophagy has an important role in
organelle turnover, degradation of proteins, cellular differentiation
and aging (Glick et al, 2010). During stress, autophagy protects
cells by eliminating damaged organelles and proteins via
autophagosomes. Autophagosomes fuse with lysosomes to form
the autolysosome responsible for enzymatic self-digestion of
cellular waste. Recycled cellular components may serve as an
energy source during periods of starvation, hypoxia or high-energy
demand. Under physiological hypoxia (0.1–3%O2), the autophagic
response is HIF1a-dependent (Mazure and Pouyssegur, 2010) and
relies on the induction of the pro-autophagic genes BNIP3 (BCL2/
adenovirus E1B 19kDA interacting protein 3) and BNIP3L (BNIP3-
like) (Pouyssegur et al, 2006; Bellot et al, 2009). Furthermore,
autophagy is strongly dependent on the synchronised action of
autophagy-related (ATG) genes. Although many ATG genes are
modulated upon induction of autophagy (Gasch et al, 2000), their
specific roles are not always fully elucidated. ATG9A is the only
transmembrane autophagy-related protein and has been associated
with the regulation of autophagosome formation (Jin and Klionsky,
2014). ATG9A cycles between the Golgi network, endosomes and
the so called ‘ATG9A reservoir’, and ATG9A-containing vesicles in
cytoplasm, creating a ready source to support autophagosome
formation (Reggiori and Tooze, 2012). Although the detailed
mechanism is poorly understood, it is thought to support the
growth and maturation of autophagic membranes by recruiting
membrane structures to the LC3-positive autophagosomes (Orsi
et al, 2012; Yamamoto et al, 2012; Corcelle-Termeau et al, 2016;
Lamb et al, 2016).

Following up on our earlier studies (Fack et al, 2015; Sanzey
et al, 2015), we addressed the role of autophagy in enabling cell
survival in severe hypoxia and during anti-angiogenic treatment.
We show that GBM cells activate autophagy in hypoxia and that
ATG9A has an essential role in the autophagic response of GBM.

MATERIALS AND METHODS

GBM patient material. Human GBMs were obtained from the
Neurosurgery Department of the Centre Hospitalier in Luxembourg
(CHL) (T16) or the Department of Neurosurgery, Haukeland
University Hospital in Bergen (P3, P8), Norway. All patients had
provided informed consent, tumour collection was approved by the
National Research Ethics Committee for Luxembourg (CNER) or by
the Regional Ethical Board at the Haukeland University Hospital in
Bergen. All biopsies were primary GBM based on neuropathological
diagnosis and genomic analysis (Supplementary Table S1). The
original organotypic GBM spheroids from patient samples were
prepared as previously described (Keunen et al, 2011; Golebiewska
et al, 2013; Bougnaud et al, 2016) and maintained in spheroid
medium (DMEM medium, 10% FBS, 2 mM L-Glutamine, 0.4 mM

NEAA and 100 U ml� 1 Pen-Strep; Lonza, Basel , Switzerland) in
agar pre-coated flasks for 7–10 days.

Orthotopic patient-derived GBM xenografts. Serial transplanta-
tion of PDXs in eGFP-expressing NOD/SCID mice were used to
expand the tumour material and prepare spheroids for in vitro
assays, as previously described (Niclou et al, 2008; Bougnaud et al,
2016). For treatment experiments, P3 and T16 GBM spheroids
expressing RFP were orthotopically implanted into the right frontal
lobe of Swiss nude mice (6 per mice). Tumour growth was

monitored by in vivo fluorescence imaging (IVIS Lumina
Fluorescence system; PerkinElmer, Waltham, MA, USA). Three
weeks post implantation mice were randomly allocated into
treatment groups (6–7 mice per group). Bevacizumab, chloroquine
and normal saline were delivered by intraperitoneal injections. The
treatment schedule is summarised in Supplementary Table S2.
NCH421k and NCH644 harbouring Scramble or ATG9A shRNA
were stereotactically implanted in NOD/SCID mice (13 7500
NCH421k cells or 50 000 NCH644 cells per animal; 6–7 per
group). Animals were monitored daily and the following criteria
were evaluated: (1) loss of 410% of body weight, (2) exhibition of
strong neurological signs (3) increased lordosis or (4) swollen belly.
The criteria were scored as: 0¼ none, 1¼ early, 2¼ established,
3¼ severe signs and animals were killed when three criteria with
grade 2 or 1 criteria with grade 3 were reached. All procedures were
approved by the national authorities responsible for animal
experiments in Luxembourg.

Immunohistochemistry. For mouse-specific CD31 staining cryostat
sections (10mm) of flash-frozen brains were fixed in ice-cold acetone
and acetone : chloroform (1 : 1) for 5 min each. Sections were blocked
for 1 h in TBS/2% FCS, followed by a 1 h incubation in rat anti-mouse
CD31 antibody (Merck Millipore, Nottingham, UK, 1 : 200). Alexa
Fluor 488-conjugated secondary antibodies were applied for 1 h.
Sections were analysed by fluorescence microscopy. Quantification of
vessel staining was done using ImageJ (NHS, Bethesda, MA, USA)
from 3–4 mice per group (9–34 images per mice).

Western blotting. GBM cells were cultured in normoxia or 0.1%
O2 hypoxia for 48 h. When indicated, 20mM chloroquine was added
16 h before cell collection. Cultured cells or spheroids were lysed in
RIPA buffer (Merck Millipore) with 0.1% SDS. Overall, 30mg of
proteins were loaded and separated in a NuPAGE Novex 4–12% Bis-
Tris Gels (Life Technologies, Merelbeke, Belgium) followed by
electroblot transfer to a PVDF membrane (Novex, Invitrolon PVDF,
Life Technologies). Membranes were blocked with 2% non-fat milk
in Tris-buffered saline containing 0.1% Triton-X before incubation
with primary antibodies (LC3B: Cell Signaling Technology, Danvers,
MA, USA, 1 : 2000; p62: BD Bioscience, Erembodegem, Belgium,
1 : 1000; Actin: Millipore, 1 : 10 000; Tubulin: Millipore, 1 : 5000).
Secondary coupled to horseradish peroxidase were detected by
enhanced chemiluminescence (ECL) (Lumigen TMA6, GE Health-
care) with luminescent image analyser (Image Quant LAS4000, GE
Healthcare, Diegem, Belgium). Quantification was performed with
the ImageQuant TL. Owing to the substantial normalisation
problems linked to disturbed actin and tubulin signal in hypoxic
cells upon induction of autophagy (Klionsky et al, 2016), WB signals
were normalised to total protein content.

Cell viability in GBM spheroids. Cell viability after 72 h of
treatment with inhibitors was assessed by double labelling with
2 mM Calcein AM and 4mM Ethidium homodimer-1 (LIVE/DEAD
Viability/Cytotoxicity assay kit, Molecular Probes, Eugene, OR,
USA) for 6 h. Measurements of viable (‘green’) and dead (‘red’)
cells were performed using fluorescence confocal microscopy
(Zeiss LSM STO META, Zeiss, Zaventem, Belgium) by obtaining
20–25 stacks of two-dimensional images from successive focal
planes (5mm). Quantification was performed using IMARIS
software (Bitplane, Belfast, UK). The volume of viable and dead
cells within a spheroid was calculated by multiplying the surface
area of each component per stack by the total height of the image
stacks. The percentage of dead cell volume was calculated as: %
dead cell in spheroids (volume)¼Dead cell volume (‘red’))� 100/
Total spheroid volume (‘green’þ ‘red’). Experiments were carried
out three times with at least five spheroids each.

Cell culture. The primary adherent P3 cells (P3A) was derived
from patient xenograft-derived P3 3D spheroids grown in
uncoated flasks until a confluent adherent culture was obtained.
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P3A, U87, U251 and T98G cells were cultured as monolayers in
DMEM containing 10% FBS, 2 mM L-glutamine and 100 U ml� 1

Pen-Strep (Lonza). The normal human astrocytes (NHA) (kindly
provided by Dr Uros Rajcevic, Ljubljana, Slovenia) grew in
DMEM, 10% FBS, 2 mM L-glutamine and 100 100 U ml� 1 Pen-
Strep (Lonza). GBM stem-like cultures (NCH421k, NCH660h,
NCH465, NCH601 and NCH644) were kindly provided by
Christel Herold-Mende (University of Heidelberg, Germany) and
were cultured as previously described (Sanzey et al, 2015).
Normoxic cultures were performed at 37 1C under 5% CO2

atmospheric oxygen. Hypoxic conditions at 0.1–0.5% O2 were
maintained in the hypoxic incubator chamber (Galaxy 48R
incubator, New Brunswick, Eppendorf, Rotsellar, Belgium).

Cytotoxicity assay. Cells were plated at semi-confluency in 96 well
plates. NCH644 were attached on ECM Cell-Tak (VWR, Leuven,
Belgium) precoated plates. Increasing concentrations of tested
compounds (chloroquine diphosphate (Sigma, Overijse, Belgium;
C6628) and mefloquine hydrochloride (Sigma, M2319)) were
applied for 72 h. Induction of cell death was measured after 72 h
with the Sulforhodamine (SRB) assay (In Vitro Toxicology Assay
Kit, Sigma). The optical density was measured at 540 nm. The
percentage inhibition of cell mass was determined as: % cell
mass reduction¼ (Mean ODcontrol�mean ODsample)� 100/Mean
ODcontrol. IC50 was determined with the GraphPad Prism 5
(GraphPad Software, La Jolla, CA, USA).

Gene expression analysis. The gene expression profiles were
analysed as described previously (Sanzey et al, 2015). Lists of
differentially expressed genes (DEGs) were obtained with ANOVA
(false discovery rate (FDR)o0.01, any FC). The Ingenuity Pathway
Analysis (IPA) (Ingenuity Systems) was used for data mining. Right-
tailed Fisher’s exact test was used to calculate a P value for functional
enrichment analysis (threshold: � log(P value) 41.3). Upstream
regulator analysis was used to detect potential transcriptional
regulators (an overlap of P value o0.05 and activation z-score
42). Venn diagram analysis was performed with the SUMO
software (http://angiogenesis.dkfz.de/oncoexpress/software/). Micro-
array data are available in the ArrayExpress database (www.ebi.a-
c.uk/arrayexpress) under accession number E-MTAB-3085.

Real-time quantitative PCR. Overall, 1mg of total RNA was
reverse transcribed using iScript cDNA Synthesis Kit (BioRad,
Temse, Belgium). Quantitative PCR (qPCR) was carried out using
Fast SYBR Green Master Mix and the Viia 7 Real Time PCR
System (Life Technologies) with ATG9A (F: GCCAGACG
CCTTTTTGCCTGC; R: TAGGGATGCGCAGAGCGTGC) and
EZRIN (F: TGCCCCACGTCTGAGAATC; R: CGGCGCATATA
CAACTCATGG) primers. Fold-change (FC) was calculated using
the DDCt method (QBase).

shRNA-mediated knockdown of ATG9A. A control shRNA
(shScramble, Open Biosystems, RHS4346) or a shRNA targeting
ATG9A (Open Biosystems, RHS4430-99150604) were introduced
using lentiviral particles. Individual pGIPZ shRNAmir constructs
were obtained as E. coli cultures in LB-lenox medium with 8%
glycerol, 100 mg ml� 1 carbenicillin and 25 mg ml� 1 zeocin. Lenti-
viral particles were produced in HEK cells by co-transfection of the
pGIPZ vector with the viral core packaging construct pCMVdel-
taR8.74 and the VSV-G envelope protein vector pMD.G.2.
Supernatant containing viral particles was used to transduce
100 000 cells and puromycine selection permitted to obtain 100%
of stably transduced GFP-positive cells (0.5mg ml� 1 for NCH421k
and U87, 1 mg ml� 1 for NCH644 for at least 2 weeks). Cells were
regularly verified for GFP expression via flow cytometry and
puromycine selection was repeated, if required.

Transient transfection with LC3B. U87 and U251 were seeded in
ibidi iTreat m-Dish transfected using lipofectamine (Thermo

Fisher, Illkirch, France) with 2mg of LC3B-GFP or LC3-Tomato
plasmid for 3 h. Transfected cells were incubated for 16 h in either
normoxia or 0.1–0.5% O2 hypoxia in the presence of 20mM

chloroquine. Nuclei were visualised with Hoechst33342. Images
were taken using fluorescence confocal microscopy (Zeiss LSM STO
META) by obtaining 20–25 stacks of two-dimensional images from
successive focal planes (10–15mm total). Quantification of autopha-
gosomes was performed with ImageJ. Experiments were performed
twice, 35 individual cells were acquired in total for analysis.

Cell proliferation assay. shScramble and shATG9A transfected
NCH421k, NCH644 (10 000 cells) and U87 (5000 cells) were plated
in 6 well plates. Cells were cultured for 4, 7 and 11 days. At each
time point, total number of viable cells was measured with a
Countess cell counter (Thermo Fisher). Experiments were
performed three times with three replicates each.

Statistical analysis. The data was analysed with unpaired inde-
pendent-samples t-test (Excel software, Microsoft, Redmond, Seattle,
WA, USA). Kaplan–Meier survival curves, log-rank test for survival
analysis and IC50 were calculated with the GraphPad Prism5. Data
were considered statistically significant with a P value o0.05.

RESULTS

Bevacizumab sensitises GBM cells to anti-autophagy treatment
in vivo in orthotopic patient-derived xenografts. We showed
previously that administration of bevacizumab (Bev), an anti-
angiogenic agent, leads to a hypoxic signature in GBM patient-
derived xenografts (PDXs) (Keunen et al, 2011; Demeure et al,
2015; Fack et al, 2015). As autophagy appears as an essential
survival mechanism under hypoxia, we hypothesised that the
combination of bevacizumab with an autophagy inhibitor would
have an additional anti-tumour effect. We applied the well-known
autophagy inhibitor chloroquine in vivo on two different PDXs.
Organotypic P3 and T16 spheroids were orthotopically implanted
into nude mice and treatment was started 3 weeks post
implantation (Supplementary Table S2).

Chloroquine treatment (20 mg kg� 1) significantly prolonged
survival of P3 mice (þ 18.4%; Figure 1A; Supplementary Table S2),
whereas it had no effect in T16 xenografts; however, increasing the
dose to 50 mg kg� 1 (3� -weekly) increased the survival (þ 9.6%;
Figure 1B; Supplementary Table S2). As previously shown (Keunen
et al, 2011; Golebiewska et al, 2013) treatment with bevacizumab
did not significantly prolong survival of mice with these PDXs
(Figure 1A and B), despite the fact that vessel morphology was
normalised. At an effective chloroquine concentration, bevacizu-
mab did not lead to a statistically significant additive benefit in
both PDXs. However, the addition of bevacizumab led to a
synergistic effect in the low chloroquine dose in T16 (11.5%;
P¼ 0.0095), at a concentration where chloroquine was not effective
as a single agent. The effect was equivalent to the high-dose
chloroquine treatment (CQ 50 mg kg� 1 vs CQ 20 mg kg� 1þBev;
P¼ 0.85) indicating that the addition of bevacizumab allows to
lower the effective chloroquine treatment dose.

It has been shown that in melanoma chloroquine acts on the
normalisation of tumour vessels independently of autophagy (Maes
et al, 2014). We did not detect any direct effect of chloroquine on
vessel normalisation: bevacizumab but not chloroquine signifi-
cantly decreased vessel density, total vessel density reduced upon
bevacizumab was not further affected by adding chloroquine
(Figure 1C and D).

In conclusion, our data show that chloroquine has a therapeutic
effect as a single agent in GBM PDXs, albeit the effective dose
differing between GBM. Addition of bevacizumab allowed to lower
the dose of chloroquine to reach the same survival benefit.
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Figure 1. Hypoxia sensitises GBM cells to autophagy inhibitors. Chloroquine and bevacizumab were administered as single agents or
simultaneously in P3 (A: 20 mg kg�1) and T16 (B: 20 and 50 mg kg� 1) PDXs. Kaplan–Meier graphs show the survival of mice upon treatment. See
Supplementary Table S1 for summary. Abbreviations: Bev¼Bevacizumab; CQ¼ chloroquine; log-rank test, *Po0.05, **Po0.01, ***Po0.001.
(C) Blood vessels from control and treated P3 PDXs were visualised by mouse-specific anti-CD31 (scale bars 100 mm). (D) Quantification of vessel
number per mm2 upon treatment (mean±s.e.m., *Po0.05, **Po0.01, ***Po0.001). (E) The cytotoxic effect of inhibitors (chloroquine 20mM,
mefloquine 10mM) was analysed for PDX-derived spheroids and NHA after 72 h treatment in normoxia and hypoxia. Representative images of
treated spheroids are presented (‘green’¼ viable, ‘red’¼dead). (F) Quantification of cell death upon treatment displayed as % of dead cells/
volume (nX5, *Po0.05, **Po0.01, ***Po0.001). (G) Sensitivity of GBM cultures to chloroquine and mefloquine 72 h after treatment.
Concentration gradients were used to determine the median inhibitory concentration (IC50). IC50 are expressed as mean±s.e.m. (nX3, *Po0.05,
**Po0.01, ***Po0.001).
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GBM cells exhibit increased sensitivity to chloroquine in
hypoxia. To further confirm a role of hypoxia in the outcome of
anti-autophagy treatment, we assessed the efficacy of two autophagy
inhibitors, chloroquine and mefloquine, at different oxygen levels.
We have first assessed the cytotoxic effects in primary PDX-derived
3D spheroids standardised for drug testing (Supplementary Figure
S1), known to recapitulate well the genetic makeup of patient
tumours (De Witt Hamer et al, 2008; Bougnaud et al, 2016)
(Supplementary Table S1) and drug responses (Hirschhaeuser et al,
2010). Non-transformed human astrocytes (NHA) cultured under
identical conditions were used as a control. Spheroids treated for
72 h with chloroquine (20mM) or mefloquine (10mM) in normoxia or
severe hypoxia (0.1% O2; Figure 1E and F) displayed a hetero-
geneous response to autophagy inhibitors. Little cell death was
observed within P3 and T16 spheroids treated with chloroquine in
normoxia, whereas cell death was markedly increased in hypoxia
(Figure 1E and F). P8 spheroids were already sensitive to
chloroquine in normoxia and exhibited no further increase in
sensitivity under hypoxia. Mefloquine, a more potent lysosomo-
tropic agent, was generally more toxic already in normoxia. In P3
spheroids, sensitivity, however strongly increased in hypoxia, which
appeared relatively resistant to mefloquine in normoxia. At the
indicated concentration, chloroquine and mefloquine did not induce
cell death in astrocytes (Figure 1E and F), suggesting that astrocytes
are less dependent on autophagy compared to GBM cells.

We further determined the half maximal inhibitory concentration
(IC50) for chloroquine and mefloquine in a panel of GBM cultures.
Out of six cultures tested NCH644, U87 and T98G exhibited
increased sensitivity to chloroquine in hypoxia (Figure 1G). U251
and P3A were already very sensitive under normoxia and no
additive effect was observed in hypoxia (Figure 1G). Again,
mefloquine was generally more potent in normoxia, and increased
sensitivity in hypoxia was observed only for NCH644, which
displayed highest IC50 at normal oxygen levels (Figure 1G).

Taken together, we show that hypoxia potentiates the cytotoxic
effect of autophagy inhibitors in GBM spheroids and in GBM
cultures. Similar to the in vivo situation, the GBM response is
heterogeneous and the additive effect is observed in hypoxic cells
only when the treatment reaches mild/moderate effect in normoxia.

Induction of autophagy at the transcript and protein level. We
have recently shown that GBM cells can survive under long-term
severe hypoxia, undergoing transcriptional changes and increasing
dependency on glycolysis (Sanzey et al, 2015). Although autophagy
is known to be regulated mainly at the post-transcriptional level,
transcriptional regulation has an important role in the induction of
the process (Moussay et al, 2011). We therefore investigated
transcriptional regulation of autophagy-associated genes. Gene
expression patterns were obtained from a panel of GBM cultures
including glioma stem-like cells (NCH421k, NCH644) and classical
GBM lines (U87, U251), cultured under short (12 h) and long-term
(7 days) hypoxia. Differentially expressed genes (FDRo0.01; any
FC) were further subjected for functional enrichment analysis by
IPA. As genes associated with the autophagy pathway genes
regulating autophagy are poorly annotated in ontology databases
we applied an in-house gene list (244 genes referred as ‘Autophagy
pathway’) (Moussay et al, 2011), revealing strong modulation of
the autophagy pathway upon both short- and long-term hypoxia
(Figure 2A). As expected, the upstream regulator analysis by IPA
predicted the hypoxia inducible factor 1-alpha (HIF1A) transcrip-
tion network to be strongly activated upon hypoxia (P valueo0.05;
z-score42; Figure 2B), as was FOXO3A – one of the transcription
factors responsible for induction of autophagy (Figure 2B).

Activation of autophagy was further visualised via increased
conversion of LC3-I to LC3-II isoform under hypoxia (Figure 2C).
To appropriately detect changes in the autophagic flux, experi-
ments were performed in the absence and in the presence of the

lysosomotropic agent chloroquine, which inhibits both the fusion
of autophagosome with lysosome and lysosomal protein degrada-
tion. Contrary to the previous experiments where chloroquine was
used as a treatment agent (Figure 1), the inhibition of the
autophagic flux was detectable upon short chloroquine treatment
(3–16 h) according to well-established protocols (Shintani and
Klionsky, 2004; Klionsky et al, 2016). High levels of the LC3-II
isoform were detected in all GBM cells treated with chloroquine
upon hypoxia as reflected in the LC3-II/LC3-I ratios. Interestingly,
NCH421k and U251 cells displayed high levels of LC3-II already in
normoxia, suggesting their strong dependence on autophagy in
normal conditions (Figure 2C). This is in accordance with the high
sensitivity of U251 to chloroquine in both conditions (Figure1G).
Induction of autophagy by hypoxia was further confirmed by a
decrease in p62 (Figure 2D) and an increase in the number of
autophagosomes visualised via transient LC3-GFP transfection
(Figure 2E). In conclusion, these data indicate that autophagy is
induced under severe hypoxia in GBM cells. The heterogeneous
sensitivity to autophagy inhibition corroborates with the differ-
ential basal level of autophagy in normoxia and further activation
of autophagy in hypoxic GBM cells.

ATG9A is involved in the hypoxia-dependent autophagic
response. To further explore the GBM-specific response to
hypoxia we focused on 98 specific regulators of autophagy (71-
positive and 27-negative regulators, Supplementary Table S3).
Although the number of deregulated genes and the extend of
deregulation was variable, we found four commonly deregulated
genes shared between short-term and long-term hypoxia (ATG9A,
BNIP3, BNIP3L and PIK3C3; Figure 3A; Supplementary Table S3),
showing increased levels upon hypoxia. BNIP3 and BNIP3L were
previously associated with the autophagic response in hypoxic
conditions (Mazure and Pouyssegur, 2010), whereas PIK3C3 is a
well-known partner in the autophagy onset mechanism (Munson
and Ganley, 2015). Of note, MTOR, a negative regulator of
autophagy and of PIK3C3, was significantly downregulated in 3
out of 4 GBM cultures (Supplementary Table S3). Interestingly,
within the ATG family, only ATG9A was upregulated in all GBM
cells (Figure 3B; Supplementary Table S3), ATG2A was high only
in 5 out of 8 conditions (Supplementary Table S3). The
upregulation of ATG9A was confirmed by qPCR in GBM stem-
like cells (NCH644, NCH421k, NCH660h, NCH601, NCH465)
and adherent cultures (U87, U251) (Figure 3C).

Interestingly, analysis of the ATG9A gene promoter revealed the
presence of five hypoxia response elements (HREs) in close
proximity to the canonical transcription start site, confirmed to be
functional according to the TRANSFAC database (Matys et al,
2006; Mole et al, 2009) (Supplementary Table S4). This was true
also for BNIP3, BNIP3L and PIK3C3 promoters, and is in line with
the HIF-dependent regulation reported for the BNIP3 and BNIP3L
(Kothari et al, 2003; Mole et al, 2009; Slemc and Kunej, 2016). In
summary, we show for the first time that ATG9A expression is
strongly induced in hypoxic conditions, implicating ATG9A as a
new player of hypoxia-dependent autophagic response in GBM.

Silencing of ATG9A affects GBM cell proliferation and tumour
growth in vivo. To study the involvement of ATG9 in autophagy,
we generated an efficient long-term ATG9A knockdown (75–98%,
Figure 4A) in three GBM cultures, resulting in reduced prolifera-
tion both in normoxia and hypoxia (Figure 4B). Contrary to the
control, ATG9A-depleted U87 cells did not increase the number of
LC3-positive vesicles upon hypoxia (Figure 4C), suggesting
inefficient activation of autophagy. To examine the effect of
ATG9A silencing on tumour growth in vivo, we implanted
shATG9A NCH421k and NCH644 cells into the brain of
immunodeficient mice. ATG9A knockdown led to a significant
increase in mouse survival (þ 12–18%; Figure 4D). Of note, two of
the autopagy-associated genes, ATG9A and BNIP3L, were included
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in our previously reported targeted shRNA screen, where we
examined the essentiality of 55 genes for survival of GBM cells
in vitro and in vivo (Sanzey et al, 2015). Interestingly, ATG9A but
not BNIP3L was also depleted both in vitro and in vivo (Figure 4E),
indicating that ATG9A is essential for general GBM cell survival.
Taken together, our data show that ATG9A is important for GBM
growth both in normoxic and hypoxic conditions, and regulates
activation of autophagy upon hypoxia. Interfering with ATG9A
expression efficiently blocks tumour growth in vivo.

DISCUSSION

Hypoxia is a characteristic feature of malignant gliomas and drives
tumour progression by adaptive cellular responses including
angiogenesis, changes in tumour metabolism, motility and survival
(Bertout et al, 2008). Increased hypoxia is also one of the escape
mechanisms driving resistance to anti-angiogenic treatment in
GBM. Here we find that the autophagy pathway is strongly

induced in GBM under hypoxia, and we identify ATG9A as a novel
regulator of autophagy induction. Inhibiting autophagy was shown
to potentiate various anti-cancer therapies in vitro, including
gliomas (Kanzawa et al, 2004; Shingu et al, 2009), where cells were
subjected to external stress. Although, there are currently over 20
clinical studies involving the use of chloroquine and hydroxy-
chloroquine in cancer treatment, in GBM both agents showed
limited effect in non-toxic doses (Sotelo et al, 2006; Rosenfeld et al,
2014). Here we show a significant increase in survival of GBM
PDXs when chloroquine was administered as a single agent,
although with different effective dose. This is in accordance with
the recent clinical trial showing dose-dependent inhibition of
autophagy by hydroxychloroquine in GBM patients (Rosenfeld
et al, 2014) and suggests that dosing needs to be adapted to the
specific patient tumour. Of note, we show that certain tumour cells
were sensitive to autophagy inhibitors also at normal oxygen,
indicating a strong dependence on autophagy without additional
environmental stress in a subgroup of GBM. This heterogeneous
response suggests that the genetic background, for example, PTEN
deletion, p53 mutation or EGFR amplification, may differentially
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affect the extent of basal level of autophagy and of treatment
response in GBM and that appropriate biomarkers may be
required to efficiently stratify patients. EGFR is known to
negatively regulate autophagy (Chen et al, 2016) through multiple
signalling pathways, thus EGFR overexpression may partly explain
the lower sensitivity of T16 tumours to anti-autophagic treatment.

Importantly, we find that bevacizumab treatment sensitised
GBM cells to autophagy inhibition allowing to reach survival
benefit at lower dose. This was confirmed in vitro, where hypoxia
increased sensitivity of GBM cells to autophagy inhibitors. The
synergistic effect of bevacizumab was visible only when the anti-
autophagy effect alone was mild or moderate at normal oxygen
levels, but was masked if the autophagy inhibitor alone showed a
strong effect. Interestingly, we have previously shown that
bevacizumab leads to a lower number of mitochondria in tumour
cells (Keunen et al, 2011), suggesting that mitophagy might be
involved in the survival under hypoxia. A previous study has
shown efficacy of chloroquine in combination with bevacizumab in
subcutaneous U87 tumours, but failed to observe a tumour
suppressive effect with chloroquine used as a single agent (Hu et al,
2012). This discrepancy may be due to the different tumour
localisation and the heterogeneity in the GBM response to
chloroquine described here. Although non-specific effects of

chloroquine cannot be excluded (Maycotte et al, 2012; Maes
et al, 2014), we did not observe vessel normalisation upon
chloroquine treatment. In line with a previous study (Chen et al,
2008), normal astrocytes remained unaffected at the lowest
chloroquine concentration affecting GBM cells, confirming more
substantial dependence of tumour cells on autophagy. Although
more potent inhibitors are warranted, our data suggest the
existence of a ‘therapeutic window’ for autophagy inhibitors in
GBM, and that co-treatment with anti-angiogenic agents allows to
significantly lower effective doses.

We found that activation of autophagy in hypoxia was linked to
transcriptional changes of numerous genes associated with autophagy,
among which BNIP3, BNIP3L, ATG9A and PIK3C3 were upregulated
in all GBM cells. BNIP3 and BNIP3L, while activated by HIF1a,
mediate autophagy by releasing Beclin1 from complexes with Bcl-2
and Bcl-XL (Zhang et al, 2008; Bellot et al, 2009). Interestingly, within
the ATG family, only ATG9A was transcriptionally activated in all
GBM cells. Contrary to other ATG family members such as ATG5
and ATG7, but similarly to BNIP3 and BNIP3L, we identify ATG9A as
potentially HIF1a responsive gene. These transcriptional changes were
observed also in GBM cells that exhibit high basal autophagy at
normal oxygen levels, suggesting that specific upstream molecules
such as FOXO3A are involved in the regulation autophagy pathway at
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different oxygen levels. Pro-autophagic genes, such as Beclin1, ATG5,
ATG7, BNIP3 and BNIP3L were previously found to be essential for
autophagy in cancer cells (Zhang et al, 2008; Mazure and Pouyssegur,
2009). Here we show that ATG9A also represents an important pro-
survival molecule, with ATG9A depletion leading to a strong
reduction of tumour growth, thus confirming the relevance of
autophagy as a promising target for GBM treatment. Of note, ATG7
knockdown displayed a therapeutic outcome only during anti-
angiogenic treatment (Hu et al, 2012).

ATG9A was shown to be essential for autophagosome
biogenesis and membrane maturation; however, its mode of action
remains enigmatic. Recent data suggest that the Pho–Rpd3

complex regulates expression of ATG9A and other ATG genes
upon induction of autophagy (Jin and Klionsky, 2014) and that
ATG9A-containing vesicles are generated de novo upon starvation
(Yamamoto et al, 2012). Here we show that upon ATG9A
depletion, GBM cells were not able to activate autophagy upon
hypoxia. We propose that the lack of autophagic activation upon
hypoxia may be due to inhibition of de novo autophagosome
synthesis. This is in accordance with a recent report, where ATG9A
was shown to have a key role in autophagosome formation during
hypoxic stress (Weerasekara et al, 2014). Thus, ATG9A may
become essential upon autophagy induction and an increased
demand for new autophagosome membranes (Orsi et al, 2012).
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In conclusion, our data support the notion that inhibiting
autophagy represents an effective therapy in primary GBM,
although it may be concentration and patient dependent. Anti-
autophagy treatment using genetic and pharmacological interven-
tion was effective as a single treatment. However, currently
available drugs, including chloroquine and hydroxychloroquine are
non-curative in non-toxic doses and novel more potent agents will
be necessary for GBM patients. Drugs directly targeting essential
proteins such as ATG9A may be of particular interest and a
combination with anti-angiogenic therapy may be beneficial.
Finally, the hypoxic microenvironment also contributes to
immunoresistance and hypoxia-induced autophagy impairs cyto-
toxic T-lymphocyte-mediated cell lysis of tumour cells (Noman
et al, 2011, 2012) and NK-mediated target cell apoptosis (Baginska
et al, 2013; Viry et al, 2014). Therefore, targeting autophagy in
tumour cells may not only lead to increased tumour cell death but
also sensitise tumours to immunotherapies.
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Boesze-Battaglia K, Boise LH, Bolino A, Boman A, Bonaldo P, Bordi M,
Bosch J, Botana LM, Botti J, Bou G, Bouché M, Bouchecareilh M,
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C, López-Vicario C, Lorente M, Lorenzi PL, Lõrincz P, Los M, Lotze MT,
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Muller S, Muñoz-Moreno R, Muñoz-Pinedo C, Münz C, Murphy ME,
Murray JT, Murthy A, Mysorekar IU, Nabi IR, Nabissi M, Nader GA,
Nagahara Y, Nagai Y, Nagata K, Nagelkerke A, Nagy P, Naidu SR, Nair S,
Nakano H, Nakatogawa H, Nanjundan M, Napolitano G, Naqvi NI,
Nardacci R, Narendra DP, Narita M, Nascimbeni AC, Natarajan R,
Navegantes LC, Nawrocki ST, Nazarko TY, Nazarko VY, Neill T, Neri LM,
Netea MG, Netea-Maier RT, Neves BM, Ney PA, Nezis IP, Nguyen HT,
Nguyen HP, Nicot AS, Nilsen H, Nilsson P, Nishimura M, Nishino I,
Niso-Santano M, Niu H, Nixon RA, Njar VC, Noda T, Noegel AA,
Nolte EM, Norberg E, Norga KK, Noureini SK, Notomi S, Notterpek L,
Nowikovsky K, Nukina N, Nürnberger T, O’Donnell VB, O’Donovan T,
O’Dwyer PJ, Oehme I, Oeste CL, Ogawa M, Ogretmen B, Ogura Y, Oh YJ,
Ohmuraya M, Ohshima T, Ojha R, Okamoto K, Okazaki T, Oliver FJ,
Ollinger K, Olsson S, Orban DP, Ordonez P, Orhon I, Orosz L,
O’Rourke EJ, Orozco H, Ortega AL, Ortona E, Osellame LD, Oshima J,
Oshima S, Osiewacz HD, Otomo T, Otsu K, Ou JH, Outeiro TF,
Ouyang DY, Ouyang H, Overholtzer M, Ozbun MA, Ozdinler PH,
Ozpolat B, Pacelli C, Paganetti P, Page G, Pages G, Pagnini U, Pajak B,
Pak SC, Pakos-Zebrucka K, Pakpour N, Palková Z, Palladino F, Pallauf K,
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