

British Journal of Cancer (2015) 112, 1805–1815 | doi: 10.1038/bjc.2014.599

Keywords: asbestos; meta-analysis; occupation; stomach cancer

Stomach cancer and occupational exposure to asbestos: a meta-analysis of occupational cohort studies

L Fortunato^{*,1} and L Rushton¹

¹MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK

Background: A recent Monographs Working Group of the International Agency for Research on Cancer concluded that there is limited evidence for a causal association between exposure to asbestos and stomach cancer.

Methods: We performed a meta-analysis to quantitatively evaluate this association. Random effects models were used to summarise the relative risks across studies. Sources of heterogeneity were explored through subgroup analyses and meta-regression.

Results: We identified 40 mortality cohort studies from 37 separate papers, and cancer incidence data were extracted for 15 separate cohorts from 14 papers. The overall meta-SMR for stomach cancer for total cohort was 1.15 (95% confidence interval 1.03–1.27), with heterogeneous results across studies. Statistically significant excesses were observed in North America and Australia but not in Europe, and for generic asbestos workers and insulators. Meta-SMRs were larger for cohorts reporting a SMR for lung cancer above 2 and cohort sizes below 1000.

Conclusions: Our results support the conclusion by IARC that exposure to asbestos is associated with a moderate increased risk of stomach cancer.

The most recent IARC monograph on asbestos (Straif *et al*, 2009; IARC, 2011) concluded that all forms of asbestos (chrysotile, crocidolite, amosite, tremolite, actinolite and anthophyllite) are carcinogenic to humans (Group 1). They concluded that asbestos causes mesothelioma and cancer of the lung, larynx and ovary (Group1), and note that positive associations have been observed between asbestos and cancer of the pharynx, stomach and colorectum (group 2A). However, no quantitative estimates of these associations were carried out, except for ovarian cancer (Camargo *et al*, 2011).

We conducted a meta-analysis of the results on stomach cancer of cohort studies of workers exposed to asbestos, as part of our work estimating the burden of occupational cancer in the United Kingdom (Rushton *et al*, 2010). The present analysis was built on the US IOM report published in 2006 (IOM, 2006); we have updated their results and extended the analyses by gender and subcategory (geography, industry and type of asbestos).

MATERIALS AND METHODS

Literature search. A search of the literature was performed to find all published reports of asbestos-exposed cohorts according to the MOOSE guideline (Stroup *et al*, 2000). As stomach cancer was not generally the primary disease of concern in those studies, each paper was read and those reporting mortality from or incidence of cancer of the stomach were selected. Searches of Medline and Embase were conducted for papers published worldwide in English between 1964 and 2010. Only cohorts of workers with predominant exposure to asbestos were included. For example, although

*Correspondence: Dr L Fortunato; E-mail: l.fortunato@imperial.ac.uk

Received 1 July 2014; revised 16 October 2014; accepted 27 October 2014; published online 30 April 2015

© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

workers in the rubber industry are exposed to asbestos, the causal role of this specific carcinogen cannot be established (IARC, 1998). When several publications relating to the same cohort were available, we used the most recent report. References of identified papers were examined for additional relevant publications, and a check was made with previous reviews to ensure all cohorts were identified.

For each study, we extracted the following data (when the information was available): observed and expected numbers of cases due to stomach cancer and/or the SMR/SIR and its associated confidence interval (CI), the total number of cases, the lung cancer SMR/SIR, the dates when the study was carried out, inclusion and exclusion criteria, the comparison population, the percentage of men, the average duration of employment, the geographical area, the industry sector, the type of asbestos. For the studies that reported results based on latency period, latency periods were defined as the time since the first exposure or employment. We extracted both sets of results with and without latency.

Methods for quantitative syntheses. Overall pooled estimates of the SMR/SIR (meta-SMR/SIR) with associated 95% CI were obtained using random- and fixed-effects methods (Sutton *et al*, 2000). When not provided, 95% CI of SMR/SIR were obtained via Byar's approximation (Breslow and Day, 1987). For studies in which there were zero observed cases, 1 was added to both observed and expected cases. Sensitivity analyses to this approach were undertaken in which either studies with zero observed cases were excluded from the analysis or the observed number of cases was set to equal to the expected number of cases (Alder *et al*, 2006).

A test for heterogeneity between study results was performed as a χ^2 -test with degrees of freedom equal to the number of studies minus one and associated *P-value* was reported. As this test is susceptible to the number of studies included in the meta-analysis, Higgins and Thompson (2002) developed an alternative approach that quantifies the effect of heterogeneity, providing a measure of the degree of inconsistency in the studies' results. This quantity I^2 describes the proportion of total variation in study estimates that is due to heterogeneity. Negative values of I^2 are put equal to zero so that I^2 lies between 0 and 100%. A value of 0% indicates no observed heterogeneity and larger values show increasing heterogeneity. This quantity was also reported with its associated 95% CI; a value > 50% was considered to indicate substantial heterogeneity (Higgins *et al*, 2003).

The influence of individual studies on the overall meta-SMR was assessed visually via radial plots, by re-estimating the overall effect omitting each study in turn. In addition, we used common influence diagnostics to highlight outlying influential studies (Viechtbauer and Cheung, 2010). Meta-regression techniques and stratified analyses were used to explore the influence of cohort and study characteristics. Publication bias was also assessed graphically with a funnel plot and by using Egger's test (Egger *et al*, 1997).

Analyses were performed separately for men and women, and for both genders combined. We also analysed the data according to the latency, that is, the time since the first exposure: studies were categorised as to whether they had carried out a lagged analysis or not, with the definition of a lagged category being an exposure lag of at least 10 years after the first exposure/employment. Separate subgroup analyses were carried out by geography (Europe, North America and Australia, China and Russia together) and by occupation/industry. The latter contained six categories as defined in the IOM reports (IOM, 2006): insulators, generic asbestos workers (where no occupation or industry was specified), textile asbestos workers, cement asbestos workers, miners and other occupations with substantial exposure to asbestos (such as shipyard workers). We also provided a pooled estimated by type of asbestos, sample size and publication year. To analyse the dose–response effect of asbestos exposure, we used two different methods. The first one was based on the RR for the highest category of exposure, as the categories for the dose–response relationships were not comparable. In the second approach, studies were divided according to the magnitude of the lung cancer SMR (below or above 2), corresponding to low and high occupational exposure to asbestos. Lung cancer mortality/ incidence was used as a substitute for the exposure measurements, because of the clear relationship between asbestos exposure and lung cancer (IARC, 2011).

All the analyses described above were carried out using the Metafor package (Viechtbauer, 2010) for R software.

RESULTS

Characteristics of the studies. The literature search identified 70 references that contained potentially relevant information for the meta-analysis. Mortality was the outcome in most of the cohort studies reviewed. Data on mortality were extracted for 40 cohorts from 37 separate papers, and data on cancer incidence were extracted for 15 separate cohorts from 14 papers. Table 1 summarises the study characteristics. Unique cohorts are numbered 1–55.

Mortality cohort studies have been carried out mainly in Europe (23 studies, 58%) and North America (12 studies, 30%). Three mortality cohorts were Chinese, one was Russian and one was Australian. Study mortality cohorts ranged in size between 145 and 52387 workers. Thirteen (33%) of the mortality cohorts included women, although in most women were a small proportion of the total. Four studies involved only women (Acheson et al, 1982; Peto et al, 1985; Germani et al, 1999), and four reported results for the total cohort (Gardner et al, 1986; Zhu and Wang, 1993; Frost et al, 2008; Harding et al, 2009). The most common occupations were insulators (20%), generic asbestos workers (20%), textile asbestos workers (15%), cement asbestos workers (13%) and miners (10%). The latency (exposure lag) ranged between 10 and 20 years. The earliest follow-up period started in 1941 and the latest ended in 2007. The average length of follow-up was 29.9 years (range = 9-49). The largest overall cohort RRs were among the earliest insulation workers (Selikoff et al, 1979) with a RR of 3.52 (Figure 1), and among two sets of workers in Chinese asbestos factories (Zhu and Wang, 1993; Pang et al, 1997): RRs were 4.4 and 2.2, respectively. Two studies carried out in Canada (Liddell et al, 1997) and the United Kingdom (Harding et al, 2009), involving 183 and 322 deaths from stomach cancer, showed consistent RR estimates with narrow 95% CI (1.24 and 1.66, respectively).

Incidence studies have been carried out in Northern Europe (11 studies, 73%), in France (2 studies), in Lithuania (1 study) and in Australia (1 study) and included fewer than 900 subjects to over 24 200. Half of the studies included women, in a small proportion of the total cohort. The largest overall cohort RR was among Danish asbestos cement workers (Raffn *et al*, 1989) with a RR of 1.43 (95% CI 1.03–1.93). All the other studies reported RRs close to one.

Quantitative synthesis. Table 2 summarises all the meta-SMRs and meta-SIRs obtained for men and women separately, and by consideration of an exposure lag or not. The meta-SIR for stomach cancer incidence was 1.09 (95% CI 0.94–1.26; 14 studies) and 1.10 (95% CI 0.52–2.33; 6 studies) for men and women, respectively, with homogenous results (P = 0.16 and 0.99, respectively).

The pooled analysis for stomach cancer mortality yielded a meta-SMR of 1.16 (95% CI 1.00–1.34; 30 studies) for men, with large heterogeneity of results (P < 0.001, $I^2 = 63.5\%$); a meta-SMR of 0.93 (95% CI 0.67–1.30, 13 studies) was found for women, with homogeneous results across studies (P = 0.90). For the total cohort,

	No of subjects	632	570	757	5969	3442	145	283	3211	2167	820	575	1074	6931	3787	7775	4778	7996	2816	3367	17 800	1172	3893	4571	2834	5893	903	9780	530
	End of follow-up	1976	1980	1980	1980	1980	1983	1983	1983	1984	1985	1981	1980	1982	1983	1981	1986	1984	1987	1986	1987	1987	1987	I	1988	1986	1991	1992	1994
	Employment	Union before 1943	From 1939	From 1939	1947–1978	1939–1980	1916–1983	1916–1983	1916–1983	1941–1983	1941–1945	Until 1970	1941–1967	Until 1970	1977–1979	1945-1960	1946–1977	1928–1984	1950–1981	1950–1980	In union 1967	Present in 1972	1977–1979	1940–1979	I	1	1953–1967	1	Until 1972
	Gender	Men	Women	Women	Men	Men	Men	Women	Men	Men and women	Men	Men	Men	Men	Men	Men	Men	Men	Men and women	Men and women	Men	Men and women	Men	Men	Men and women	Men and women	Men and women	Men	Men and women
	Asbestos type	Ch, Am	ch	Cr	Am	Mixed	ch, Cr	ch, Cr	Ch, Cr	сh	Am	Tr-Ac	Ch, Cr, Am	Ch, Cr, Am	Ch	Mixed	Ch	Mixed	Ch, Cr	Ch, Cr	Ch, Am	Ч	Ch	Ch	ch	Ч	An	ch	ch
	Industry	Insulation workers (union)	Manufacture of gas masks	Manufacture of gas masks	Manufacture of insulation board	Railroad shop	Asbestos textile workers	Asbestos textile workers	Asbestos textile workers	asbestos cement factory	Insulation workers	Vermiculite miners and millers	Asbestos products company	Asbestos cement factory	Shipyard workers	Shipyard workers	Shipyard workers	Asbestos cement factory	Asbestos cement factory	Asbestos cement factory	Insulation workers (union)	Chrysolite asbestos products workers	Shipyard workers	Shipyard production workers	Friction products	Asbestos factory	Asbestos miners	Miners and millers	Asbestos factory
	Country	USA	UK	N	N	Sweden	Я	N	UK	N	USA	USA	USA	USA	Sweden	Finland	Norway	Denmark	Austria	Italy	USA/ Canada	China	Sweden	Norway	Russia	China	Finland	Canada	China
	Year	1979	1982	1982	1984	1984	1985	1985	1985	1986	1986	1987	1987	1987	1987	1988	1989	1989	1 990	1991	1991	1992	1992	1993	1993	1993	1994	1997	1997
ies	0	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	Σ	_	_	_	_	Σ	Σ	Σ	Σ	Σ	_	Σ	Σ	_	Σ	Σ
ble 1. Study characteristics-mortality and incidence stud	Reference (related papers)	Selikoff 1979 (Selikoff et al, 1979) (Selikoff et al, 1964; Selikoff and Seidman, 1991; Selikoff et al, 1980)	Acheson 1982. I (Acheson et al, 1982)	Acheson 1982.1 (Acheson <i>et al</i> , 1982)	Acheson 1984 (Acheson et al, 1984)	Olshon 1984 (Ohlson et al, 1984)	Peto 1985.I (Peto <i>et al</i> , 1985)	Peto 1985.II (Peto <i>et al</i> , 1985)	Peto 1985.III (Peto <i>et al</i> , 1985)	Gardner 1986 (Gardner et al, 1986)	Seidman 1986 (Seidman <i>et al</i> , 1986)	Amandus 1987 (Amandus and Wheeler, 1987)	Enterline 1987 (Enterline et al, 1987)	Hughes 1987 (Hughes et al, 1987)	Sanden 1987 (Sandén and Järvholm, 1987)	Tola 1988 (Tola <i>et al</i> , 1988)	Melkild 1989 (Melkild <i>et al</i> , 1989)	Raffn 1989 (Raffn et al, 1989)	Neuberger 1990 (Neuberger and Kundi, 1990)	Botta 1991 (Botta et al, 1991)	Selikoff 1991 (Selikoff and Seidman, 1991) (Selikoff et al, 1964; Selikoff et al, 1979; Selikoff et al, 1980)	Cheng 1992 (Cheng and Kong, 1992)	Sanden 1992 (Sandén et al, 1992)	Danielsen 1993 (Danielsen et al, 1993)	Kogan 1993 (Kogan et al, 1993)	Zhu 1993 (Zhu and Wang, 1993)	Meurman 1994 (Meurman et al, 1994)	Liddell 1997 (Liddell et al, 1997) (McDonald et al, 1993; McDonald et al, 1980)	Pang 1997 (Pang <i>et al</i> , 1997)
Tab	₽	-	2	m	4	പ	9	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

Tabl	e 1. (Continued)									
₽	Reference (related papers)	0	Year	Country	Industry	Asbestos type	Gender	Employment	End of follow-up	No of subjects
29	Levin 1998 (Levin <i>et al</i> , 1998)	Σ	1998	USA	Manufacture of asbestos pipe insulation	Am	Men	Alive in 1964	1993	1121
30	Battista 1999 (Battista et al, 1999)	Σ	1999	Italy	Rail carriage construction and repair	ch, Cr	Men	1945–1969	1997	734
31	Germani 1999 (Germani et al, 1999)	Σ	1999	Italy	Women compensated for asbestosis	ch, Cr	Women	Alive in 1979	1997	631
32	Karjalainen 1999.I (Karjalainen <i>et al,</i> 1999)	_	1999	Finland	Patients with asbestos-related pulmonary	Mixed	Men and women	1964–1995	1995	1376
33	Karjalainen 1999.II (Karjalainen <i>et al,</i> 1999)	_	1999	Finland	Patients with pleural fibrosis	Mixed	Men and women	1964–1995	1995	4887
34	Berry 2000 (Newhouse et al, 1985; Berry et al, 2000)	Σ	2000	NK	Asbestos factory	Ch, Cr, Am	Men and women	1933–1964 1936–1942	1980	5100
35	Szeszenia 2000 (Szeszenia-Dabrowska et al, 2000)	Σ	2000	Poland	Asbestos cement factory	Ch, Cr	Men	Until 1980	1991	2525
36	Puntoni 2001 (Puntoni et al, 2001)	Σ	2001	Italy	Shipyard workers	Mixed	Men	1960–1981	1996	3984
37	LaProvote 2002 (de La Provôté et al, 2002)	_	2002	France	Manufacture fireproof textiles and friction materials	Mixed	Men and women	Until 1978	1995	1820
38	Ulvestad 2002 (Ulvestad et al, 2002)	-	2002	Norway	Asbestos cement factory	Mixed	Men	1942–1976	1999	541
39	Szeszenia 2002 (Szeszenia-Dabrowska et al, 2002)	Σ	2002	Poland	Workers compensated for asbestosis	Mixed	Men	1970–1997	1999	206
40	Koskinen 2003 (Koskinen <i>et al,</i> 2003)	_	2003	Finland	Asbestos workers (screening campaign)	Mixed	Men and women	I	1992	24 215
41	Finkelstein 2004 (Finkelstein and Verma, 2004)	Σ	2004	Canada	Pipe trades workers (union)	Mixed	Men	From 1949	1999	25 285
42	Reid 2004 (Armstrong et al, 1988; Reid <i>et al</i> , 2004)	_	2004	Australia	Crocidolite miners and millers	ŭ	Men	1943–1966	1999	5685
43	Smailyte 2004 (Smailyte <i>et al</i> , 2004)	_	2004	Lithuania	Asbestos cement factory	ch	Men and women	Until 1978	2000	1887
44	Ulvestad 2004 (Ulvestad et al, 2004)	_	2004	Norway	insulation workers (union)	Ch, Am	Men	1930–1975	1999	1116
45	Wilczynska 2005 Wilczynska <i>et al</i> , 2005) (Szeszenia-Dabrowska <i>et al</i> , 1991; Szeszenia-Dabrowska <i>et al</i> , 1988a; Szeszenia-Dabrowska <i>et al</i> , 1988b)	Σ	2005	Poland	Asbestos processing plant	Mixed	Men and women	1945–1980	1999	4187
46	Hein 2007 (Hein et al, 2007) (Brown et al, 1994; Dement et al, 1994; Dement et al, 1983)	Σ	2007	USA	Asbestos textile workers	c	Men and women	1940–1965	2001	3072
47	Krstev 2007 (Krstev et al, 2007)	Σ	2007	USA	Shipyard production workers	Mixed	Men and women	1950–1964	2001	4702
48	Pira 2007 (Pira <i>et al</i> , 2005, 2007)	Σ	2007	Italy	Asbestos textile workers	Mixed	Men and women	1946–1984	2004	1966
49	Frost 2008 (Frost et al, 2008)	Σ	2008	GB	Asbestos removal workers (campaign)	Mixed	Men and women	From 1971	2005	52 387
50	Musk2008 (Musk et al, 2008) (Armstrong et al, 1988; Reid et al, 2004)	Σ	2008	Australia	crocidolite miners and millers	Ċ	Men	1943–1966	2000	6943
51	Clin 2009 (Clin <i>et al</i> , 2009)	_	2009	France	Asbestos reprocessing plant (textile, friction)	Mixed	Men and women	Before 1978	2004	2024

311

03

o of jects

the	meta-SMR	was	similar	to	that	found	for	men	only	(meta-
SM	R = 1.17, 95	% CI	1.03-1.	33,	40 s	tudies).				

Because mortality is a relatively accurate measure of disease incidence as stomach cancer has a low survival rate, and because of the very limited numbers of primary studies in which incidence data were reported, pooled analyses are also reported using mortality and incidence combined. In this situation, the meta-SMRs were similar to those found using only mortality data, with a slight reduction in heterogeneity ($I^2 = 54.7\%$). Figure 1 presents the individual study results and the overall meta-SMR for total cohort.

As the meta-SMRs from studies reporting results with exposure lag did not differ substantially from the overall results, the meta-SMRs below are reported for all exposure lag group and for mortality and incidence combined, unless specified otherwise.

Between study heterogeneity and influence of individual studies. Table 2 also shows the heterogeneity (*P-value*) for each analysis. There was no evidence of heterogeneity in women but some in men. A few specific studies contributed to this heterogeneity, as illustrated by outlying points in the radial plot for stomach cancer for men (Figure 2): cohort 1 (Selikoff *et al*, 1979) was conducted in the earliest period, cohort 5 (Ohlson *et al*, 1984) was the only study to find a significant decrease in risk, cohort 28 (Pang *et al*, 1997) was carried out in China. For the total cohort, another cohort in China, cohort 25 (Zhu and Wang, 1993) also contributed to the heterogeneity.

The covariates listed in the Methods section were explored as potential sources of heterogeneity using meta-regression methods. Table 3 gives the meta-SMR by subgroup for men and women. No significant predictor of the meta-SMR for women was found. Apart for type of asbestos and publication year, all the variables were a significant predicator for men, with some heterogeneity. The meta-SMRs for men showed elevated risks in the United States and Australia (meta-SMR = 1.30, 95% CI 1.10-1.55), and China and Russia (meta-SMR = 1.91, 95% CI 1.03-3.56). The pooled analysis within occupational strata demonstrated the highest meta-SMR for stomach cancer among generic asbestos workers (meta-SMR = 1.41, 95% CI 1.10-1.82), followed by insulators (meta-SMR = 1.27, 95% CI 1.05-1.53). Meta-regression also showed positive associations for stomach cancer for the cohort sizes below 1000 compared with cohort size above 1000. Similar results were found for the total cohort (Supplementary Table 1).

Figure 3 shows, for men, the investigation of the influence of individual studies via systematic 'leave one out' exclusion. The studies appearing to contribute to heterogeneity also influence the meta-SMR. Using the other diagnostics, only Selikoff *et al* (1979) and Ohlson *et al* (1984) were influential (Supplementary Figure 1). The meta-SMR for stomach cancer excluding these 2 studies were 1.13 (95% CI 1.05–1.22), relatively similar to the one found with all the studies for men. The exclusion of the 3 influential studies (Selikoff *et al*,1979; Ohlson *et al*, 1984; Pang *et al*, 1997) led to a meta-SMR of 1.12 (95% CI 1.04–1.20) and eliminated completely the heterogeneity (P = 0.59, $I^2 = 7.3\%$) as well as the residual heterogeneity in the meta-regressions (P > 0.44). The associations were generally attenuated (Supplementary Table 2), except for the miners (meta-SMR = 1.21, 95% CI 1.07–1.36) compared with the other occupations.

Dose-response associations. Estimates of cumulative or duration of exposure among asbestos-exposed workers were reported for only 11 studies (Supplementary Table 3). The pooled SMR estimate of stomach cancer for men was 1.40 (95% CI 0.81–2.40), with a large degree of heterogeneity ($I^2 = 67.7\%$).

Using a low/high exposure categorisation based on the lung cancer SMR, cohorts that reported a lung cancer SMR above 2.0 had higher meta-SMRs (SMR = 1.46; 95% CI 1.22–1.77) compared with other cohorts (SMR = 1.02; 95% CI 0.91–1.15).

						Ashestos			End of	z
₽	Reference (related papers)	0	Year	Country	Industry	type	Gender	Employment	follow-up	sub
52	Harding 2009 (Hutchings <i>et al</i> , 1995; Harding <i>et al</i> , 2009)	Σ	2009	ЛК	Asbestos survey	Mixed	Men and women		2005	6
53	Loomis 2009 (Loomis et al, 2009)	Σ	2009	USA	Asbestos textile workers	Ch	Men and women	1950–1973	2003	2 2
54	Pira 2009 (Pira et al, 2009) (Piolatto et al, 1990; Rubino et al, 1979)	Σ	2009	Italy	Chrysotile asbestos miners	Ch	Men	1930–1975	1946	7
55	Pesch 2010 (Pesch <i>et al</i> , 2010)	Σ	2010	Germany	Asbestos survey	Mixed	Men	1993–1995	2007	Ξ,
Abbre	aviations: -= not applicable; Am = Amosite; An = Anthophyllite; Ch = Chrysotile; Cr =	= Crocido	lite; I = Inc	idence; M=M	ortality; O = Outcome.					

Figure 1. Meta-analysis of stomach cancer mortality and incidence for total cohort, all exposure lags.

Assessment of publication bias. For men and women, there was no evidence of publication bias from plots and statistical tests. However, for the total cohort, there is an evidence of publication bias (funnel plot in Supplementary Figure 2), with a suggestive lack of studies in the top right-hand corner of the plot, that is, large cohorts with large associations.

Zero cases. Four studies reported no deaths from stomach cancer for women; (Cheng and Kong, 1992; Pang *et al*, 1997; Hein *et al*, 2007; Krstev *et al*, 2007); only one study with men was concerned with this issue (Levin *et al*, 1998) Therefore, the investigation of the influence of approaches to handling zero cases was carried out only for women. Both excluding studies for which observed cases are zero and setting observed equal to expected values resulted in an increase in meta-SMRs and a slight widening of the confidence intervals compared with the default method of adding 1 to both observed and expected values. Whatever the latency, the meta-SMRs were 1.00 (95% CI 0.73–1.36) and 1.03 (95% CI 0.77–1.39) with the exclusion approach and imputation approach, respectively, compared with a meta-SMR of 0.96 (95% CI 0.71–1.30) with the default method.

DISCUSSION

The association between asbestos and stomach cancer has been estimated in a meta-analysis of studies of workers in which a major

portion of the cohort is presumed to have been exposed to asbestos. Our results demonstrated an increase in the pooled estimate in men (meta-SMR = 1.13, 95% CI 1.02–1.26) for stomach cancer in relation to exposure to asbestos. Our meta-analysis provided an update of studies, compared with previous reviews and quantitative estimates and also thoroughly explored heterogeneity and publication bias.

The magnitude of the association in our meta-analysis was similar to that reported in the IOM report that included 42 cohorts (meta-SMR = 1.17, 95% CI 1.07–1.28). More recently, Gamble (2008) reported that point estimates for cancer of the stomach mortality tended towards 1, with an overall RR estimate of 1.01 (95% CI 0.94–1.08), results more similar to those obtained by Goodman *et al* (1999).

Our analysis addressed heterogeneity and was based on studies included in the published meta-analyses and more recent publications. The observed overall heterogeneity among studies seemed to be explained by four cohorts. The cohort by Selikoff *et al* (1979) considered an early exposure period (up to 1962). Ohlson *et al* (1984) were the only ones to find a significant decrease in risk (SMR = 0.57, 95% CI 0.42–0.79). Two studies (Zhu and Wang, 1993; Pang *et al*, 1997) were conducted in China, where asbestos production and exposure can be very high (LaDou, 2004).

We carried out meta-regression to investigate the influence of several variables. Positive and statistically significant associations were observed for non-European cohorts, generic asbestos workers, cohorts reporting a SMR for lung cancer above 2, and cohort size below 1000.

Table 2. Pooled analysiseffects model	for stomach cancer	mortalit	y and incidence k	oy exposure la	g (latency) and t	pe of outcom	ne using random
	Outcome	nª	SMR	95% CI	τ ^{2 b}	Pac	l ² (%) ^d
Men					-		
All exposure lags	l	14	1.09	(0.94–1.26)	0.019	0.16	28.0
	М	30	1.16	(1.00–1.34)	0.085	< 0.001	63.5
	M + I	44	1.13	(1.02–1.26)	0.057	< 0.001	54.7
At least 10 yr exposure lag	I	2	-	-	-	-	-
	М	9	1.16	(0.79–1.69)	0.213	< 0.001	75.3
	M + I	11	1.09	(0.77–1.53)	0.197	< 0.001	71.8
No exposure lag	I	14	1.09	(0.94–1.26)	0.019	0.16	28.0
	М	26	1.18	(0.99–1.40)	0.111	< 0.001	69.6
	M + I	40	1.14	(1.01–1.28)	0.069	< 0.001	59.7
Women							
All exposure lags	I	6	1.1	(0.52–2.33)	0	0.99	-
	М	13	0.93	(0.67–1.30)	0	0.90	0
	M + I	19	0.96	(0.71–1.30)	0	0.99	-
No exposure lag	I	6	1.1	(0.52–2.33)	0	0.99	-
	М	12	0.89	(0.62–1.26)	0	0.90	0
	M + I	18	0.92	(0.67–1.27)	0	0.99	-
Total cohort					-		
All exposure lags	I	15	1.07	(0.91-1.25)	0.022	0.26	25.5
	М	40	1.17	(1.03–1.33)	0.087	< 0.001	69.1
	M + I	55	1.15	(1.03–1.27)	0.069	< 0.001	61.9
At least 10 yr exposure lag	I	0	-	-	-	-	-
	М	10	1.12	(0.80–1.56)	0.182	< 0.001	81.6
	M + I	12	1.07	(0.79–1.44)	0.169	< 0.001	78.5
No exposure lag	I	15	1.07	(0.91–1.25)	0.022	0.26	25.5
	М	36	1.18	(1.03–1.36)	0.102	< 0.001	72.7
	M + I	51	1.15	(1.03–1.28)	0.078	< 0.001	64.8

Abbreviations: – = not applicable; CI = confidence interval; I = incidence, M = mortality. No results for women for at least 10 year exposure lag as only one mortality study reported a SMR. ^aNumber of cohorts included.

^bVariance (amount of heterogeneity).

^c*P*-value for the heterogeneity test.

 $\mathbf{d}_{\mathsf{Percentage}}$ of total variability due to heterogeneity.

Our meta-analysis mainly represented studies conducted in developed geographical areas, particularly among European populations. It is possible that studies conducted in other geographic regions (e.g., developing countries) may be available through other biomedical literature databases. The meta-analysis (da Sun et al, 2008) published in Chinese with an abstract in English, which searched Chinese literature as well, found a meta-SMR of 1.20 (P < 0.01) among workers exposed to chrysotile alone or mixed asbestos. The stomach cancer SMR was significantly increased in the asbestos cement workers, the screening mine workers and the insulators, (1.27, 1.21 and 2.13, respectively, P < 0.05). These results seem consistent with the ones we observed. Another source of publication bias can arise from the lack of publications in parts of Asia, South America and the former Soviet Union where asbestos use is increasing (LaDou, 2004).

Some studies may have failed to take account of co-exposures that have been to be associated with excess risk of stomach cancer. The reported SMRs were not adjusted for known risk factors such as chronic infection with *Helicobacter pylori*, smoking and diet habits. Liddell *et al* (1997), for example, report that their finding of no trend of lung cancer with exposure up to 300 mpcf.y suggests that the 21% excess was due to some other factor, probably smoking, and that the effect of smoking on stomach cancer was twice as high as the effect of >300 mpcf.y. A recent study found statistically significant increased hazard ratios for gastric cancer and several asbestos exposure variables, adjusted for age and family history of gastric cancer, although, with the exception of long duration at high exposure, these associations tended to disappear after adjusting for smoking (Offermans *et al*, 2014). Increases in stomach cancer have also been associated with work in a variety of dusty industries and from exposure to fumes and metal particles, for example, in foundry, steel and mining work (Cocco *et al*, 1996; Ji and Hemminki, 2006). A study in Swedish construction workers found exposure to silica exposure, but not asbestos, was significantly related to stomach cancer (Sjodhal *et al*, 2007). However, in our meta-analysis we restricted our studies to only those where the dominant exposure was asbestos.

We found a suggestive but nonsignificant association between asbestos type and the stomach cancer meta-SMR. Cohorts exposed to mixed asbestos showed larger SMRs than those exposed only to chrysotile asbestos. A meta-analysis by Li et al (2004) of 15 studies published before 2003 of workers exposed only to chrysotile found also a nonsignificant association (meta-SMR = 1.24; 95% CI 0.95-1.62). Our risk estimate was slightly smaller as we did not include four cohorts, as they were published in Chinese. There has been a considerable controversy over the potency of asbestos fibre types with the risks of lung cancer and mesothelioma. As discussed in the review by Hodgson and Darnton (2000) some studies showed no difference in risk between these cancers and asbestos fibre types, while others have claimed a reduced potency for chrysotile, leading to a substantial heterogeneity in the findings. Our results tend to support a reduced risk for chrysotile and stomach cancer compared with the risk associated with other asbestos types.

In summary our results support the conclusion by IARC that exposure to asbestos is associated with a moderate increased risk of stomach cancer. Given the large number of workers exposed to asbestos worldwide, this may contribute to a substantial burden of mortality and morbidity.

Figure 2. Radial plot for SMRs in a meta- analysis of stomach cancer mortality and incidence for total cohort, all exposure lags.

(random effects model)														
			Me	n			Women							
	nª	SMR	95% CI	$\tau^{2 b}$	PQE ^c	Pom ^d	nª	SMR	95% CI	$\tau^{2 b}$	PQE ^c	PQM ^d		
Geography														
Europe	28	1.03	(0.91–1.16)				14	1.1	(0.77–1.57)					
North America + Australia	13	1.3	(1.10–1.55)	0.042	< 0.001	< 0.001	2	0.37	(0.04–3.13)	0	1	0.48		
China + Russia	3	1.91	(1.03–3.56)				3	0.69	(0.38–1.28)					
Occupation														
Cement asbestos workers	6	1.12	(0.88–1.42)				2	1.27	(0.59–2.72)					
Generic asbestos workers	7	1.41	(1.10–1.82)				5	0.87	(0.44–1.73)					
Insulators	10	1.27	(1.05–1.53)	0.000	0.004	0.004	1	0.63	(0.03–12.89)	0	0.05	0.07		
Miners	6	1.18	(0.95–1.47)	0.028	< 0.001	< 0.001	1	0.67	(0.05–9.13)	0	0.95	0.97		
Textile asbestos workers	4	1.15	(0.83–1.61)				3	1.22	(0.53–2.79)					
Other occupation	11	0.87	(0.73–1.04)				7	0.87	(0.56–1.34)					
SMR for lung cancer														
≼2	25	1.02	(0.91–1.15)	0.020	< 0.001	< 0.001	5	0.88	(0.54–1.42)	0	0.00	0.94		
>2	17	1.46	(1.22–1.77)	0.039	< 0.001	< 0.001	13	1.02	(0.69–1.52)	0	0.70	0.00		
Type of asbestos														
Amosite	3	1.25	(0.64-2.44)				-	_	_					
Chrysotile	11	1.09	(0.87–1.37)	0.050	< 0.001	0.32	6	0.84	(0.52–1.35)	0	0.07	0.05		
Crocidolite	2	1.14	(0.75–1.74)	0.058			1	1.14	(0.42–3.06)	0	0.97	0.95		
Mixed	27	1.13	(0.99–1.29)				11	1.05	(0.68–1.64)					
Sample size														
<1000	12	1.68	(1.32–2.15)				15	1.15	(0.77–1.71)					
1000–1500	6	1.19	(0.88–1.61)	0.034	0.001	< 0.001	3	0.79	(0.38–1.62)	0	1	0.56		
>1500	26	1.04	(0.93–1.16)				1	0.7	(0.37–1.33)					
Publication year				· · · · · ·										
Before 1999	26	1.16	(1.00–1.34)	0.057	0.004	0.07	11	0.94	(0.63–1.40)	2		0.05		
After 1999	18	1.1	(0.94–1.29)	0.057	< 0.001	0.07	8	0.99	(0.62–1.59)	0	0.98	0.95		
Abbreviations: - = not applicable;	CI = conf	idence interva	al.											
^a Number of cohorts included.														
^D residual variance (residual amoun	t of hete	rogeneity).												
^c P-value for the residual heteroger	neity test.													

 d P-value for the test of moderators (if the SMRs are different or not within the subgroup).

Figure 3. Influence of excluding each individual cohort for men, mortality and incidence combined, all exposure lags. Meta-SMRs and associated 95% CI (random-effects model). Dotted and dash lines represent the overall meta-SMR and its 95% CI.

ACKNOWLEDGEMENTS

This work was supported by the UK Health and Safety Executive (Grant JN3117). We thank Sally Hutchings for her valuable comments.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- Acheson ED, Gardner MJ, Pippard EC, Grime LP (1982) Mortality of two groups of women who manufactured gas masks from chrysotile and crocidolite asbestos: a 40-year follow-up. Br J Ind Med 39(4): 344–348.
- Acheson ED, Gardner MJ, Winter PD, Bennett C (1984) Cancer in a factory using amosite asbestos. *Int J Epidemiol* **13**(1): 3–10.
- Alder N, Fenty J, Warren F, Sutton AJ, Rushton L, Jones DR, Abrams KR (2006) Meta-analysis of mortality and cancer incidence among workers in the synthetic rubber-producing industry. Am J Epidemiol 164(5): 405–420.
- Amandus HE, Wheeler R (1987) The morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part II. Mortality. Am J Ind Med 11(1): 15–26.
- Armstrong BK, de Klerk NH, Musk AW, Hobbs MS (1988) Mortality in miners and millers of crocidolite in Western Australia. *Br J Ind Med* 45(1): 5–13.
- Battista G, Belli S, Comba P, Fiumalbi C, Grignoli M, Loi F, Orsi D, Paredes I (1999) Mortality due to asbestos-related causes among railway carriage construction and repair workers. *Occup Med* 49(8): 536–539.

- Berry G, Newhouse ML, Wagner JC (2000) Mortality from all cancers of asbestos factory workers in east London 1933-80. Occup Environ Med 57(11): 782–785.
- Botta M, Magnani C, Terracini B, Bertolone GP, Castagneto B, Cocito V, DeGiovanni D, Paglieri P (1991) Mortality from respiratory and digestive cancers among asbestos cement workers in Italy. *Cancer Detect Prev* 15(6): 445–447.
- Breslow NE, Day NE (1987) *Statistical methods in cancer research. Volume II* -*The design and analysis of cohort studies.* Vol. 82, IARC Scientific Publication.
- Brown DP, Dement JM, Okun A (1994) Mortality patterns among female and male chrysotile asbestos textile workers. J Occup Med 36(8): 882–888.
- Camargo MC, Stayner LT, Straif K, Reina M, Al-Alem U, Demers PA, Landrigan PJ (2011) Occupational exposure to asbestos and ovarian cancer: a meta-analysis. *Environ Health Perspect* **119**(9): 1211–1217.
- Cheng WN, Kong J (1992) A retrospective mortality cohort study of chrysotile asbestos products workers in Tianjin 1972-1987. Environ Res 59(1): 271–278.
- Clin B, Morlais F, Dubois B, Guizard AV, Desoubeaux N, Marquignon MF, Raffaelli C, Paris C, Galateau-Salle F, Launoy G, Letourneux M (2009) Occupational asbestos exposure and digestive cancers - a cohort study. *Aliment Pharmacol Ther* **30**(4): 364–374.
- Cocco P, Ward MH, Buiatti E (1996) Occupational risk factors of gastric cancer: an overview. *Epidemiol Rev* 18: 218–234.
- da Sun T, Chen J-E, Zhang X-J, Li X-Y (2008) [Cohort studies on cancer mortality of digestive system among workers exposed to asbestos: a meta-analysis]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26(10): 605–608.
- Danielsen TE, Langård S, Andersen A, Knudsen O (1993) Incidence of cancer among welders of mild steel and other shipyard workers. *Br J Ind Med* 50(12): 1097–1103.
- de La Provôté S, Desoubeaux N, Paris C, Letourneux M, Raffaelli C, Galateau-Salle F, Gignoux M, Launoy G (2002) Incidence of digestive cancers and occupational exposure to asbestos. *Eur J Cancer Prev* **11**(6): 523–528.

- Dement JM, Brown DP, Okun A (1994) Follow-up study of chrysotile asbestos textile workers: cohort mortality and case-control analyses. *Am J Ind Med* 26(4): 431–447.
- Dement JM, Harris RL, Symons MJ, Shy CM (1983) Exposures and mortality among chrysotile asbestos workers. Part II: mortality. Am J Ind Med 4(3): 421–433.
- Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**(7109): 629–634.

Enterline PE, Hartley J, Henderson V (1987) Asbestos and cancer: a cohort followed up to death. *Br J Ind Med* **44**(6): 396-401.

Finkelstein MM, Verma DK (2004) A cohort study of mortality among Ontario pipe trades workers. *Occup Environ Med* **61**(9): 736–742.

Frost G, Harding AH, Darnton A, McElvenny D, Morgan D (2008) Occupational exposure to asbestos and mortality among asbestos removal workers: a Poisson regression analysis. *Br J Cancer* **99**(5): 822–829.

Gamble J (2008) Risk of gastrointestinal cancers from inhalation and ingestion of asbestos. *Regul Toxicol Pharmacol* **52**(1 Suppl): S124–S153.

Gardner MJ, Winter PD, Pannett B, Powell CA (1986) Follow up study of workers manufacturing chrysotile asbestos cement products. *Br J Ind Med* 43(11): 726–732.

Germani D, Belli S, Bruno C, Grignoli M, Nesti M, Pirastu R, Comba P (1999) Cohort mortality study of women compensated for asbestosis in Italy. *Am J Ind Med* **36**(1): 129–134.

Goodman M, Morgan RW, Ray R, Malloy CD, Zhao K (1999) Cancer in asbestos-exposed occupational cohorts: a meta-analysis. *Cancer Causes Control* 10(5): 453–465.

Harding AH, Darnton A, Wegerdt J, McElvenny D (2009) Mortality among British asbestos workers undergoing regular medical examinations (1971-2005). Occup Environ Med 66(7): 487–495.

Hein MJ, Stayner LT, Lehman E, Dement JM (2007) Follow-up study of chrysotile textile workers: cohort mortality and exposure-response. *Occup Environ Med* **64**(9): 616–625.

- Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a metaanalysis. Stat Med 21(11): 1539–1558.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed) 327(7414): 557–560.

Hodgson JT, Darnton A (2000) The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. *Ann Occup Hyge* **44**(8): 565–601.

Hughes JM, Weill H, Hammad YY (1987) Mortality of workers employed in two asbestos cement manufacturing plants. Br J Ind Med 44(3): 161–174.

Hutchings S, Jones J, Hodgson J (1995) Asbestos related diseases. In Occupational health decennial supplement, The Registrar General's decennial supplement for England and Wales. Drever F (ed), pp 127–152. HMSO: London.

IARC (1998) Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 28, IARC: Lyon, France.

IARC (2011) Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 100C, IARC: Lyon, France.

IOM (2006) Asbestos: Selected Cancers. The National Academies Press.

Ji J, Hemminki K (2006) Socio-economic and occupational risk factors for gastric cancers: a cohort study in Sweden. Eur J Cancer Prev 15: 391–397.

Karjalainen A, Pukkala E, Kauppinen T, Partanen T (1999) Incidence of cancer among Finnish patients with asbestos-related pulmonary or pleural fibrosis. *Cancer Causes Control* **10**(1): 51–57.

Kogan PM, Yatsenko AS, Tregubov ES, Gurvich EB, Kuzina LE (1993) Evaluation of carcinogenic risk in friction product workers. *La Medicina del lavoro* 84(4): 290–296.

Koskinen K, Pukkala E, Reijula K, Karjalainen A (2003) Incidence of cancer among the participants of the Finnish Asbestos Screening Campaign. *Scand J Work Environ Health* **29**(1): 64–70.

Krstev S, Stewart P, Rusiecki J, Blair A (2007) Mortality among shipyard Coast Guard workers: a retrospective cohort study. Occup Environ Med 64(10): 651–658.

LaDou J (2004) The asbestos cancer epidemic. *Environ Health Perspect* **112**(3): 285–290.

Levin JL, McLarty JW, Hurst GA, Smith AN, Frank AL (1998) Tyler asbestos workers: mortality experience in a cohort exposed to amosite. Occup Environ Med 55(3): 155–160.

Li L, Sun T-D, Zhang X, Lai R-N, Li X-Y, Fan X-J, Morinaga K (2004) Cohort studies on cancer mortality among workers exposed only to chrysotile asbestos: a meta-analysis. *Biomed Environ Sci* **17**(4): 459–468.

Liddell FD, McDonald AD, McDonald JC (1997) The 1891-1920 birth cohort of Quebec chrysotile miners and millers: development from 1904 and mortality to 1992. *Ann Occup Hyg* **41**(1): 13–36.

Loomis D, Dement JM, Wolf SH, Richardson DB (2009) Lung cancer mortality and fibre exposures among North Carolina asbestos textile workers. Occup Environ Med 66(8): 535–542.

McDonald JC, Liddell FD, Dufresne A, McDonald AD (1993) The 1891-1920 birth cohort of Quebec chrysotile miners and millers: mortality 1976-88. Br J Ind Med 50(12): 1073–1081.

McDonald JC, Liddell FD, Gibbs GW, Eyssen GE, McDonald AD (1980) Dust exposure and mortality in chrysotile mining, 1910-75. *Br J Ind Med* **37**(1): 11–24.

Melkild A, Langård S, Andersen A, Tønnessen JN (1989) Incidence of cancer among welders and other workers in a Norwegian shipyard. Scand J Work Environ Health 15(6): 387–394.

Meurman LO, Pukkala E, Hakama M (1994) Incidence of cancer among anthophyllite asbestos miners in Finland. Occup Environ Med 51(6): 421–425.

Musk AW, de Klerk NH, Reid A, Ambrosini GL, Fritschi L, Olsen NJ, Merler E, Hobbs MST, Berry G (2008) Mortality of former crocidolite (blue asbestos) miners and millers at Wittenoom. Occup Environ Med 65(8): 541–543.

Neuberger M, Kundi M (1990) Individual asbestos exposure: smoking and mortality–a cohort study in the asbestos cement industry. *Br J Ind Med* **47**(9): 615–620.

Newhouse ML, Berry G, Wagner JC (1985) Mortality of factory workers in east London 1933-80. *Br J Ind Med* **42**(1): 4–11.

Offermans NSM, Vermeulen R, Burdoff A, Goldbohm RA, Kerzei AP, Peters S, Kauppinen T, Kromhout H, van den Brandt PA (2014) Occupational asbestos exposure and the risk of oesophageal gastric and colorectal cancer in the prospective Netherlands Cohort Study. *Int J Cancer* **40**: 420.

Ohlson CG, Klaesson B, Hogstedt C (1984) Mortality among asbestos-exposed workers in a railroad workshop. Scand J Work Environ Health 10(5): 283–291.

Pang ZC, Zhang Z, Wang Y, Zhang H (1997) Mortality from a Chinese asbestos plant: overall cancer mortality. Am J Ind Med 32(5): 442-444.

Pesch B, Taeger D, Johnen G, Gross IM, Weber DG, Gube M, Müller-Lux A, Heinze E, Wiethege T, Neumann V, Tannapfel A, Raithel H-J, Brüning T, Kraus T (2010) Cancer mortality in a surveillance cohort of German males formerly exposed to asbestos. *Int J Hyg Environ Health* **213**(1): 44–51.

Peto J, Doll R, Hermon C, Binns W, Clayton R, Goffe T (1985) Relationship of mortality to measures of environmental asbestos pollution in an asbestos textile factory. Ann Occup Hyg 29(3): 305–355.

Piolatto G, Negri E, Vecchia CL, Pira E, Decarli A, Peto J (1990) An update of cancer mortality among chrysotile asbestos miners in Balangero, northern Italy. Br J Ind Med 47(12): 810–814.

Pira E, Pelucchi C, Buffoni L, Palmas A, Turbiglio M, Negri E, Piolatto PG, Vecchia CL (2005) Cancer mortality in a cohort of asbestos textile workers. Br J Cancer 92(3): 580–586.

Pira E, Pelucchi C, Piolatto PG, Negri E, Bilei T, La Vecchia C (2009) Mortality from cancer and other causes in the Balangero cohort of chrysotile asbestos miners. *Occup Environ Med* 66(12): 805–809.

Pira E, Pelucchi C, Piolatto PG, Negri E, Discalzi G, Vecchia CL (2007) First and subsequent asbestos exposures in relation to mesothelioma and lung cancer mortality. *Br J Cancer* 97(9): 1300–1304.

Puntoni R, Merlo F, Borsa L, Reggiardo G, Garrone E, Ceppi M (2001) A historical cohort mortality study among shipyard workers in Genoa, Italy. Am J Ind Med 40(4): 363–370.

Raffn E, Lynge E, Juel K, Korsgaard B (1989) Incidence of cancer and mortality among employees in the asbestos cement industry in Denmark. *Br J Ind Med* 46(2): 90–96.

Reid A, Ambrosini G, de Klerk N, Fritschi L, Musk B (2004) Aerodigestive and gastrointestinal tract cancers and exposure to crocidolite (blue asbestos): incidence and mortality among former crocidolite workers. *Int J Cancer* 111(5): 757–761.

Rubino GF, Piolatto G, Newhouse ML, Scansetti G, Aresini GA, Murray R (1979) Mortality of chrysotile asbestos workers at the Balangero Mine, Northern Italy. *Br J Ind Med* 36(3): 187–194.

Rushton L, Bagga S, Bevan R, Brown TP, Cherrie JW, Holmes P, Fortunato L, Slack R, Van Tongeren M, Young C, Hutchings SJ (2010) Occupation and cancer in Britain. *Br J Cancer* **102**(9): 1428–1437.

Sandén A, Järvholm B (1987) Cancer morbidity in Swedish shipyard workers 1978-1983. *Int Arch Occup Environ Health* **59**(5): 455–462.

- Sandén A, Järvholm B, Larsson S, Thiringer G (1992) The risk of lung cancer and mesothelioma after cessation of asbestos exposure: a prospective cohort study of shipyard workers. *Eur Respir J* 5(3): 281–285.
- Seidman H, Selikoff IJ, Gelb SK (1986) Mortality experience of amosite asbestos factory workers: dose-response relationships 5 to 40 years after onset of short-term work exposure. Am J Ind Med 10(5-6): 479–514.
- Selikoff IJ, Churg J, Hammond EC (1964) Asbestos exposure and neoplasia. JAMA 188: 22-26.
- Selikoff IJ, Hammond EC, Seidman H (1979) Mortality experience of insulation workers in the United States and Canada, 1943–1976. Ann N Y Acad Sci 330: 91–116.
- Selikoff IJ, Seidman H (1991) Asbestos-associated deaths among insulation workers in the United States and Canada, 1967-1987. Ann N Y Acad Sci 643: 1–14.
- Selikoff IJ, Seidman H, Hammond EC (1980) Mortality effects of cigarette smoking among amosite asbestos factory workers. J Natl Cancer Inst 65(3): 507–513.
- Sjodhal K, Jansson C, Bergdahl IA, Adam J, Bofetta P, Lagergren J (2007) Airborne exposures and risk of gastric cancer: a prospective cohort study. *Int J Cancer* **120**: 2013–2018.
- Smailyte G, Kurtinaitis J, Andersen A (2004) Cancer mortality and morbidity among Lithuanian asbestos-cement producing workers. *Scand J Work Environ Health* **30**(1): 64–70.
- Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, Ghissassi FE, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V. W HO International Agency for Research on Cancer Monograph Working Group (2009) A review of human carcinogens–part C: metals, arsenic, dusts, and fibres. *Lancet Oncol* 10(5): 453–454.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15): 2008–2012.
- Sutton AJ, Abams KR, Jones DR, Sheldon TA, Song F (2000) *Methods for Meta-analysis in Medical Research*. John Wiley and Sons: Chichester.
- Szeszenia-Dabrowska N, Urszula W, Szymczak W, Strzelecka A (2002) Mortality study of workers compensated for asbestosis in Poland, 1970-1997. Int Arch Occup Environ Health 15(3): 267–278.

- Szeszenia-Dabrowska N, Wilczynska U, Kaczmarek T, Szymczak W (1991) Cancer mortality among male workers in the Polish rubber industry. *Pol J Occup Med Environ Health* 4(2): 149–157.
- Szeszenia-Dabrowska N, Wilczynska U, Szymczak W (1988a) Mortality among female workers in an asbestos factory in Poland. *Pol J Occup Med* 1(3): 203–212.
- Szeszenia-Dabrowska N, Wilczynska U, Szymczak W (1988b) A mortality study among male workers occupationally exposed to asbestos dust in Poland. *Pol J Occup Med* 1(1): 77–87.
- Szeszenia-Dabrowska N, Wilczynska U, Szymczak W (2000) Mortality of workers at two asbestos-cement plants in Poland. Int Arch Occup Environ Health 13(2): 121–130.
- Tola S, Kalliomäki PL, Pukkala E, Asp S, Korkala ML (1988) Incidence of cancer among welders, platers, machinists, and pipe fitters in shipyards and machine shops. *Br J Ind Med* **45**(4): 209–218.
- Ulvestad B, Kjaerheim K, Martinsen JI, Damberg G, Wannag A, Mowe G, Andersen A (2002) Cancer incidence among workers in the asbestoscement producing industry in Norway. *Scand J Work Environ Health* 28(6): 411–417.
- Ulvestad B, Kjaerheim K, Martinsen JI, Mowe G, Andersen A (2004) Cancer incidence among members of the Norwegian trade union of insulation workers. J Occup Environ Med 46(1): 84–89.
- Viechtbauer W (2010) Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36(3): 1–48.
- Viechtbauer W, Cheung MWL (2010) Outlier and influence diagnostics for meta-analysis. Res Syn Methods 1(2): 112–125.
- Wilczynska U, Szymczak W, Szeszenia-Dabrowska N (2005) Mortality from malignant neoplasms among workers of an asbestos processing plant in Poland: results of prolonged observation. *Int Arch Occup Environ Health* 18(4): 313–326.
- Zhu H, Wang Z (1993) Study of occupational lung cancer in asbestos factories in China. *Br J Ind Med* **50**(11): 1039–1042.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)