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Aim: Hematoporphyrin monomethyl ether (HMME), which consists of equal amounts of isomers HMME-1 and HMME-2, is a novel 
porphyrin-related drug for photodynamic therapy.  This study was aimed to investigate the uptake transporter-mediated selective 
uptake of HMME into the liver and to identify the major uptake transporter isoforms involved.
Methods: Adult SD rats were intravenously injected with a single dose of HMME (5 mg/kg) with or without rifampicin (an inhibitor of 
organic anion transporting polypeptides OATP1B1 and OATP1B3, 25 mg/kg).  Blood samples were collected, and HMME concentrations 
were measured using LC-MS/MS.  Rat hepatocytes, human hepatocytes and HEK293 cells expressing OATP1B1, OATP1B3, or OATP2B1 
were used to investigate the uptake of HMME or individual isomers in vitro.
Results: Co-administration of rifampicin significantly increased the exposure of HMME isomers, and decreased the AUC ratio of 
HMME-1 to HMME-2 from 1.98 to 1.56.  The uptake of HMME-2 into human hepatocytes and the HEK293 cells expressing OATP1B1 
or OATP2B1 in vitro was 2–7 times greater than that of HMME-1, whereas OATP1B3 mediated a higher HMME-1 uptake.  OATP1B1 
exhibited a higher affinity for HMME-2 than for HMME-1 (the Km values were 0.63 and 5.61 μmol/L, respectively), which were similar 
to those in human hepatocytes.  By using telmisartan (a non-specific OATP inhibitor) and rifampicin, OATP2B1 was demonstrated to 
account for <20% of hepatic HMME uptake.
Conclusion: OATP1B1 is the major transporter involved in the rapid hepatic uptake of HMME, and the greater uptake of HMME-2 by 
OATP1B1 may lead to a lower exposure of HMME-2 than HMME-1 in humans.

Keywords: hematoporphyrin monomethyl ether; photodynamic therapy; OATP transporter; hepatic uptake; pharmacokinetics
 
Acta Pharmacologica Sinica (2015) 36: 268–280; doi: 10.1038/aps.2014.104; published online Nov 24 2014

Original Article

Introduction
Hematoporphyrin monomethyl ether (HMME), which 
i s  a  mixture  of  equal  amounts  of  the  two isomers 
8-(1-methoxyethyl)-13-(1-hydroxyethyl)-3,7,12,17-tetramethyl-
21H,23H-porphine-2,18-dipropanoic acid (HMME-1) and 
13-(1-methoxyethyl)-8-(1-hydroxyethyl)-3,7,12,17-tetramethyl-
21H,23H-porphine-2,18-dipropanoic acid (HMME-2) (Figure 
1), is a new porphyrin-related drug developed by Fudan-
Zhangjiang Bio-Pharmaceutical Co Ltd (Shanghai, China).  It 
is used in photodynamic therapy for treating port wine stains 
and is administered by intravenous infusion.  Compared with 
old-generation photosensitizers, such as hematoporphyrin 
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derivatives, HMME has a simpler composition, a light avoid-
ance period of 1 week instead of 1 month, and stronger pho-
todynamic effects against ovarian cancer[1] and hypertrophic 
scar fibroblasts[2].  

Figure 1.  Chemical structures of HMME-1 (A) and HMME-2 (B).
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After a single intravenous injection of 5 mg/kg HMME 
in rats, the tissue concentration of HMME was greatest in 
the liver[3].  After an intravenous administration in rats and 
humans, HMME was rapidly cleared from the circulation and 
was predominantly excreted unchanged in the bile/feces with 
approximately 58% of fecal recovery in rats[3, 4] and 43% in 
humans (unpublished data), which indicates the importance 
of the liver in the systemic elimination of HMME.  The similar 
elimination profiles of HMME in rats and humans indicate 
that rats are appropriate model animals for investigating the 
mechanisms of hepatic elimination of HMME in humans.

A pilot study showed that the systemic exposure of 
HMME-1 was approximately double that of HMME-2, sug-
gesting that HMME undergoes selective disposition in rats 
(unpublished data).  However, HMME was metabolically 
stable when it was incubated with both rat liver microsomes 
(RLM) and human liver microsomes (HLM) in the presence 
of NADPH, suggesting that selective hepatic transport rather 
than metabolism may be responsible for its selective disposi-
tion.  HMME is an amphipathic monoanion in physiological 
conditions (pH 7.4, blood), and the apparent permeability 
coefficients Papp value obtained from Caco-2 monolayer cells 
was approximately 3×10-8 cm/s (unpublished data), implying 
that the uptake of HMME into hepatocytes by passive diffu-
sion could be limited.  Thus, we speculated that active trans-
port processes are involved in hepatic HMME uptake and that 
they cause the difference in the systemic exposure of each iso-
mer in rats, which may also occur in humans.

A variety of uptake transporters expressed on the basolat-
eral membrane of hepatocytes, such as Na+-taurocholate co-
transporting polypeptide (NTCP), organic anion transporting 
polypeptide (rodents: Oatp; humans: OATP) 1B1, OATP1B3, 
OATP2B1, organic anion transporter 2 (rodents: Oat2; humans: 
OAT2), and organic cation transporter 1 (rodents: Oct1; 
humans: OCT1), are responsible for the hepatic uptake of 
various compounds from the systemic circulation.  OATP1B1 
and OATP1B3 are the predominant OATP isoforms expressed 
in the liver, and they are involved in the uptake of multiple 
endogenous and exogenous compounds, including biliru-
bin[5], bosentan[6, 7], and statins[8–10].  Additionally, OATP2B1-
mediated selective scutellarin uptake plays a key role in the 
much lower exposure of scutellarin than that of isoscutellarin 
in humans[11].  

Hence, this study was designed to investigate the trans-
porter-mediated selective uptake of HMME isomers in the 
liver and identify the major transporter isoforms involved in 
this process.  The findings may help predict the clinical drug-
drug interactions (DDI) mediated by OATPs and design the 
clinical OATP DDI study.

Materials and methods
Materials 
HMME (98% purity) was purchased from Chembest Research 
Laboratories Ltd (Shanghai, China).  HMME-1 and HMME-2 
were separated and purified from HMME using a Shimadzu 
LC-6AD semi-preparative liquid chromatography system 

(Kyoto, Japan).  Deuterium-labeled HMME (d3-HMME) was 
synthesized in the Shanghai Institute of Organic Chemistry, 
Chinese Academy of Sciences (Shanghai, China).  Estrone-
3-sulfate (E3S), bromsulphthalein (BSP), rifampicin, telmisar-
tan, dexamethasone, and Hanks’ balanced salt buffer (HBSS, 
pH 7.4) were purchased from Sigma-Aldrich (St Louis, MO, 
USA).  Dulbecco’s modified Eagle’s medium (DMEM), Wil-
liams’ E medium, fetal bovine serum (FBS), L-glutamine, mini-
mum essential medium nonessential amino acids (MEMNAA), 
penicillin G, and streptomycin were purchased from Invitro-
gen (Carlsbad, CA, USA).  ITS+, 24-well or 48-well plates bio-
coated with collagen I or poly-D-lysine were purchased from 
BD Biosciences (San Jose, CA, USA).  The BCA protein assay 
kit was purchased from Beyotime (Jiangsu, China).  HEK293 
cells individually transfected with OATP1B1, OATP1B3, and 
OATP2B1, and vector-control (mock-transfected cells) were 
established at HD Biosciences Co Ltd (Shanghai, China).  
Cryopreserved human hepatocytes were purchased from In 
Vitro Technologies (Baltimore, MD, USA; lots LTG and YJM) 
and from XenoTech LLC (Lenexa, KS, USA; lot HC2-25).  All 
other solvents and regents were of either high-performance 
liquid chromatography (HPLC) or analytical grade.

Animal study
All rodent studies were carried out in accordance with the 
Guidelines for Care and Use of Laboratory Animals approved 
by the Shanghai Institute of Materia Medica, Chinese Acad-
emy of Sciences (Shanghai, China).  The animals were fasted 
for 12 h with free access to water before the experiments.  Male 
Sprague-Dawley rats weighing 250–300 g were randomly 
divided into two groups (n=4 for each group).  In both groups, 
HMME was administered intravenously at a dose of 5 mg/kg.  
In the rifampicin-treated group, rifampicin dissolved in saline 
was intravenously injected into the tail vein at a dose of 25 
mg/kg, 15 min before the administration of HMME.  Rats 
receiving HMME alone were injected with an equivalent vol-
ume of saline.  Blood samples were collected before the dose 
(0 h); 2, 5, 15, and 30 min after the dose; and 1, 2, 4, 6, and 8 h 
after the dose.  Plasma samples were obtained by centrifuga-
tion at 11 000×g for 5 min.  All plasma samples were stored at 
-20 °C until analysis.

Cell culture
OATP1B1-, OATP1B3-, OATP2B1-, and mock-transfected 
HEK293 cells were maintained in DMEM supplemented with 
10% FBS, 2 mmol/L L-glutamine, 100 units/mL penicillin G, 
100 µg/mL streptomycin, and 1% MEMNAA at 37 °C in a 
humidified 5% CO2 atmosphere.  BioCoat poly-D-lysine-
coated 24-well plates were seeded with the cells at a density 
of 2×105 cells/well.  Uptake studies were conducted 2 d after 
seeding.

Uptake studies using OATP-expressing HEK293 cells
Prior to the assay, the cells were rinsed three times with pre-
warmed HBSS (37 °C) and equilibrated in HBSS for 10 min.  
The uptake studies were initiated by the addition of HBSS 
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containing the test compounds, with or without the selected 
inhibitors, and were terminated at the designed time after 
removing the transport buffer.  The cells were washed with 
ice-cold HBSS three times and lysed with deionized water 
(300 µL) by three freeze–thaw cycles.  The protein content of 
the cell lysate was determined using the BCA protein assay kit.  
The concentrations of the test compounds were determined by 
liquid chromatography-tandem mass spectrometry (LC-MS/
MS).

Preparation of freshly isolated rat and cryopreserved human 
hepatocytes
Rat hepatocytes were freshly isolated from male Sprague-
Dawley rats weighing 200–250 g by the two-step collagenase 
perfusion method as described in the literature[12].  Cryopre-
served human hepatocytes were thawed quickly at 37 °C in 
a water bath and treated according to the manufacturer’s 
instructions.  Rat and human hepatocytes were finally sus-
pended in Williams’ E medium supplemented with 5% FBS, 2 
mmol/L L-glutamine, 100 units/mL penicillin G, 100 µg/mL 
streptomycin, 0.1 µmol/L dexamethasone and 1% ITS+.  The 
cell viability as determined by trypan blue exclusion was over 
90%.  Collagen I-coated 24-well plates were seeded with rat 
hepatocytes at a density of 3.5×105 viable cells/well, and col-
lagen I-coated 48-well plates were seeded with human hepato-
cytes at a density of 1.5×105 viable cells/well.  After incubated 
for 4 h at 37 °C under 5% CO2 and 95% humidity, the adherent 
hepatocytes were used for the uptake study.

Uptake of HMME into rat and human hepatocytes
The uptake studies were initiated by the addition of fresh 
HBSS containing HMME or its individual isomers, after the 
cells were rinsed twice and equilibrated in HBSS for 10 min at 
37 or 4 °C.  To screen the transporters involved, HMME uptake 
into the hepatocytes was assessed in the presence of selec-
tive inhibitors (50 µmol/L rifampicin for OATPs/Oatps, 10 
µmol/L ketoprofen for OAT2/Oat2, or 10 µmol/L MPP+ for 
OCT1/Oct1)[13–16] at 37 °C for 10 min.  After the incubation for 
designed time at 37 or 4 °C, the uptake buffer was immediately 
aspirated, and the cells were quickly rinsed three times with 
ice-cold HBSS.  The cells were lysed using 300 µL (rat hepato-
cytes) or 150 µL (human hepatocytes) deionized water by three 
freeze–thaw cycles.  The protein content of the cell lysate was 
determined using the BCA protein assay kit.  The concentra-
tions of the test compounds were determined by LC-MS/MS.

LC-MS/MS analysis
The concentrations of HMME were determined using a Shi-
madzu LC-20AD HPLC system (Kyoto, Japan) and an API4000 
triple quadrupole mass spectrometer (AB Sciex, Concord, 
Ontario, Canada) equipped with a TurboIonSpray ion source.  
Chromatographic separation was achieved on a Zorbax SB-C18 
column (150×4.6 mm id, 5 µm; Agilent, Santa Clara, CA, USA) 
under isocratic conditions.  The mobile phase was 5 mmol/L 
ammonium acetate/methanol/acetonitrile/formic acid 
(20:27:53:0.1, v/v), and the flow rate was 0.6 mL/min.  The col-

umn temperature was 45 °C.  The mass spectrometer was oper-
ated in the positive mode with an ion spray voltage of 4200 V 
and a source temperature of 500 °C.  The nebulizer gas, heater 
gas, collision gas, and curtain gas were set at 50, 50, 4, and 
10 psi, respectively.  The declustering potential and entrance 
potential were maintained at 40 and 61 V, respectively.  The 
mass transitions for multiple reaction monitoring were m/z 
613.3 → m/z 511.3 and 537.3 for HMME, and m/z 616.3 → m/z 
511.3 and 537.3 for d3-HMME (internal standard).  The colli-
sion energy for all transitions was set to 25 eV.

Data analysis
GraphPad Prism (version 6.01, GraphPad Software Inc, San 
Diego, CA, USA) was used to calculate the uptake kinetic 
parameters and the half inhibitory concentration (IC50).  Phoe-
nix WinNonlin (version 6.1, Pharsight Corp, Cary, NC, USA) 
was used to calculate the pharmacokinetic parameters with 
a non-compartmental model.  All data are expressed as the 
mean±standard deviation (SD).

The substrate uptake rate was normalized to the protein 
concentration of the cell lysate, and the transporter-mediated 
uptake was corrected by subtracting the accumulation in the 
mock-transfected HEK293 cells (or hepatic uptake at 4 °C) 
from that in the OATP-expressing HEK293 cells (or hepatic 
uptake at 37 °C).  

Uptake kinetics
For the kinetic parameter calculations, the data were fitted 
to the Michaelis-Menten equation (1) or allosteric sigmoidal 
modeling (2) according to the Eadie-Hofstee plots.

V=Vmax×S/(Km+S)                                   (1)
V=Vmax×Sh/(Km

h+S)                                  (2)
where V (pmol·min-1·mg-1) is the velocity of substrate uptake, 
S (µmol/L) is the substrate concentration, Km (µmol/L) is the 
substrate concentration at half-maximal uptake rate (Vmax), and 
h is the Hill slope.  CLint is Vmax/Km for both models.  

Inhibition study
For the inhibition study, the IC50 values were obtained by plot-
ting the log inhibitor concentration against the normalized 
response according to the following equation (3):

Y=100/[1+10(X−Log IC50)]                                 (3)
where Y is the normalized response expressed as the percent-
age of the net uptake rate in the absence of inhibitors, and X is 
converted to the log inhibitor concentration (µmol/L).  

SPSS software (version 16.0 for Windows, SPSS Inc, Chicago, 
IL, USA) was used to determine significant differences with 
Student’s two-tailed unpaired t tests.  P-values <0.05 were 
regarded as statistically significant.

Results
Effects of rifampicin on the pharmacokinetics of HMME in rats
First, the effects of rifampicin, a specific Oatps inhibitor, on the 
pharmacokinetics of HMME isomers were examined (Figure 2, 
Table 1).  After an intravenous injection of 5 mg/kg of HMME, 
HMME was quickly eliminated with a mean residence time 
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(MRT) of approximately 0.39 h.  HMME-1 and HMME-2 had 
different pharmacokinetic profiles; the plasma concentration 
of HMME-1 was 1.5 to 3.7 times higher than that of HMME-2 
over the entire collection time.  Co-administration of rifampi-
cin increased the maximum concentrations (Cmax) of HMME-1 
and HMME-2 by 13% and 47%, respectively, and significantly 
decreased the Cmax ratio of HMME-1 to HMME-2 from 1.5 to 
1.1.  By contrast, the systemic exposures, expressed as the area 
under the curve (AUC), of HMME-1 and HMME-2 increased 
significantly by 69% and 115%, respectively, resulting in a 
decrease in the AUC ratio of HMME-1 to HMME-2 from 1.98 
to 1.56.  Administration of rifampicin significantly decreased 
the clearances of HMME-1 and HMME-2 by 40% to 50%.  
These data suggest that Oatps-mediated hepatic uptake may 
be involved in the selective elimination of HMME isomers in 
rats.

Uptake of HMME into OATP-transfected HEK293 cells
The uptake properties of HMME in the OATP-expressing 
HEK293 cells were also determined.  We have previously 
validated the function of OATP transporters using typi-
cal substrates (E3S for OATP1B1 and OATP2B1 and BSP for 
OATP1B3) (data not shown).  The uptake of both HMME iso-
mers was significantly greater in the OATP1B1-, OATP1B3-, 

and OATP2B1-expressing HEK293 cells, compared with the 
mock-transfected HEK293 cells (Figure 3).  Administration 
of 200 µmol/L rifampicin completely abolished OATP1B1- 
and OATP1B3-mediated uptake of HMME but did not affect 
OATP2B1-mediated uptake.  Similar results were obtained for 
the inhibitors BSP and cyclosporine (data not shown).  Telmis-
artan (50 µmol/L) almost completely inhibited HMME uptake 
by all three OATP transporters.  Because the uptake-time pro-
file of 2 µmol/L HMME revealed that both HMME isomers 
were rapidly transported into the transporter-expressing cells 
(Figure 4), 30 s was chosen as the uptake time for the subse-
quent concentration-dependent assay.  Instead of the typical 

Figure 2.  Effects of rifampicin (25 mg/kg, intravenous) on the plasma 
concentration-time curves of HMME-1 and HMME-2 in rats after intra
venous administration of 5 mg/kg HMME.  The data are shown as the 
mean±SD of quadruplicates.

Figure 3.  Cellular uptake of HMME-1 (A) and HMME-2 (B) into OATP- or 
mock-transfected HEK293 cells.  The uptake of 2 μmol/L HMME was 
determined in the absence or presence of rifampicin (200 μmol/L) or 
telmisartan (50 μmol/L) for 10 min.  Mean±SD.  n=3.  bP<0.05, cP<0.01 
versus mock or control values.

Table 1.  Pharmacokinetic analysis of a single intravenous dose of HMME (5 mg/kg) in rats pretreated with vehicle or 25 mg/kg rifampicin.  Data are 
shown as the mean±SD.  n=3.  bP<0.05, cP<0.01 versus HMME-1 values.  eP<0.05, fP<0.01 versus control values.

                                                                                          Control		                                                                           Rifampicin

	                                 HMME-1	                  HMME-2	                    HMME		   HMME-1                        HMME-2	    HMME
 
AUC0–8 h (h·µg/mL)	  7.16±1.42	 3.61±0.45b	 10.7±1.9	 12.1±1.9e 	 7.77±1.26f	 19.9±3.1f

AUC0–∞ (h·µg/mL)	  7.19±1.44	 3.62±0.46b	 10.8±1.9	 12.2±1.8e	 7.82±1.25f	  20.1±3.0f

Cmax (µg/mL)	 32.0±3.4	 21.5±2.5b	 53.6±5.9	 36.1±4.4	 31.6±5.1e	  67.7±9.4
t1/2 (h)	 1.72±0.39	 1.48±0.31	 1.70±0.30	 2.39±0.52	 1.81±0.47	 2.34±0.52
Vz (L/kg)	 0.86±0.04	 1.47±0.15c	 1.13±0.07	 0.73±0.27	 0.84±0.18f	 0.88±0.35
CL (L·h-1·kg-1)	 0.36±0.07	 0.70±0.09c	 0.47±0.08	 0.21±0.03e	 0.33±0.06f	 0.25±0.04f

MRT (h)	 0.39±0.07	 0.36±0.03	 0.39±0.08	 0.60±0.10e	 0.52±0.05f	 0.58±0.09e
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Michaelis–Menten curve, OATP1B1- and OATP2B1-mediated 
HMME-1 uptake displayed a sigmoidal autoactivation profile, 
and OATP1B3-mediated HMME-1 uptake and OATP1B1-
mediated HMME-2 uptake exhibited biphasic kinetics (Figure 
5A and 5B).  The Km and Vmax values of HMME-1 and HMME-2 
are summarized in Table 2.  OATP1B1 and OATP1B3 exhib-
ited greater affinities for HMME-2 (Km values of 0.63 and 0.58 
µmol/L, respectively) than for HMME-1 (Km values of 5.61 
and 1.51 µmol/L, respectively), whereas OATP2B1 exhibited 

similar affinities towards HMME-1 and HMME-2 (Km values 
of 1.48 and 1.92 µmol/L, respectively).  When HEK293 cells 
were exposed to HMME over a concentration range of 0.05–10 
µmol/L, HMME-2 uptake was approximately 2.3 to 6.6 times 
greater than that of HMME-1 in the OATP1B1- and OATP2B1-
expressing HEK293 cells.  However, OATP1B3-mediated 
HMME-1 uptake was 1.5 times greater than that of HMME-2, 
when the concentration of HMME was greater than 2 µmol/L 
(Figure 5C).

Uptake of HMME into isolated rat hepatocytes
The uptake of HMME into isolated rat hepatocytes was time- 
and temperature-dependent.  The uptake of both isomers at 
37 °C was 3 to 7 times greater than that at 4 °C, indicating that 
active transporters are involved in HMME uptake into rat 
hepatocytes (Figure 6A and 6B).  The uptake–time profiles of 
both HMME isomers exhibited good linearity for 10 min; how-
ever, the transporter-mediated uptake of HMME-2 was greater 
than that of HMME-1 for incubation time up to 2 min (Figure 
6C).  Because HMME was rapidly cleared from the circulation 
in rats, an incubation time of 30 s was used for further kinetic 
studies.  The transporters involved in HMME uptake into rat 
hepatocytes were studied over 10 min using selective trans-
porter inhibitors at 37 °C (Figure 6D).  The uptake of HMME-1 
and HMME-2 into rat hepatocytes was decreased by 82.0% 
and 81.8%, respectively, in the presence of 50 µmol/L rifam-
picin (Oatps inhibitor).  Ketoprofen (Oat2 inhibitor) and MPP+ 
(Oct1 inhibitor) inhibited the uptake of HMME-1 by 28.4% and 
28.6%, respectively, and that of HMME-2 by 43.8% and 47.1%, 
respectively.

The concentration-dependent uptake of HMME or a single 
isomer into rat hepatocytes was determined over a concentra-
tion range of 0.1–15 µmol/L (Figure 7, Table 2).  The Eadie–
Hofstee plots for HMME-1 and HMME-2 exhibited sigmoidal 
and biphasic kinetic profiles, respectively.  The Km and Vmax 
values for HMME-1 were 0.63±0.04 µmol/L and 64.8±2.2 
pmol·min-1·mg-1, respectively, calculated using the allosteric 
sigmoidal equation, and the same values for HMME-2 were 
3.77±0.85 µmol/L and 269±33 pmol·min-1·mg-1, respectively, 
calculated using the Michaelis–Menten equation.  In rat hepa-

Table 2.  Kinetic parameters for the uptake of HMME isomers into hepatocytes and hOATP-expressing HEK293 cells.  Data are shown as the mean±SD.  
n=3. 

Compound           
Transporter/

	                           Kinetic model
	                             Km 	                             Vmax	                    Vmax/Km ratio	          

h                             hepatocytes                                                                                  (µmol/L)	  (pmol·min-1·mg-1)	 (µL·min-1·mg-1)
 
HMME-1	 Rat hepatocytes	 Allosteric sigmoidal	 0.63±0.04	 64.8±2.2	  103±6	 2.74±0.49
	 Human hepatocytes	 Michaelis-Menten	 4.45±1.05	 50.3±4.6	 11.3±1.8	         –
	 OATP1B1	 Allosteric sigmoidal	 5.61±0.59	  160±9.5	 28.6±1.6	 1.73±0.16
	 OATP1B3	 Michaelis-Menten	 1.51±0.31	 37.0±3.5	 24.5±2.9	         –
	 OATP2B1	 Allosteric sigmoidal	 1.48±0.12	 61.4±2.2	 41.4±2.6	 1.48±0.22
HMME-2	 Rat hepatocytes	 Michaelis-Menten	 3.77±0.85	  269±33	 71.4±7.4	         –
	 Human hepatocytes	 Michaelis-Menten	 0.98±0.08	 62.8±1.6	 63.8±4.3	         –
	 OATP1B1	 Michaelis-Menten	 0.63±0.11	 72.6±4.5	  115±14.1	         –
	 OATP1B3	 Michaelis-Menten	 0.58±0.09	 23.4±1.0	 40.1±5.1	         –
	 OATP2B1	 Michaelis-Menten	 1.92±0.23	  178±6.0	  92.3±8.9	         –

Figure 4.  Uptake-time profiles of HMME-1 (A) and HMME-2 (B) into OATP- 
and mock-transfected HEK293 cells.  The substrate concentration of 
HMME was 2 μmol/L.  Mean±SD.  n=3.  OATP-mediated HMME-1 and 
HMME-2 uptake was significantly (P<0.05) greater than that of mock-
mediated uptake.  
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tocytes exposed to HMME, the accumulation of HMME-2 was 
approximately 1.5 times greater than that of HMME-1 over a 
concentration range of 1–15 µmol/L of HMME.

Uptake of HMME into human cryopreserved hepatocytes
HMME was taken up by human hepatocytes (lot LTG) in a 
time- and temperature-dependent manner (Figure 8A).  The 
uptake of both isomers at 37 °C was 2.7–3.9 times higher than 
that at 4 °C, indicating that active transporters are involved in 
HMME uptake into human hepatocytes.  The identity of the 
transporters involved in HMME human hepatic uptake was 
investigated using selective transporter inhibitors (Figure 8B).  
Ketoprofen (OAT2 inhibitor) and MPP+ (OCT1 inhibitor) did 
not affect the uptake rates of HMME-1 and HMME-2, but the 
uptake of HMME-1 and HMME-2 was significantly decreased 
by approximately 43.8% and 46.4%, respectively, in the pres-
ence of 50 µmol/L rifampicin (OATPs inhibitor).

Uptake kinetic studies of individual HMME isomers into 
human hepatocytes (lot YJM) were conducted over a concen-
tration range of 0.1–15 µmol/L.  The Eadie-Hofstee plots for 
HMME-1 and HMME-2 contained one saturable component 
(Figure 9).  The Km and Vmax values of the single isomers were 

4.45±1.05 µmol/L and 50.3±4.6 pmol·min-1·mg-1, respec-
tively, for HMME-1 and were 0.98±0.08 µmol/L and 62.8±1.6 
pmol·min-1·mg-1, respectively, for HMME-2 (Table 2).  The 
uptake of HMME-2 into hepatocytes (lot YJM) was approxi-
mately 3.9 times greater than that of HMME-1 over a concen-
tration range of 0.2–15 µmol/L of HMME, and in addition, 
the uptake of HMME-2 was significantly greater than that of 
HMME-1 in hepatocytes from the lots LTG and HC2-25 (data 
not shown).

Inhibitory effects of rifampicin and telmisartan on HMME uptake
The inhibitory effects of rifampicin and telmisartan on the 
uptake of HMME-1 and HMME-2 were investigated in human 
hepatocytes and OATP-expressing HEK293 cells.  Telmisartan 
and rifampicin inhibited OATP1B1- and OATP1B3-mediated 
HMME uptake in a concentration-dependent manner with 
IC50 values between 1.18 to 32.8 µmol/L (Figure 10 and Table 
3).  Telmisartan, rather than rifampicin, strongly inhibited 
OATP2B1-mediated uptake of 1 µmol/L HMME with IC50 val-
ues of approximately 1.79 and 3.10 µmol/L for HMME-1 and 
HMME-2, respectively.  In human hepatocytes, 50 µmol/L 
telmisartan inhibited approximately 75.7% of the HMME-1 

Figure 6.  Uptake of HMME-1 and HMME-2 into rat hepatocytes.  The concentration of HMME was 0.5 μmol/L.  (A, B) The uptake of HMME-1 (A) and 
HMME-2 (B) into rat hepatocytes were determined for various times at 37 °C (squares) and 4 °C (circles).  (C) The net uptake of HMME-1 and HMME-2 
were calculated by subtracting the uptake of HMME isomers at 4 °C from that of 37 °C.  (D) Inhibitory effects of 50 μmol/L rifampicin (Oatps inhibitor), 
10 μmol/L ketoprofen (Oat2 inhibitor), and 10 μmol/L MPP+ (Oct1 inhibitor) on the uptake of HMME-1 and HMME-2 at 37 °C were investigated.  
Mean±SD.  n=3.  bP<0.05, cP<0.01 versus control values.
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uptake and 85.3% of the HMME-2 uptake.  When the inhibi-
tory effect of telmisartan on OATP-mediated HMME uptake 
in human hepatocytes was taken as 100%, rifampicin was 
observed to inhibit HMME-1 and HMME-2 uptake by 79.1% 

and 83.7%, respectively.

Discussion
In this study, we demonstrated that Oatps-mediated rapid 
hepatic uptake is responsible for the rapid clearance of HMME 
from the circulation and for its selective pharmacokinetics in 
rats.  Our study additionally showed that the hepatic uptake 
of HMME in humans is predominately mediated by OATP1B1 
and that the greater uptake of HMME-2 by OATP1B1 may lead 
to a lower exposure of HMME-2 than HMME-1 in humans.

The preliminary studies showed that HMME was quickly 
eliminated unchanged through the bile/feces in rats and 
humans after an intravenous administration[3, 4], indicating 
that the liver is critical to HMME disposition.  In the current 
study, the pharmacokinetic behaviors were observed to be 
different for the two HMME isomers.  The systemic exposure 
of HMME-1 was double that of HMME-2 in rats (Table 1).  To 
investigate the mechanisms involved in the hepatobiliary dis-
position of HMME, freshly isolated rat hepatocytes were used 
to evaluate the transport properties of HMME.  Both HMME 
isomers were transported into rat hepatocytes in a tempera-
ture- and time-dependent manner (Figure 6).  The uptake of 

Figure 7.  Concentration-dependent uptake of HMME-1 (A), HMME-2 (B), 
and HMME (C) into rat hepatocytes.  The uptake time was 30 s.  (A, B) 
The concentration dependence of the uptake of a single HMME isomer 
was represented by a nonlinear fitting curve and Eadie-Hofstee plots.  
(C) The accumulation of HMME-1 (circles) and HMME-2 (squares) in the 
hepatocytes were determined by exposing HMME to cells.  Transporter-
mediated HMME accumulation was corrected by subtracting the 
nonspecific accumulation in rat hepatocytes at 4 °C from that at 37 °C.  
Mean±SD.  n=3.  bP<0.05, cP<0.01 versus HMME-1 values. 

Figure 8.  Uptake of HMME-1 and HMME-2 into adherent human hepato
cytes (Lot LTG) in the absence or presence of transporter inhibitors.  (A) 
The hepatic uptake of 2 μmol/L HMME were determined for 1 and 5 min 
at 37 °C and 4 °C.  (B) Inhibitory effects of rifampicin (50 μmol/L, OATPs 
inhibitor), ketoprofen (10 μmol/L, OAT2 inhibitor), and MPP+ (10 μmol/L, 
OCT1 inhibitor) on the hepatic uptake of 2 μmol/L HMME was investigated 
at 37 °C for 10 min.  Mean±SD.  n=3.  bP<0.05, cP<0.01 versus control 
values.  
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HMME-2 was 1.5 times greater than that of HMME-1 over an 
HMME concentration range of 1–15 µmol/L, which covers the 
maximum free concentration (approximately 5.8–8.6 µmol/L) 
of HMME in rats and humans[3, 4].  Consequently, a greater 

uptake of HMME-2 in rat hepatocytes should be observed 
immediately after a dose of HMME, and this may explain 
why the systemic exposure of HMME-2 is less than that of 
HMME-1.  When HMME was co-administered with rifampicin 
(Oatps inhibitor) in rats, the Cmax and AUC values for the iso-
mers increased by different amounts as the Cmax and the AUC 
ratios of HMME-1 to HMME-2 decreased.  This indicates that 
Oatps play an important role in the selective hepatic elimina-
tion of HMME isomers.  Oat2 and Oct1 may also be involved 
in the hepatic uptake of HMME in rats (Figure 6D).

Although Oatps and OATPs have overlapping substrate 
profiles, the differences in the expression and function of 
Oatps/OATPs may lead to different substrate disposition in 
rats and humans.  Therefore, to investigate the hepatic dis-
position of HMME in humans, the transporters involved in 
HMME hepatic uptake were determined.  Chemical inhibition 
studies in human hepatocytes and OATP-expressing HEK293 
cells demonstrated that HMME is a substrate of OATP1B1, 
OATP1B3, and OATP2B1, but not of OAT2 or OCT1 (Figures 3 
and 8B).  Consequently, it was necessary to identify the major 
OATP isoforms involved in hepatic HMME uptake.  Inter-
estingly, OATPs showed different uptake characteristics for 
HMME-1 and HMME-2.  HMME-2 uptake was approximately 
2.3–6.9 times greater than that of HMME-1 in human hepato-
cytes and in OATP1B1- or OATP2B1-expressing HEK293 cells 
over an HMME concentration range of 0.2–15 µmol/L.  How-
ever, OATP1B3-mediated HMME-1 uptake was approximately 
1.5 times greater than that of HMME-2 over an HMME con-
centration range of 2–10 µmol/L.  Considering the disposition 
of HMME-1 and HMME-2 in human hepatocytes and OATP-
expressing HEK293 cells, OATP1B1 and OATP2B1 are proba-
bly the major transporters involved in HMME uptake.  The Km 
values for OATP1B1-mediated HMME-1 and HMME-2 uptake 
were 5.61 and 0.63 µmol/L, respectively, which were compara-
ble to the Km values in human hepatocytes.  Unlike OATP1B1, 
OATP2B1 exhibited similar affinities towards HMME-1 and 
HMME-2 (Km values of 1.48 and 1.92 µmol/L, respectively), 
which suggests an indecisive role of OATP2B1 in the selective 
hepatic uptake of HMME.  In addition, it was reported that the 
hepatic expression level of OATP2B1 is much lower than that 
of OATP1B1 and OATP1B3[17, 18].  Therefore, the transporter 
uptake and expression data suggest that OATP1B1 is most 
likely the predominant OATP isoform involved in HMME 
uptake into human hepatocytes.

OATP1B1 was identified as the major transporter for 
pitavastatin, according to the relative activity factor and 
relative expression factor[9].  Telmisartan was identified as 
a selective substrate of OATP1B3, and it was characterized 
using E3S as an OATP1B1-selective inhibitor[19].  Instead of 
the approaches estimating the relative contributions of trans-
porters listed above, we used a non-specific OATP inhibitor 
and a non-OATP2B1 inhibitor to estimate the contribution 
of OATP2B1 to the HMME hepatic uptake.  Rifampicin is 
a well-known inhibitor that inhibits OATPs in the order 
OATP1B3>OATP1B1>OATP2B1[14].  In our experiments, rifam-
picin inhibited OATP1B1- and OATP1B3-mediated HMME 

Figure 9.  Concentration-dependent uptake of HMME-1 (A), HMME-2 (B), 
and HMME (C) into human hepatocytes.  The uptake time was 1 min.  
(A, B) The concentration dependence of the uptake of a single HMME 
isomer was represented by a nonlinear fitting curve and Eadie–Hofstee 
plots.  (C) The accumulation of HMME-1 (circles) and HMME-2 (squares) 
in the hepatocytes were determined by exposing HMME to hepatocytes.  
Transporter-mediated HMME accumulation was corrected by subtracting 
the nonspecific accumulation in human hepatocytes at 4 °C from that at 
37 °C.  Mean±SD.  n=3.  bP<0.05, cP<0.01 versus HMME-1 values. 
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uptake, but hardly inhibited OATP2B1.  It was hypothesized 
that only when two drugs share the same binding site on 
OATP2B1 could DDI be observed, because there were multiple 
binding sites on OATP2B1[20].  Therefore, the lack of inhibi-
tory effects of rifampicin on the OATP2B1-mediated HMME 
uptake may be due to the different binding sites of rifampicin 
and HMME on OATP2B1.  We also showed that telmisartan 
is a non-specific potent inhibitor for OATP1B1, OATP1B3, 
and OATP2B1 with stronger inhibitory effects than rifampi-
cin.  By comparing the different inhibitory effects of telmis-
artan and rifampicin on hepatic HMME uptake, we showed 
that OATP2B1 accounts for <20% of OATP-mediated HMME 
uptake into human hepatocytes (Table 3).  We confirmed that 

OATP1B1, rather than OATP2B1, is the major transporter 
involved in hepatic HMME uptake, which is consistent with 
our hypothesis.  Thus, the greater uptake of HMME-2 medi-
ated by OATP1B1 could potentially lead to a lower systemic 
exposure of HMME-2, compared with HMME-1, in humans.

The rapid hepatic uptake of HMME facilitated the clear-
ance of HMME from the circulation, which may reduce the 
risk of skin phototoxicity.  Multiple genetic polymorphisms 
of OATP1B1 have been identified, and these polymorphisms 
may influence the pharmacokinetics of its substrates[21].  A 
common single nucleotide polymorphism, c.521T>C, which 
has a high frequency of approximately 12% in East Asians, 
decreases the hepatic expression of OATP1B1 and attenuates 

Figure 10.  Inhibitory effects of rifampicin (left panel) and telmisartan (right panel) on the uptake of HMME mediated by OATP1B1 (A), OATP1B3 (B), and 
OATP2B1 (C).  The HMME concentration was 1 μmol/L, and the uptake time was 30 s.  Transporter-mediated HMME accumulation was corrected by 
subtracting the nonspecific accumulation in the mock-transfected HEK293 cells from that in the OATP-expressing HEK293 cells.  Mean±SD.  n=3.
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its transport activity for E3S and statins[22].  Compared with 
wild-type OATP1B1, c.521T>C was associated with increased 
systemic exposure to multiple drugs, including oral pravas-
tatin[23, 24], fexofenadine[25], and lopinavir[26, 27].  In addition, the 
co-administration of OATP1B1 inhibitors may affect the phar-
macokinetics of its substrates.  For example, a single dose of 
rifampicin increased the AUC of glyburide by 225% and cyclo-
sporine increased that of rosuvastatin by 710%[28, 29].  Therefore, 
when the activity of OATP1B1 is impaired by genetic variation 
or co-administered inhibitors, subjects with lower OATP1B1 
activity may have higher systemic exposure and a lower 
hepatic clearance of HMME, followed by an increased risk of 
skin phototoxicity.  However, as a compensatory mechanism, 
OATP1B3 and OATP2B1 may transport HMME, promot-
ing the clearance of HMME and alleviating the risk of skin 
phototoxicity.  In this case, the hepatic disposition of HMME 
isomers could be altered by the different contributions of the 
transporters involved.  It is noteworthy that OATP-mediated 
drug-drug interactions between telmisartan and HMME in 
clinic would be limited, as the free Cmax values of telmisartan 
(approximately 0.028 µmol/L) was much lower than its IC50 

values for the OATP transporters[19, 30].
It has been accepted that breast cancer resistance protein 

(BCRP, ABCG2) is involved in the efflux of porphyrins from 
cells[31–34].  However, little is known about the involvement of 
uptake transporters in the in vivo disposition of porphyrins.  
Considering the poor passive diffusion of porphyrins, uptake 
transporters are most likely involved in the uptake of por-
phyrins from the circulation.  Intestinal heme carrier protein 
1 (SLC46A1), a member of the major facilitator superfamily, 
mediates the uptake of heme from plasma to the duodenum[35]; 
however, there is no evidence that this protein is involved in 
the hepatic uptake of porphyrins.  A patient with variegate 
porphyria, which is characterized by elevated levels of circu-
lating porphyrins, showed decreased elimination of indocya-
nine green and BSP, typical substrates for OATPs[5, 36].  Por-
phyrins, such as hematoporphyrin and coporphyrin, with side 
chains that are negatively charged under physical conditions 
(pH 7.4) are potent inhibitors for OATP1B1-mediated estradiol 

17β-D-glucuronide uptake[37].  The studies listed above sug-
gest that porphyrins may be substrates of OATP1B1.  HMME 
contains propionic acid side chains, which is similar to hema-
toporphyrin.  In this study, we demonstrated that HMME is a 
substrate of OATP1B1, OATP1B3, and OATP2B1.  Our work 
provides good evidence for the involvement of OATPs in the 
hepatic uptake of certain porphyrins with charged acidic side 
chains.  However, OATP-mediated transport of porphyrins 
may be affected by several factors, including the dimerization 
equilibrium constant, presence of multicharged ions, and the 
bulky structure of the porphyrin[37].  Thereby, the question of 
whether OATPs are involved in porphyrin uptake in hepa-
tocytes should be further investigated in OATP-expressing 
systems.  

Our previous study revealed that most of the HMME was 
recovered in rat bile within 2 h of administering the dose, indi-
cating that canalicular efflux transporters play a vital role in 
HMME excretion to bile.  BCRP expressed on the apical mem-
brane of hepatocytes contributed to the efflux of porphyrins to 
bile and maintained the intracellular porphyrin homeostasis[33].  
The polymorphisms of ABCG2, which are deficient in por-
phyrins transport, may be related to porphyria[32].  However, 
P-glycoprotein (P-gp) has not been reported to be involved in 
porphyrins transport yet.  In future studies, we will identify 
whether P-gp and BCRP are involved in HMME efflux into 
bile to fully describe the hepatobiliary elimination of HMME 
in vivo.  

In summary, this study showed that OATP1B1 is the major 
OATP isoform involved in the rapid hepatic uptake of HMME 
and that greater uptake of HMME-2 mediated by OATP1B1 
may reduce the systemic exposure of HMME-2, compared 
with that of HMME-1 in humans.  Our findings suggest that 
OATP1B1-related polymorphisms or drug–drug interactions 
may affect the pharmacokinetics of HMME isomers.  In addi-
tion, our results extend the understanding of the mechanisms 
of porphyrins uptake into hepatocytes.  
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