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Bio-inspired flexible fiber brushes that keep liquids
in a controlled manner by closing their ends

Tetsuya Yamamoto1,3, Qing'an Meng2, Qianbin Wang2, Huan Liu2, Lei Jiang2,4 and Masao Doi1

When brushes of flexible fibers are removed from liquid baths, these brushes sometimes show unwanted droplets at their ends,

depending on the length, rigidity and shape of their fibers. Capillary forces arising from the varying cross-sections of conical fiber

tips have been thought to eliminate the droplets. However, these forces may not operate with water, which fills the entire space

between the fibers of a brush. Here, we theoretically show that brushes eliminate unwanted droplets with a physical mechanism

that is significantly different from a single conical fiber by ‘closing’ their ends. We analyze the hydrostatics of water in a brush

when it is removed from a bath, and we identify the condition under which the end of the brush is closed, emphasizing the roles

played by the elastic deformation of the flexible fibers owing to interfacial forces. Moreover, this theory predicts that the volume

of water that is captured by brushes is a non-monotonic function of the length of their fibers because the fibers show excluded

volume interactions when their ends are ‘closed’. This theory may guide the design of liquid-transfer devices that can retain

liquids in a controlled manner.
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INTRODUCTION

Inspired by biological systems, liquid-transfer systems that are made
of flexible fibers and/or plates have been designed in recent
experiments.1–4 In many cases, these devices are dipped in liquid
baths and are then removed to keep liquids in the devices, just like
Chinese calligraphic brushes, which are traditional writing and
painting tools in East Asia. The fibers of Chinese brushes are
cylindrical, except for their conical ends. Without the conical fiber
ends, Chinese brushes often show droplets at the ends of the brushes
after they are removed from ink baths, where these remnant droplets
may drop accidentally and leave stains on surfaces.1 The conical ends
of the fibers thus have an important role in controlling liquids within
Chinese brushes. Understanding the physical principle behind the
hydrostatics of liquids in Chinese brushes may guide the design of
liquid-transfer devices.
The stability of a liquid droplet on one fiber (or two) has been

studied extensively.1,2,5–7 A droplet on a vertically aligned conical fiber
moves to an equilibrium position, where gravitational forces (which
tend to shift droplets downward) and capillary forces (which tend to
shift droplets upward, where the curvature of the cross-section of the
fiber is smaller) balance.1,5 This mechanical balance has been thought
to be the physical mechanism involved in the ability of Chinese
brushes with conical fiber ends to keep liquids without remnant

droplets.1 However, in contrast to a droplet on a fiber, liquids in
Chinese brushes fill the entire space between their fibers, and thus, the
capillary forces arising from the varying cross-sections of the conical
fiber ends do not operate because in such cases, the surface energy at
the fiber–liquid interface is constant.
In general, when a Chinese brush is removed from a liquid bath,

the liquid in the brush is still connected with the liquid in the bath via
a capillary bridge because separating them requires a relatively large
surface energy. When the capillary bridge shows instability, a part of
the liquid in the bridge may stay at the end of the brush as a remnant
droplet. The area of the end of the brush, including the cross-sections
of the fiber ends and the space between the fibers, is a key parameter
that determines the volume of the remnant droplet; the conical
shapes of the fibers eliminate only the cross-sectional area of the fiber
ends. Flexible fibers and plates at interfaces show elastic deformations
owing to hydrostatic pressures and capillary forces.3,4,7–12 With
sufficiently large hydrostatic pressures and/or capillary forces, the
outmost fibers of a Chinese brush (which are at the interface between
the ambient and the water) are bent toward the interior of the
brush until the ends of these fibers touch at the end of the brush.
Because the space between the fibers vanishes at the closed ends of
brushes, closing the ends of brushes may eliminate the remnant
droplets.
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With this mechanism, the volume of remnant droplets is limited by
the elastic deformation of the outmost fibers of Chinese brushes. To
highlight the roles played by the outmost fibers, we here use a model
brush, where flexible fibers are end-grafted only to the edge of a disk-
shaped substrate. This structure is inspired by the fact that the seeds of
dandelion show shapes that are analogous to Chinese calligraphic
brushes when they are wetted by rain.3 The liquid-transfer systems of
such structures have been demonstrated in recent research.3 Here we
theoretically predict the shapes and volume of water that is captured
by these model brushes when they are slowly removed from baths.
Our theory predicts that the ends of model brushes are closed

before they are removed to the meniscus in cases in which the fibers of
these brushes are longer than a critical length. The closed model
brushes do not show remnant droplets at their ends because there is
no surface-energy cost by separating the brushes from baths at their
closed ends (where the area of the cross-section is zero). Moreover,
this theory predicts that the volume of water that is captured by model
brushes is a non-monotonic function of the length of fibers, where this
function has one peak in the open state and another peak in the closed
state. The second peak results from reaction forces owing to the
excluded volume interactions between the fibers of closed brushes.
Our results imply that closing the ends of Chinese brushes significantly
affects the hydrostatic properties of these brushes. This theory may
thus guide the design of liquid-transfer devices made of flexible fibers
that can retain liquids in a controlled manner.

MATERIALS AND METHODS

Model brush
We treat a model brush, where flexible hydrophilic fibers are end-grafted to the
edge of a disk-shaped substrate in the normal to the substrate surface with
equal spacing; see Figure 1. When a model brush is dipped in a water bath and
then slowly removed in the vertical direction, the region enclosed by the fibers
of the brush is filled with water.3 Because the fibers of the model brush are

hydrophilic, these fibers are right beneath the surface of the water to minimize
the elastic energy of these fibers, and the entire length of the fibers is wetted; the
fibers are bent following the shape of the ambient–water interface.
In a macroscopic treatment, the shape of a model brush that is composed of

many fibers is represented by the axially symmetric envelop of the ambient–
water interface; see Supplementary Information S1. With this treatment, the
shapes of the fibers are represented by positional vectors that have the form
r!ðz;fÞ ¼ ðrðzÞ cosf; rðzÞ sinf; zÞ, where ρ(z) is the distance between the
ambient–water interface and the central axis of the brush, z is the coordinate in
the normal to the substrate surface and ϕ is the azimuthal angle; see Figure 1.
Because hydrostatic pressures and capillary forces are applied to the fibers at the
ambient–water interface (where these forces are opposed by the elastic forces of
the fibers), the distance ρ(z) is derived using the force-balance equation that has
the form

DP � r0gz þ
g

rðzÞ þ kfibsðzÞr0000ðzÞ ¼ 0; ð1Þ

where the first and second terms are the difference between the ambient
pressure and the hydrostatic pressures of water in the brush, the third term is
capillary forces, and the fourth term is the elastic forces of fibers per unit area
(see Supplementary Informations S1 and S2 for physical and formal deriva-
tions). Equation (1) is effective for the region of fibers already removed from
baths, zoh. We used two approximations to derive equation (1): (i) gradient
ρ'(z) (~d/L) is smaller than unity everywhere and (ii) curvature ρ''(z) ( ~ d/L2)
in the meridian direction is smaller than curvature ρ−1(z) (~1/d) in the radial
direction; see Supplementary Information S2. ΔP (≡Pex−Pin) is the difference
between ambient pressure Pex and hydrostatic pressures Pin at z= 0. When the
end of the brush is in the bath, the pressure difference is ρ0gh, where ρ0 is the
density of water, g is the gravitational acceleration and h is the brush height,
which is defined by the distance between the brush substrate and the bath
surface; see Figure 1. γ is the surface tension. kfib is the bending rigidity of
each fiber and ρ''''(z) is the fourth derivative of ρ(z) (with respect to the
coordinate z). σ(z) is the local number density of fibers (per unit area of the
ambient–water interface) and has the form

sðzÞ ¼ N fib

2prðzÞ; ð2Þ

where Nfib is the number of fibers that are end-grafted to the substrate. The
form of equation (1) is analogous to the shape equation of lipid
membranes.13–15 The unique feature of equation (1) is that the (effective)
local bending stiffness kfibσ(z) per unit area increases as distance ρ(z) between
the surface and the central axis decreases; see equation (2). This is because the
local number density of fibers increases as distance ρ(z) decreases. The general
solutions of equation (1) are expressed using hypergeometric functions; see
Supplementary Information S3.
Forces are not applied to the region of fibers that are still in the bath, z4h;

thus, the shape of this region is derived by the force-balance equation that has
the form ρ''''(z)= 0. Distance ρ(z) and its first, second and third derivatives are
connected continuously at z= h. We neglect capillary rises along the sides of
model brushes in the calculations of Figure 2a because we primarily treat
situations in which model brushes are fully removed from bath surfaces, h4L.
We derive the shape, ρ(z), of a model brush by enforcing four boundary

conditions in the general solution of equation (1). Two of the boundary
conditions are ρ(0)= d and ρ'(0)= 0 for all cases (except for the calculations of
Figure 4c; see the ‘Comparison with experiments’ section below). The other
two boundary conditions depend on given situations and indeed define the
states of model brushes: In the ‘open’ state, the radius of the end of the brush is
not zero, and torques are not applied to the ends of the fibers, ρ''(L)= 0. The
radius ρ(L) is determined by forces that are applied to the ends of the fibers. In
cases where the ends of the fibers are in a bath, forces are not applied to the
ends of the fibers, ρ'''(L)= 0. Otherwise, traction forces owing to the surface
tension of the free ambient–water interfaces (at the open ends or capillary
bridges) are applied to the ends of the fibers, and thus, the boundary condition
reads kfib Nfib ρ'''(L)− 2πρ(L)γ sin θc= 0, where θc is the angle between the
direction of the traction forces and the brush central axis. In the ‘closed’
(touch) state, the radius of the end of the brush is zero, ρ(L)= 0, and torques
are not applied to the ends of the fibers, ρ''(L)= 0. In the ‘closed’ (parallel)

z

ρ

hρ(z)

Pex

Pex Pin

ρL

d

Figure 1 We treat a model brush in which flexible hydrophilic fibers are
end-grafted to the edge of a disk-shaped substrate with equal spacing. When
the model brush is dipped in a water bath and then slowly removed, water
fills the region enclosed by the fibers. We use the axial coordinate system,
where z is the distance from the substrate, and ρ(z) is the distance from the
central axis. Height h of the brushes is defined by the distance between the
substrates and the level of the unperturbed surface of the water in the bath
far away from the brush.
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state, the radius of the end of the brush is zero, ρ(zcon)= 0, and the tangent of
the ends of the fibers is parallel to the central axis, ρ'(zcon)= 0, where zcon is the
minimum of the z-coordinate of the region, at which distance ρ(z) is zero.
Boundary condition ρ(L)= 0 implies that reaction forces kfibρ'''(L) owing to the
excluded volume interactions between fibers are not zero in the closed state.16

Capillary bridges
The shape of the ambient–water interface of a capillary bridge is represented by
a positional vector that has the form r!cðz; fÞ ¼ ðrcðzÞ cosf; rcðzÞ sinf; zÞ,
where ρc(z) is the distance between the central axis and the ambient–water
interface. Distance ρc(z) is derived by using the Laplace equation that has
the form

r0gðh� zÞ þ g
1

rcðzÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rc 02ðzÞ
p � rc

00ðzÞ
1þ rc 02ðzÞð Þ3=2

" #
¼ 0; ð3Þ

The first term is the difference between the ambient pressure and hydrostatic
pressures, and the second term is capillary forces. We derive the solution to
equation (3) by enforcing two boundary conditions: (i) the height of the
capillary bridge asymptotically approaches the unperturbed surface far away
from the brush, ρc(h)→∞ and (ii) the surface of the capillary bridge is
continuously connected to the end of the brush, ρc(L)= ρL, where ρL (≡ρ(L)) is
the radius of the end of the brush. The asymptotic solutions to equation (3) for
ρLoλc and ρL4λc are shown in Supplementary Information S5. We use the
solutions for ρLoλc in the rest of this paper. Radius ρL at the end of a model
brush decreases as height h of the brush increases because hydrostatic pressures
and/or capillary forces bend the brush fibers toward the interior of the brush;
see equation (1). Moreover, end radius ρL depends on traction forces that are
generated by the surface tension because of the free ambient–water interfaces of
the capillary bridge, where these traction forces depend on the shapes of the
capillary bridge (via angle θc; see the ‘Model brush’ section and Supplementary
Information S5 and Supplementary Figure S3). The solution to equations (1)
and (3) exists only for brush heights h that are smaller than a critical height hcr.
This implies that the capillary bridge shows instability at the critical height and
ruptures; see Supplementary Information S5.
When the capillary bridge ruptures, some of the water in the capillary bridge

returns to the bath, and the rest is included in the brush. In general, the volume
of water that is included in the brush depends on the dynamics of water in the
capillary bridge during the rupture. We here use a simple approximate
treatment, where the water above the minimal cross-section of the capillary
bridge at critical height hcr is included in the brush, and the rest of water
returns to baths. This treatment is rationalized by the fact that separating the
water in the brush and the water in the bath at the minimal cross-section costs
minimal surface energy. Volume V of water that is captured by a model
brush is thus the sum of the two volumes, V=Vdrp+Vfib: (i) volume

Vdrp ¼
R zmin

L dzpr2c ðzÞ of water that is added from capillary bridges and
(ii) volume V fib ¼

R L
0 dzpr2ðzÞ of water in the region that is enclosed by the

fibers of the brush, where ρc(z) and ρ(z) for the critical height should be used to
calculate the volume, and zmin is the z-coordinate of the minimal cross-section
of the capillary bridge; see Supplementary Information S5.

Model brush that is separated from baths
The shape of a model brush after it is separated from a bath is calculated by
treating ΔP in equation (1) as a Lagrange multiplier that fixes the volume of
water in the brush to V; see also the ‘Capillary bridge’ section. In the open state,
the shape of the ambient–water interface at the open end of a model brush is
represented by positional vector r!opnðr; fÞ ¼ ðr cosf;r sinf; L� hopnðrÞÞ.
The height, hopn(ρ), of the interface is derived using a force-balance equation
that has an approximate form

DP þ r0g ðhopnðrÞ � LÞ þ g
1

r
∂
∂r

r
∂
∂r

hopnðrÞ
� �

¼ 0: ð4Þ

We enforce two boundary conditions in the solution to equation (4): i) Height
hopn(ρ) does not diverge at ρ= 0 and (ii) the interface intersects with the ends
of the fibers, hopn(ρL)= 0. The form of the solution to equation (4) is shown in
Supplementary Information S7. Equation (4) is effective for cases in which
gradient |hopn'(ρ)| is smaller than unity everywhere in the open ends. We thus
use approximation θc≈π/2 to derive the shape of a model brush in the open
condition; see the ‘Model brush’ section.

Comparison with experiments
We rescaled the experimental results published in the study by Meng et al.3

to derive Figure 4c; see reference 3 for the details of the experiments.
Briefly stated, model brushes were prepared by end-grafting glass
fibers (diameter=~20 μm, bending rigidity= 5.6× 10− 10 Nm− 2, contact
angle= 63.2°± 1.2°) to the edge of a polymer rod in the radial direction with
equal spacing (the contact angle was measured using DataPhysics C20). The
brushes were dipped in water baths at a speed of 1.7 mm s− 1 until they were
entirely wet. Then, the brushes were removed from the baths at the same speed.
The weight of the captured water was measured.
Equation (1) is not effective for the region of radially end-grafted fibers

(ρ'(0)→∞) at the proximity of the substrate, where the gradient ρ'(z) is larger
than unity. As an approximate treatment, we here take into account only the
region in which gradient ρ'(z) is smaller than unity because this region mostly
accounts for the volume of water in the brushes.3 We thus derive the solution
to equation (1) using the boundary conditions, ρ(0)= d and ρ'(0) ≃1, to
compare with the experiments; see Figure 4c.
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Figure 2 (a) Radius ρL of the end of a model brush (rescaled by radius d of the substrate) is shown as a function of height h of the brush (rescaled by
gravito-elastic length λg) for cases in which the pressure difference (between the ambient and the water in the brush) dominates capillary forces,
l2c=ðlg dÞ ¼ 0. The values of rescaled fiber length L/λg used for the calculations are 1.6 (cyan), 2.275 (black) and 3.0 (magenta). (b) The diagram that shows
the states (‘open’, ‘close (touch)’ and ‘close (parallel)’) of the model brushes as a function of length L of the fibers (rescaled by the gravito-elastic length)
and radius d of the substrate (rescaled by length l2c=lg ). Closing length Lclo is the minimum length of fibers, where the ends of brushes are closed, and is a
function of rescaled radius dlg=l2c .
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Model experiments using dandelion seeds
A dandelion seed was freshly removed from the grassland of Beihang University
(39.98° N, 116.34° E). The number of pappi (fibers) of the seed was ~ 105, the
radius of the substrate was ~ 350 μm and the angle between the grafted end of
fibers and the central axis was 84°. A dandelion seed was dipped in a water bath
and then removed in the vertical direction with a speed of 100 μm s− 1 using a
motorized stage (Dataphysics DCTA 11, Filderstadt, Germany). This process
was recorded using a video camera (WV-CP280/CH, Panasonic, Osaka, Japan).
The same experiment was performed using the same dandelion seed, but the
fibers were cut by ~ 1 mm. The results are shown in Supplementary Figure S4.

RESULTS

Phase diagram of model brush
To identify the conditions under which the ends of the brushes are
closed, we first analyze the shapes of model brushes when they are
slowly (quasi-statically) removed from water baths in the vertical
direction. The hydrostatic pressure of water in brushes is smaller than
the ambient pressure owing to gravitational forces that are applied to
the water in brushes; see Figure 1. For cases in which the pressure
difference dominates capillary forces, the only relevant length scale is
the gravito-elastic length, which has the form

lg � kfibN fib

2pr0g

� �1=5

; ð5Þ

The bending rigidity, kfib, and number, Nfib, of fibers is included in
our theory only via the gravito-elastic length. When the height h of a
model brush is smaller than the gravito-elastic length, the pressure
difference is not large enough to bend the fibers of the brush; see
Figure 2a. In contrast, when brush height h is larger than the gravito-
elastic length, the fibers of the brush are gradually bent toward the
interior of the brush while the brush is removed from the bath; radius
ρL of the end of a model brush decreases as height h increases.4

Our theory predicts that the end of a model brush is closed before
the brush end is brought up to the level of the unperturbed surface of
the bath (far away from the brush) for cases in which the fibers of the
brush are longer than critical length Lclo (which we call the ‘closing’
length); see the magenta curve in Figure 2a. In contrast, when the
fibers of a brush are shorter than the closing length, the end of the
brush is still open when the brush end is brought to the bath surface;
see the cyan curve in Figure 2a. Indeed, with a general argument, one
can show that the state of a model brush (whether its end is closed or
open) is determined by whether its fibers are longer or shorter than
the closing length; see Supplementary Information S6. One can thus
draw a phase diagram with respect to the states of model brushes as a
function of the (rescaled) fiber length and the (rescaled) radius of
brush substrates; see Figure 2b.
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Figure 3 (a) Volume Vdrp of a remnant droplet, which stays at the end of a model brush owing to the rupture of capillary bridges (see inset), is shown as a
function of radius ρL of the end of the brush. Volume Vdrp and radius ρL are rescaled using capillary length λc. (b) Volume Vdrp of water, which is added to
model brushes from the capillary bridges after the rupture of capillary bridges, is shown as a function of length L of flexible fibers. The volume of water is
rescaled by capillary length λc and fiber length L is rescaled by closing length Lclo; see Figure 2. The values of ratio λc/λg of length scales that are used for
the calculations are 0.08 (light green), 0.8 (black) and 4.0 (orange), where λg is the gravito-elastic length. (c, d) The shapes of the fibers (black) of model
brushes and the ambient–water interface (blue) at their open end, after the brushes are completely removed from baths, are shown for cases in which
(rescaled) fiber length L/λg is 1.0 (c) and 1.3 (d). The insets show the shapes of the ambient–water interfaces. The value of ratio λc/λg used for the
calculations is 0.8 for both c, d (Lclo/λg≃1.6). The value of radius d/λc of the substrate is fixed at 0.8 for the calculations of b,c and d.
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For cases in which radius d of the substrates is larger than threshold
value dth (~ λc

2/λg), the pressure difference dominates capillary
orces (hydrostatic regime), where lc ð�

ffiffiffiffiffiffiffiffiffiffiffiffi
g=r0g

p Þ is the capillary
length.6 In this regime, closing length Lclo scales linearly with the
gravito-elastic length λg; see Figure 2b and Supplementary Figure S2.
This implies that in contrast to brushes of elastic plates (see
Supplementary Information S8), closing length Lclo is independent
of radius d of the substrate, although the distances by which the
ends of the fibers must be displaced to close the ends of the brushes
increase as radius d increases. This is because the local bending
stiffness of the surfaces of the model brushes decreases as radius
d of their substrates increases; see equation (2). For cases in which
radius d is smaller than threshold radius dth, capillary forces dominate
the pressure difference (capillary regime). In this regime, the closing
length of fibers scales as LcloBl5=4gg

d1=4=l1=2c ; see Figure 2b and
Supplementary Figure S2. A scaling argument that shows the above
scaling relationship of the closing length is shown in Supplementary
Information S4.
Tangent vectors at the ends of the fibers of model brushes

are gradually redirected toward the central axes as the height of
the brushes increases. For cases in which the fibers of the brush are
longer than a second critical length, the tangent vectors become
parallel to the central axes before the ends of the brushes reach the
meniscus; see Figure 2b. Because water in these parallel brushes is not
stable, we here primarily treat model brushes that are composed of
shorter fibers; see also Supplementary Information S9.

Remnant droplets that stay at the ends of brushes
For the simplest cases, in which a model brush is composed of very
stiff fibers, Looλg, the radius of the end of such a stiff brush is
approximately constant, ρL≈d; see Figure 2a. When the brush is
brought up to a height higher than the level of the bath surface,
h4L, the end of the brush is still connected with water in the bath
via capillary bridges because separating them requires relatively
large surface energy (see the inset of Figure 3a). This situation is
analogous to cases in which a hard rod,17 a hard ring6,18 or a hard
plate19 is removed from a bath. When the stiff brush is brought up to
critical height hcr, the capillary bridges show instability and rupture;
see also Figure 3a and Supplementary Information S5. For simplicity,
we here use an approximate treatment whereby at the rupture,
the water below the minimal cross-section of the capillary bridge
returns to the bath, and the rest of the water stays at the end of
the brush as a (remnant) droplet; see the inset of Figure 3a. This
treatment is rationalized by the fact that the surface-energy
cost is minimal when capillary bridges are separated at the minimal
cross-section (see also the discussion below). The volume of the
remnant droplet decreases as radius ρL of the end of the brush
decreases and tends to zero for ρL→0; see Figure 3a. Radius ρL of the
end of a model brush at the critical height is thus a key parameter that
determines the volume of the remnant droplet that remains at the end
of the brush.
Radius ρL of the end of a model brush that is composed of

flexible fibers decreases as height h of the brush from the surface of a
bath increases; see Figure 2a. For cases in which the fibers of the brush
are longer than the closing length, radius ρL of the brush end is zero
when the brush end is brought up to the level of the bath surface,
h= L; there is no surface-energy cost of separating the brush from the
bath, where the area of the cross-section is zero. The brush is thus
separated from the bath without showing a capillary bridge. No
droplet remains at the end of the closed brush; see L= Lclo in
Figure 3b. In contrast, for cases in which the fibers of the brush are

shorter than the closing length, radius ρL at the brush ends is
larger than zero when the brush end is brought up to the bath
surface. The brush is thus connected with the bath via a capillary
bridge when the brush height is smaller than a critical height, hohcr.
In contrast to the cases of stiff brushes, end radius ρL of a flexible
brush continues to decrease as the height of the brush increases owing
to the gravitational forces that are applied to the water in the capillary
bridge. Nevertheless, end radius ρL never becomes zero before the
brush is brought up to the critical height; see Supplementary
Information S6. When the capillary bridge ruptures, there is always
a finite volume of water that is included in the brush; see LoLclo in
Figure 3b. In some cases, the water stays at the end of the brush as a
remnant droplet; see Figure 3c. This finding is in agreement with
experiments on an analogous system; see also Supplementary Figure
S4. The volume of water that is added to the model brush from the
capillary bridge increases as the bending rigidity kfib ðBl5gÞ of their
fibers increases; see Figure 3b.
When a model brush is separated from a bath, the model brush

attains a new mechanical balance, with a volume Vdrp of water that is
added from the capillary bridges. For cases in which the brush is
composed of relatively stiff fibers, Loλg, the added water stays
at the end of the brush as a remnant droplet; see Figure 3c. In
contrast, for cases in which the brush is composed of more flexible
fibers, L~ Lclo (but is still shorter than closing length Lclo), the water
from a capillary bridge is sucked into the interior of the brush. This
occurs because the hydrostatic pressures of water in the brush slightly
increase when the capillary bridge ruptures owing to the release of
gravitational forces of water that returns to the bath. The hydrostatic
pressures slightly push their fibers toward the exterior of the brush,
and the free surface at the open end of the brush shows a concave (but
almost flat) shape; see Figure 3d. However, in more general cases, in
which a model brush is removed with a finite speed, the volume of
water that is included in the brush from the capillary bridge may be
sensitive to the dynamics of water during the rupture of the capillary
bridge; in some cases, the volume of added water may be large enough
to stay as a droplet. We thus argue that closing the ends of brushes
more robustly eliminates remnant droplets because capillary bridges
are not stabilized.

Volume of water in brushes
The volume of water that is captured by a model brush from a bath is
a hydrostatic quantity that characterizes the functions of the brush.
Our theory predicts that the volume of water that is captured by
model brushes is a non-monotonic function of the length of their
fibers. The volume shows a peak in the open state and another peak in
the closed state; see Figure 4a. Two competing effects account
for the peak in the open state, LoLclo: First, the height of the
region that is enclosed by the fibers of model brushes increases as the
fiber length increases; the volume of water that is captured by such
brushes increases as length L of the fibers increases. This geometrical
effect dominates in cases where brush fibers are relatively short.
Second, the pressure difference, ΔP (~ρ0gL), which bends the fibers of
brushes toward the interior, increases as length L of their fibers
increases; see also Figures 3c and d. The volume of water that is
captured by such brushes decreases as the length of the fibers
increases. This mechanical effect dominates for brushes that have
relatively long fibers. The volume of remnant droplets makes only
minor contributions to the total volume unless the fibers of brushes
are too short, Lod.
In the closed state, reaction forces that oppose the pressure

difference are applied to the ends of the fibers of brushes owing to
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the excluded volume interactions between these fibers. For cases in
which the fibers of brushes are relatively short, L~ Lclo (but are still
longer than closing length Lclo), the pressure difference is not large
enough to bend the fibers, owing to the reaction forces. Thus, the ends
of the fibers of the brushes just shift to lower positions as length L of
the fibers increases; see the magenta curve in Figure 4b. The volume of
water that is captured by brushes thus increases as length L of their
fibers increases. For cases in which the fibers of brushes are relatively
long, the pressure difference can be large enough to bend the fibers
toward the interior of the brushes; see the green curve in Figure 4b.
Because the pressure difference increases with increasing fiber length,
ΔP= ρ0gL, the volume of water that is captured by brushes decreases
with increasing length of the fibers of these brushes. Reaction forces
between the fibers of closed brushes are thus responsible for the
second peak of the volume of water that is captured by model brushes.
Indeed, a peak that may correspond to the peak in the closed state

has been measured in recent experiments that use brushes, wherein
fibers are end-grafted in the radial directions of the substrates.3 Our

theory predicts that such brushes also show a peak in the closed state,
analogously to the present model brushes, where their fibers are end-
grafted in the normal to the substrate surface; see Supplementary
Figure S5a. For cases in which the radius of the brush substrate is
smaller than the gravito-elastic length, doλg, in the hydrostatic
regime, the only relevant length scale is the gravito-elastic length λg.
In these cases, the volume that is rescaled by πLλg

2 is a function only of
a fiber length that is rescaled by gravito-elastic length λg; with this
rescaling, the volume of water that is measured for different numbers
of fibers (approximately) collapses to one curve (see Figure 4c). Our
theory predicts the volume of water in reasonable agreement with
experiments; see Figure 4c.

DISCUSSION

Our theory predicts that model brushes suppress droplets with a
physical mechanism that is significantly different from that of a single
conical fiber. A single conical fiber stabilizes droplets by capillary
forces that are generated on the surface of droplets owing to the
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Figure 4 (a) Volume V of water (rescaled by πd2λg) that is captured by model brushes from baths is shown as a function of length L of the fibers of these
brushes (rescaled by λg), where λg is the gravito-elastic length, and d is the radius of the brush substrate. The values of ratio λc/λg and rescaled radius d/λc
that are used for the calculation are both 0.8 (λc is the capillary length). In the parallel state, the solid and broken curves show upper and lower bounds of
the volume of water that is captured by brushes, respectively. (b) The shapes of model brushes are shown for cases in which the values of rescaled fiber
length L/λg are 1.6 (black), 2.15 (magenta) and 2.7 (green). The value of rescaled radius lg d=l2c that is used for the calculations is 1.0. (c) Volumes V of
water (rescaled by pLl2g ) that is captured by model brushes that are composed of 20 (black), 40 (blue) and 80 (red) fibers are shown as functions of
rescaled fiber length L (rescaled by the gravito-elastic length λg). The dots are extracted from recent measurements,3 and the solid lines are predicted by our
theory. Bending rigidity kfib of fibers that are used for the rescaling and the calculations is 5.6×10−10 N m−2. See also Supplementary Information S9 for
the closed (parallel) regime.
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varying cross-section of conical fibers. However, these capillary forces
do not operate with water in brushes because the water fills the entire
space between the fibers of the brushes; the surface energy at the fiber–
liquid interface is constant. Indeed, the volume of unwanted droplets
is limited by radius ρL of the brush ends because these droplets result
from the rupture of capillary bridges; model brushes eliminate
remnant droplets by closing their ends. This is a collective behavior
of many flexible fibers, which is considerably different from that of a
single fiber wetted by a droplet. The elastic deformations of wetted
flexible materials have been treated in recent studies.3,4,7–11 In contrast
to these studies, our theory emphasizes the effect of closing the ends of
brushes on the hydrostatic properties that are relevant to the function
of brushes as liquid-transfer systems.
Our theory makes a few experimentally accessible predictions: First,

in the hydrostatic regime, d4l2c=lg , the closing length, Lclo ( ~ λg), of
model brushes is independent of radius d of their substrates, in
contrast to brushes of flexible plates because the local bending stiffness
of the ambient–water interfaces of model brushes is inversely
proportional to distance ρ(z) between the interface and the central
axis of the brush; see Figure 1. The closing length, Lclo, of model
brushes is relatively sensitive to radius a of the cross-section of their
fibers; see equation (5) (because the bending rigidity of fibers scales
with kfib ~ a4).16,20 Second, the volume of water that is captured by
model brushes is a non-monotonic function of the length of their
fibers, with one peak in the open state and another peak in the closed
state. The peak in the closed state has been measured in recent
experiments;3 however, the peak in the open state has not. With
appropriate rescaling, the volume of water that is measured in various
experimental conditions will collapse to one master curve as long as
the system is in the same regime; in the hydrostatic regime, the
volume of water should be rescaled by πd2L, and the fiber length
should be rescaled by gravito-elastic length λg.
Our theory is relatively generic, but it is ideally tested by

experiments that satisfy the following conditions: First, flexible
fibers are end-grafted in the normal to the substrate surface. The
scaling relationships predicted by our theory may not be effective
for model brushes, where their fibers are end-grafted in the radial
direction of substrates. When the radius of the substrates of these
brushes is smaller than the gravito-elastic length, doλg, the radius
d is no longer a relevant length scale, and the volume of water
that is captured by these brushes scales with pl2gL; see Figure 4c.
Second, the number of fibers of a model brush is large enough
so that the brush is approximately treated as a cylindrically symmetric
system. Third, model brushes are removed from a water bath very
slowly. When brushes are removed with finite speeds, this drives
hydrodynamic flows in capillary bridges, and thus, the volume of
water that is included in model brushes from the capillary bridges may
be sensitive to the speeds of the brushes. We use a simple
(approximate) treatment whereby capillary bridges rupture at the
positions of the minimal cross-sections because this minimizes the
surface energy. It is not obvious whether our results are indeed an
asymptotic solution for a brush speed of zero; however, we expect that
this treatment is a sufficiently good approximation for the scope of
this paper.
Chinese calligraphic brushes, where fibers are end-grafted to the

central regions (mantle) and the edges (outer layer) of their
substrates21 may be treated in an extension of our theory. The conical
ends of the fibers of the mantle do not generate capillary forces
because the surface energy at fiber–water interfaces is constant as long
as the space between the fibers is filled with water. If the mantle fibers
are relatively long, the mantle may limit the elastic deformation of the

outmost fibers owing to the excluded volume interactions between
them. In contrast, when the fibers in the outer layer are longer than
the fibers in the mantle, the ends of Chinese brushes are closed by
fibers in the outer layer, just as the fibers of our model brushes are.
The conical ends of the fibers and the length of fibers in the outer
layer, relative to the fibers in the mantle, thus have an important role
in suppressing unexpected drops of ink.1 These results have not been
predicted by phenomenological models that do not treat interfacial
forces.21,22

Our theory predicts that model brushes eliminate unwanted
droplets by closing their ends. Moreover, this theory predicts
that the volume of water that is captured by these brushes is a
non-monotonic function of the length of their fibers, with one peak in
the open state and the other peak in the closed state. These results are
explained by the fact the area of the ends of closed brushes is zero, and
the fibers of closed brushes show excluded volume interactions. Our
theory demonstrates that closing the ends of Chinese calligraphic
brushes significantly affects the hydrostatic properties of these brushes.
Our theory may provide insight into the physics of the wetting of
other fibrous systems23–26 that show interactions between flexible
fibers. Moreover, this theory may guide the designs of bio-inspired
liquid-transfer devices of flexible fibers to suppress unexpected drop of
liquids.
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