Skip to main content

Advertisement

Log in

Drosophila Krüppel protein is a transcriptional represser

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

KRÜPPEL (Kr), one of the zygotically active Drosophila segmentation genes, is expressed in a restricted domain during the blastoderm stage of embryogenesis and is involved in the control of development of the thoracic and abdominal segments of the fly1. Kr encodes a polypeptide containing DNA-binding zinc-finger motifs2, disruptions of which yield Kr mutants3,4. We have assayed the transcriptional activities of wild-type Kr protein as well as Lac repressor/Kr fusion proteins in HeLa and CV-1 cells. Wild-type Kr and a Lac–Kr chimaeric protein repressed transcription from reporter promoters in which a consensus Kr binding site derived from sequences within the even-skipped promoter5 had been inserted in an upstream position. We mapped the repression function of Kr to an alanine-rich amino-terminal region of the protein, as a Lac/Kr fusion protein containing only amino acids 26–110 of Kr repressed transcription from a reporter promoter containing upstream lac operators. This demonstrates that the DNA-binding and repression activities of the Kr protein are distinct. These data are consistent with genetic evidence that Kr represses even-skipped6,7 and hunchback8 expression, and suggest that Kr is a negative regulator of transcription in Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaul, U. & Jäckie, H. Trends Gen. 3, 127–131 (1987).

    Article  Google Scholar 

  2. Rosenberg, U. B. et al. Nature 319, 336–339 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Redemann, N., Gaul, U. & Jäckie, H. Nature 332, 90–92 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Gaul, U., Redemann, N. & Jäckie, H. Proc. natn. Acad. Sci. U.S.A. 86, 4599–4603 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Štanojević, D., Hoey, T. & Levine, M. Nature 341, 331–335 (1989).

    Article  ADS  Google Scholar 

  6. Frasch, M. & Levine, M. Genes Dev. 1, 981–995 (1987).

    Article  CAS  Google Scholar 

  7. Goto, T., Macdonald, P. & Maniatis, T. Cell 57, 413–422 (1989).

    Article  CAS  Google Scholar 

  8. Jäckie, H., Tautz, D., Schuh, R., Seifert, E. & Lehmann, R. Nature 324, 668–670 (1986).

    Article  ADS  Google Scholar 

  9. Pankratz, M. J., Hoch, M., Seifert, E. & Jäckie, H. Nature 341, 337–339 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Ingham, P. W., Ish-Horowicz, D. & Howard, K. R. EMBO J. 5, 1659–1665 (1986).

    Article  CAS  Google Scholar 

  11. Harding, K. & Levine, M. EMBO J. 7, 205–214 (1988).

    Article  CAS  Google Scholar 

  12. Gaul, U., Seifert, E., Schuh, R. & Jäckie, H. Cell 50, 639–647 (1987).

    Article  CAS  Google Scholar 

  13. Treisman, J. & Desplan, C. Nature 341, 335–337 (1989).

    Article  ADS  CAS  Google Scholar 

  14. McKnight, S. L. Cell 31, 355–365 (1982).

    Article  CAS  Google Scholar 

  15. Levine, M. & Manley, J. L. Cell 59, 405–408 (1989).

    Article  CAS  Google Scholar 

  16. Jaynes, J. B. & O'Farrell, P. H. Nature 336, 744–749 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Han, K., Levine, M. S. & Manley, J. L. Cell 56, 573–583 (1989).

    Article  CAS  Google Scholar 

  18. Biggin, M. D. & Tjian, R. Cell 58, 433–440 (1989).

    Article  CAS  Google Scholar 

  19. Kassis, J. A., Poole, S. J., Wright, D. K. & O'Farrell, P. H. EMBO J. 5, 3583–3589 (1986).

    Article  CAS  Google Scholar 

  20. Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Cell 57, 1031–1043 (1989).

    Article  CAS  Google Scholar 

  21. Luckow, B. & Schütz, G. Nucleic Acids Res. 15, 5490 (1987).

    Article  CAS  Google Scholar 

  22. Figge, J., Wright, C., Collins, C. J., Roberts, T. M. & Livingston, D. M. Cell 52, 713–722 (1988).

    Article  CAS  Google Scholar 

  23. Brake, A. J., Fowler, A. V., Zabin, I. Z., Kania, J. & Müller-Hill, B. Proc. natn. Acad. Sci. U.S.A. 75, 4824–4827 (1978).

    Article  ADS  CAS  Google Scholar 

  24. DeLuca, N. A. & Schaffer, P. A. Nucleic Acids Res. 15, 4491–4511 (1987).

    Article  CAS  Google Scholar 

  25. McKnight, S. L. Nucleic Acids Res. 8, 5949–5964 (1980).

    Article  CAS  Google Scholar 

  26. Selden, R. F., Howie, K. B., Rowe, M. E., Goodman, H. M. & Moore, D. D. Molec. cell Biol. 6, 3173–3179 (1986).

    Article  CAS  Google Scholar 

  27. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  28. Smith, T. F. & Waterman, M. S. J. molec. Biol. 147, 195–197 (1981).

    Article  CAS  Google Scholar 

  29. Ralph, W. W., Webster, T. & Smith, T. F. Comput. Appl. Biol. Sci. 3, 211–216 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licht, J., Grossel, M., Figge, J. et al. Drosophila Krüppel protein is a transcriptional represser. Nature 346, 76–79 (1990). https://doi.org/10.1038/346076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346076a0

  • Springer Nature Limited

This article is cited by

Navigation